C型の旗多様体のシューベルト多様 体の特異点の重複度に関する予想

岡山理科大学大学院理学研究科応用数学専攻 川合遼太郎
Ryotaro Kawago
Applied Mathematics, Graduate school of Science,
Okayama University of Science

概要

シンプレクティック群の旗多様体においてシューベルト部分多様体を考える。シューベルト多様体の特異点についてラグランジアングラスマンの場合、重複度の組み合わせ的公式があり、この公式をシンプレクティック旗多様体の vexillary signed permutation に付随するシューベルト多様体の場合に拡張する結果を得た。

1 シューベルト多様体の点の重複度

n 次元ベクトル空間内の線型部分空間全体のなす集合であるグラスマン多 様体や線型部分空間の列のなす集合である旗多様体の点について GL, の下三 角行列による軌道の閉包はシューベルト多様体と呼ばれる。シューベルト多 様体に関する研究は以前から行われており、シューベルト多様体のどの点が 特異点であるか、特異点の重複度はいくつか、シューベルト多様体の点にお けるヒルベルト関数は何かといった問題がある。シューベルト多様体の点の 重複度に関しては、グラスマン多様体の場合について、組み合わせ論的な手 法での求め方がすでに知られている [KR]。この手法ではヤング図形と呼ばれ る図形を用いて重複度を表す。ラグランジアングラスマン多様体の場合につ いて、この場合においても組み合わせ論的な手法での求め方が知られている [GR][IN]。この手法ではシフトされたヤング図形を用いて重複度を表す。旗 多様体の vexillary permutation に付随するシューベルト多様体について、同 様に組み合わせ論的な手法での求め方が知られていて、これは A 型のグラス マン多様体の場合を拡張したものである [LY]。ここではグラスマン多様体、 ラグランジアングラスマン多様体、旗多様体の vexillary permutation に付随 するシューベルト多様体の場合の結果を紹介し、シンプレクティック旗多様 体について、ラグランジアングラスマン多様体の場合の結果を拡張したもの を考える。

 $P \subset GL_n$ を n 次元ベクトル空間内にある d 次元線型部分空間の集合であるグラスマン多様体 $G_{d,n}$ の元の固定群とする。このとき GL_n/P は $G_{d,n}$ と

同一視できる。 $B \in GL_n$ のうち上三角行列であるもの全体とし、 B_- を GL_n のうち下三角行列であるもの全体とすると B,B_- はボレル部分群である。また $T \in GL_n$ の元である極大トーラスとする。 $G_{d,n}$ のトーラス作用による固定点の B 軌道の閉包がグラスマン多様体のシューベルト多様体である。また GL_n/B は旗多様体と同一視でき、旗多様体のトーラス作用による固定点の B_- 軌道が旗多様体のシューベルト多様体である。

 Sp_{2n} を GL_{2n} の部分群であるシンプレクティック群とする。 $G_{n,2n}$ の元のうち lagrangian という条件を満たすものの集合 $LG_{n,2n}$ をラグランジアングラスマン多様体という。 $P'\subset Sp_{2n}$ を $LG_{n,2n}$ の元の固定群とすると Sp_{2n}/P' は $LG_{n,2n}$ と同一視できる。 B' を Sp_{2n} のうち上三角行列であるもの全体とし、 B'_{-} を Sp_{2n} のうち下三角行列であるもの全体とすると B', B'_{-} はボレル部分群である。 T' を Sp_{2n} の元である極大トーラスとする。 $LG_{n,2n}$ のトーラス作用による固定点の B 軌道の閉包がラグランジアングラスマン多様体のシューベルト多様体である。 また Sp_{2n}/B' は C 型の旗多様体と同一視でき、研究の対象となるシューベルト多様体は Sp_{2n}/B' に含まれる。符号付き置換 $w\in W$ はワイル群であり、w によって定まる C 型の旗多様体のトーラス作用による固定点を e_w とする。 e_w の B'_{-} 軌道の閉包 Ω_w をシューベルト多様体という。

シンプレクティック旗多様体の vexillary signed permutation に対応づけられるシューベルト多様体の場合の重複度を Singular で求め、そこから組み合わせ論的な手法での求め方の予想を立てた。グラスマン多様体、ラグランジアングラスマン多様体、旗多様体の vexillary という条件を満たすシューベルト多様体の場合励起されたヤング図形を用いて重複度を求めることができるのだが、この予想についても励起されたヤング図形を用いる。

2 グラスマン多様体

 \mathbb{C}^n を考え、 GL_n の元のうち、上三角行列であるもの全体を B と書く。B はボレル部分群である。I(d,n) を濃度が d である $\{1,\cdots,n\}$ の部分集合からなる集合とする。

定義 2.1 (グラスマン多様体) $d \le n$ $(d, n \in \mathbb{Z})$ とする。 $G_{d,n}$ を n 次元ベクトル空間内にある d 次元の線型部分空間全体の集合とする。 $G_{d,n}$ をグラスマン多様体という。

定義 2.2 (ブリュア順序) $v,w \in I(d,n)$ について $v \geq w$ であるとは、 $v = \{v_1, \cdots, v_d\}$ $(v_i < v_{i+1})$ $w = \{w_1, \cdots, w_d\}$ $(w_i < w_{i+1})$ に対して、 $v_1 \leq w_1, \cdots, v_d \leq w_d$ が成り立っているときのことをいう。

例 2.3 n=4, d=2 のとき $\{1,2\} > \{2,3\}$ であるが、 $\{1,4\},\{2,3\}$ では、大 小関係は決まらない。

 e_v を e_{v_1}, \dots, e_{v_d} によって張られる $G_{d,n}$ の元とする (ただし e_1, \dots, e_n は、n 次元ベクトル空間の標準基底)。 e_v はトーラス作用による固定点である。

例 2.4 $n=4, d=2, e_{\{1,2\}}$ であれば (1,0,0,0), (0,1,0,0) によって張られる線型部分空間を表す。

定義 2.5 (グラスマン多様体のシューベルト多様体) $G_{d,n}$ 内のシューベルト 多様体 X_w は e_w の B-orbit の閉包のことをいう。

 $X_w = \coprod_{v \geq w} Be_v$ であり、 $v \geq w$ のとき $e_v \in X_w$ である。 k は体、 $R = k[x_1, \cdots, x_n]$ は体 $k \perp n$ 変数多項式環とする。

定義 2.6 (ヒルベルト関数)

多項式環 $k[x_1,\cdots,x_n]$ 上の有限生成次数付加群 M のヒルベルト関数 $H_M(t)$ を

$$H_M(t) = \dim_k M_t$$

と定義する。 $(M_t$ は M の次数 t の斉次部分) ここで \dim_k は k 上のベクトル 空間としての次元を意味する。

重複度はヒルベルト関数を求めることで計算でき、ヒルベルト関数 H(t) の最高次の項が $\frac{m}{n!}t^n$ のとき重複度はm である。 $c\in\{v_1,\cdots,v_d\},r\in\{1,\cdots,n\}\setminus\{v_1,\cdots,v_d\}$ とし、(r,c) からなる集合を \Re^v と書く。

定理 2.7 X_w の点 e_v における座標環 R/I について、 $\theta = \{\theta_1, \dots, \theta_d\} \in I(d,n), p_\theta = det(a_{\theta_i\theta_j})(1 \le i,j \le d)$ とするとき、 $\{f_\theta = p_\theta/p_v | \theta \in I(d,n), \theta \ge w\}$ である f_θ が I を生成する。 $(det(a_{\theta_i\theta_j})$ は、 $(r,c) \in \mathfrak{R}^v$ であるとき、(r,c) 成分を変数とし、 (w_k,k) 成分を 1, それ以外を 0 とした行列によるもの)

これをもとにヒルベルト関数を計算することができる。例えば $G_{2,4}, w = \{2,4\}, v = \{1,2\}$ のとき X_w の点 e_v における座標環 R/I の I は $\{3,4\} \not\geq w$

であるため
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ a & b \\ c & d \end{pmatrix}$$
 の 3 行目と 4 行目からなる小行列式によって生成され

るので $I = \langle ad - bc \rangle$

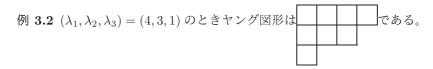
このIの生成元をもとにグレブナ基底を求め、シュライヤーの定理を用いることでIのヒルベルト関数を求めることができ、R/Iのヒルベルト関数も求めることができる。

この手法により $H_{R/I}(t) = t^2 + 2t + 1$ であることが求められる。

3 励起されたヤング図形によるグラスマン多様体の シューベルト多様体の点の重複度の表示

この節では 2 つのヤング図形によって重複度を求める手法を紹介する。用いるヤング図形は I(d,n) の元に対して定まる。この節では $v,w\in I(d,n)$ とする。

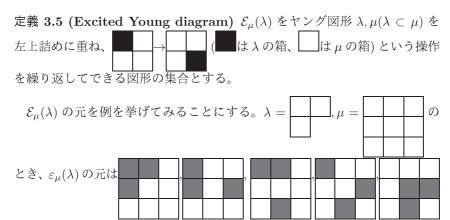
定義 3.1 (ヤング図形) $\lambda_1 \geq \cdots \geq \lambda_m \geq 0$ $(\lambda_1, \cdots, \lambda_m \in \mathbb{Z})$ である λ_i に対して i 行目に λ_i 個の箱(正方形)を左詰めに並べてできた図形をヤング図形という。



定義 3.3 $w = \{w_1, \dots, w_d\}$ に対してヤング図形 λ を $\lambda_i = (n-d) + i - w_i$ となるように定める。

定義 3.3 のヤング図形は $w \in I(d,n)$ である v に対して縦が d、横が n-d である長方形を考え、右上の角から m 回目に引く線を m が w の元であるならば下に、そうでないならば左に 1 ずつ線を引き左下の角に到達するまで繰り返す。長方形上で v によって引かれた線の左上の領域を見たものと同じになる。

例 3.4 定義 3.3 のヤング図形について n=6, w=(1,2,5) のとき、 $\lambda_1=(6-3)+1-1=3, \lambda_2=(6-3)+2-2=3, \lambda_1=(6-3)+3-5=1$ なので得られるヤング図形は である。



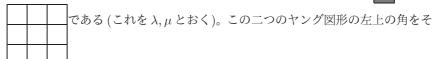
の5つである。

定理 3.6 (Kodiyalam and Raghavan) シューベルト多様体 X_w の点 e_v に おける重複度を $\operatorname{mult}_{e_v} X_w$ とし、w,v によって定義 3.3 で定まるヤング図形を λ,μ とする。このとき

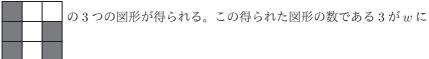
$$\operatorname{mult}_{e_v} X_w = \# \mathcal{E}_{\mu}(\lambda)$$

となる。

例 3.7 $n=6, w=\{2,3,5\}, v=\{1,2,3\}$ に対応するヤング図形は



ろえて重ねると となる。 $\#(E)_{\mu}(\lambda)$ の元として



 $\overline{\mathsf{L}_{o}}$ よって決まるシューベルト多様体の点v の重複度である3 と一致する。

4 C型のグラスマン多様体

 \mathbb{C}^{2n} を考える。 $G = Sp_{2n}(\mathbb{C}) = \{g \in GL_{2n}(\mathbb{C}) | {}^t gJg = J\}$ $\begin{pmatrix} 0 & ! & . & . \\ & 0 & ! & . & . \\ & -\frac{1}{0} - - - - - \frac{1}{-1} & 1 - - - & 0 \\ & . & . & . & 0 \\ & -1 & 0 & ! \end{pmatrix}$ とする。 $G \supset B' = \{g \in G | g$ は上三角行

列 } また $G \supset B'_- = \{ g \in G | g \text{ kr} = \mathfrak{H} \in \mathcal{H} \} \}$ とする。 $B', B'_- \text{ kix} \cup \mathcal{H}$ 部分群である。 $\mathbb{C}^{2n} \ni \mathbf{a} = (a_1, \cdots, a_{2n}), \mathbf{b} = (b_1, \cdots, b_{2n})$ に対して skew-symmetric bilinear form \langle , \rangle を $\langle \mathbf{a}, \mathbf{b} \rangle = {}^t \mathbf{a} J \mathbf{b} = a_1 b_{2n} + \cdots + a_n b_{n+1} - a_{n+1} b_n - \cdots - a_{2n} b_1$ と定める。 \langle , \rangle が nondegenerate であるとは、全ての \mathbf{b} に対して $\langle \mathbf{a}, \mathbf{b} \rangle = 0$ であるならば $\mathbf{a} = \mathbf{0}$ であることをいう。 \mathbb{C}^{2n} の部分空間 V について $\langle V, V \rangle = \{0\}$ であるとき V は isotropic subspace であるという。 $v_1, \cdots, v_n \in \mathbb{C}^{2n}$ によって張られる部分空間を V とする。V が lagrangian であるとは任意の $1 \leq i, j \leq n$ において $\langle v_i, v_j \rangle = 0$ であることをいう。

定義 4.1 (ラグランジアングラスマン多様体)

 $LG_{n,2n} = \{g \in G_{n,2n} | g \text{ tagrangian} \}$ である $LG_{n,2n}$ を C 型のグラスマン 多様体という。

 $j \in [2n]$ である j に対して $j^* := 2n+1-j$ とする。 Ig(n) を I(n,2n) の部分集合であり、 $v \in I(n)$ であるならば v は j を含むならば j^* を含まないものとする。

定義 **4.2** (C 型のグラスマン多様体のシューベルト多様体) $LG_{n,2n}$ 内のシューベルト多様体 X_w は e_w の B'-orbit の閉包のことをいう。

 $X_w = \coprod_{v \geq w} B'e_v$ であり、 $v \geq w$ のとき $e_v \in X_w$ である。

 X_w の点 e_v における座標環 R/I について、 $\theta = \{\theta_1, \cdots, \theta_d\} \in I(n, 2n), p_\theta = \det(a_{\theta_i\theta_j})(1 \leq i, j \leq d)$ とするとき、 $\{f_\theta = p_\theta/p_v | \theta \in I(n, 2n), \theta \geq w\}$ である f_θ が I を生成する。 $(\det(a_{\theta_i\theta_j})$ は、 $(r,c) \in \mathfrak{R}^v$ であるとき、(r,c) 成分を変数とし、 (w_k,k) 成分を 1、それ以外を 0 とした行列によるもの)

例 **4.3** $LG_{3.6}, w = \{1,3,5\}, v = \{1,2,3\}$ のとき X_w の点 e_v における座標環

$$R/I$$
の I は $egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ a & b & c \ d & e & b \ f & d & a \end{pmatrix}$ の小行列式から求められる $I=\langle a,d,f,b^2-ce
angle$

この I の生成元をもとに $H_{R/I}(t)=2t+1$ であることが求められる。重複度は 2。

5 励起されたヤング図形による C型のグラスマン多 様体のシューベルト多様体の点の重複度の表示

この節では 2 つのシフトされたヤング図形によって重複度を求める手法を紹介する。用いるシフトされたヤング図形は Ig(n) の元に対して定まる。この節では $v,w\in Ig(n)$ とする。

定義 5.1 (シフトされたヤング図形) $\lambda_1 > \cdots > \lambda_m > 0 \ (\lambda_1, \cdots, \lambda_m \in \mathbb{Z})$ である λ_i に対して i 行目に i 列目から λ_i 個の箱(正方形)を左詰めに並べてできた図形をヤング図形という。

例 5.2 $(\lambda_1, \lambda_2, \lambda_3) = (4, 2, 1)$ のときシフトされたヤング図形は である。

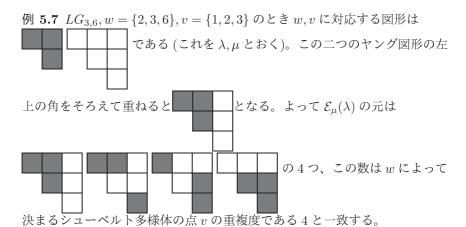
定義 **5.3** $w = \{w_1, \dots, w_d\} \in Ig(n)$ に対してシフトされたヤング図形 λ を $\lambda_i = -(w_i - 1 - n)$ (ただし $w_i < n$) となるように定める。

例 $5.4\ n=3, w=\{2,3,6\}$ のとき $\lambda_1=-(2-1-3)=3, \lambda_2=-(3-1-3)=1$ である。 $w_3=6$ \le n なので λ_3 は考えない。よって得られるシフトされたヤング図形は である。

定理 5.6 (Ghorpade-Raghavan,Ikeda-Naruse) シューベルト多様体 X_w の点 e_v における重複度を $\operatorname{mult}_{e_v} X_w$ とし、w,v に定義 5.3 によって定まるシフトされたヤング図形を λ,μ とする。このとき

$$\operatorname{mult}_{e_v} X_w = \# \mathcal{E}_{\mu}(\lambda)$$

となる。



6 旗多様体

定義 6.1 (旗多様体) E_i は \mathbb{C}^n の線型部分空間で、 $Fl = \{\{0\} \subset E_1 \subset \cdots \subset E_n = \mathbb{C}^n | E_i \subset \mathbb{C}^n, dim E_i = i\}$ を旗多様体という。

n 次対称群 S_n の元 v を (v_1, \cdots, v_n) とかく。 S_n の元 v に対して、 $E_i = \langle \boldsymbol{e}_{v_1}, \cdots, \boldsymbol{e}_{v_i} \rangle$ であるものを e_v とかく。 e_v はトーラス作用による固定点である。

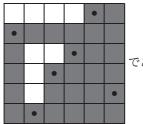
定義 6.2 (シューベルト多様体) 旗多様体の元 e_v の B_- -orbit の閉包 Ω_v を シューベルト多様体という。

 $w \in S_n$ に対して $r_w(p,q) := \#\{(w(i),i)|w(i) \leq p, i \leq q\}(1 \leq p, q \leq n)$ とする。 $r_w(p,q)$ はランク関数と呼ばれている。

定理 **6.3 (ブリュア順序)** $v,w \in S_n$ に対して $v \ge w$ であるとは全ての $1 \le p,q \le n$ に対して $r_v(p,q) \le r_w(p,q)$ であるときをいう。

 $\Omega_w = \prod_{v \geq w} B_- e_v$ であり、 $v \geq w$ であるとき $e_v \in \Omega_w$ である。

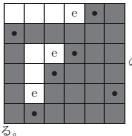
 $n \times n$ のマス目を考える。 $w \in S_n$ に対して $(w(i),i)(1 \le i \le n)$ に点をかく。点のあるマスより右側にあり同じ行にあるマスと点のあるマスより下側にあり同じ列にあるマスを取り除く。こうしてできたダイアグラムをロズダイアグラムといい D(w) とかく。w = (2,6,4,3,1,5) のとき D(w) は



である。

定義 6.4 (エッセンシャルボックス) D(w) の残ったマスのうち南東の角にあるマスをエッセンシャルボックスといい、w によって定まるエッセンシャルボックスの集合を Ess(w) とかく。

例 **6.5** w = (2,6,4,3,1,5) のとき



のeと書いてあるマ

スがエッセンシャルボックスである。

旗多様体の元 e_v の B 軌道を U_v^+ とかき、 U_v^+ を行列としてみたものを M^v とかく。 M^v の (p,q) 成分を含む左上の部分行列を $M_{p,q}^v$ とかき、 $I_{w,v}=\langle M_{p,q}^v$ の $r_w(p,q)+1$ 次である小行列式 $|(p,q)\in Ess(w)\rangle$ とする。

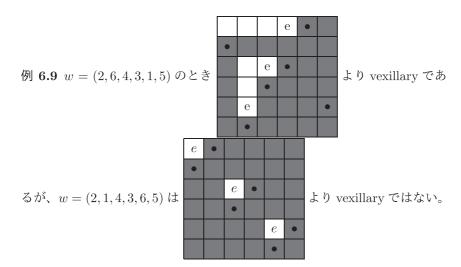
定理 **6.6** $I_{w,v}$ が w によって決まるシューベルト多様体 Ω_w の点 e_v における 座標環 $\mathbb{C}[U_v^+ \cap \Omega_w]/I$ の I を決定する。

例 6.7
$$n=4,v=(4,3,2,1)$$
 の場合 M_v は $\begin{pmatrix} a&b&c&1\\d&e&1&0\\f&1&0&0\\1&0&0&0 \end{pmatrix}$ と書ける。 $w=$

(1,3,2,4) の場合のエッセンシャルボックスの座標は (2,2) であり $r_w(2,2)+1=2$ である。よって v,w によって決まる座標環 $\mathbb{C}[U_v^+\cap\Omega_w]/I$ の I は $I=\langle ae-bd\rangle$ である。これを元に計算すると $\mathbb{C}[U_v^+\cap\Omega_w]/I$ の重複度は 2 だとわかる。

定義 6.8 (Vexillary permutation) w が vexillary permutation であるとは、Ess(w) の全ての元 p,q に対して (p',q')(p' < p,q' < q) に他のエッセンシャルボックスがない場合をいう。

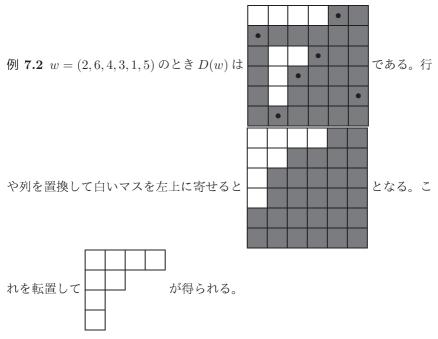
つまり、vexillary permutation であるとは Ess(w) のある元から見て他の元が右上や左下になければならない。



7 励起されたヤング図形による旗多様体のシューベルト多様体の点の重複度の表示

この節では2つのヤング図形を用いて Ω_w の点 e_v の重複度を求める手法を紹介する。2つのヤング図形の定め方について、1つはwのみによって定まる。この節では $v,w\in S_n$ とする。

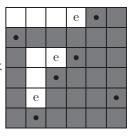
定義 7.1 w が vexillary のとき、D(w) の残ったマスを行や列を置換し、左上に寄せ、これを転置してできるヤング図形を λ とする。



2つめのヤング図形はv,wによって定まる。

定義 7.3 $(p,q) \in Ess(w)$ とする。このとき各 $(p-r_v(p,q),q-r_v(p,q))$ を含む最小のヤング図形を転置したものを μ とする。

例 7.4 w = (2,6,4,3,1,5), v = (6,5,3,4,2,1) のとき Ess(w) は



であるが、これをvの座標で見ると

			е		•
				•	
		•e			
			•		
	•e				
•					
	•	• • •		• e	•e

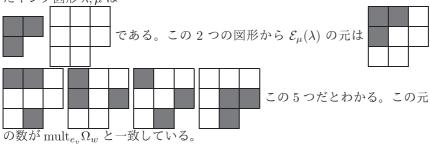
 \square である。vでみたラ

定理 7.5 (Li and Yong) vexillary w と $v(\ge w)$ に対して定義 7.1,7.3 によって定まるヤング図形を λ,μ とする。

$$\operatorname{mult}_{e_v} \Omega_w = \# \mathcal{E}_{\mu}(\lambda)$$

が成り立つ。

例 7.6 n=5, w=(1,4,3,2,5), v=(5,4,3,2,1) のとき w,v をもとに作られたヤング図形 λ,μ は



8 C型の旗多様体

 \mathbb{C}^{2n} を考え、基底として $\{e_i|i\in I_n=\{\overline{n},\cdots,\overline{1},1,\cdots,n\}\}$ をとる。 \overline{i} は -i のようにあつかう。 $a,b\in\mathbb{C}^{2n}$ に対して skew-symmetric bilinear form を $\langle a,b\rangle=a_{\overline{n}}b_n+\cdots+a_{\overline{1}}b_1-a_1b_{\overline{1}}-\cdots-a_nb_{\overline{n}}$ と定める。

定義 8.1 (C 型の旗多様体) $Fl^C = \{\{0\} \subset V_1 \subset \cdots \subset V_n | V_i \subset \mathbb{C}^{2n}, \dim V_i = i, V_n \text{ is isotropic} \}$ を C 型の旗多様体という。

 V_n が isotropic subspace であるとき maximal isotropic subspace ともいう。 I_n の置換全体がなす 2n 次対称群 S_{2n} の元 $(w(\overline{n}),\cdots,w(\overline{1}),w(1),\cdots,w(n))$ のうち $w(\overline{i})=\overline{w(i)}$ であるもののなす部分群を W_n とかく。 W_n はシンプレクティック群 Sp_{2n} のワイル群とみなせる。 W_n の元を省略し $(w(1),\cdots,w(n))$ とかく。 $v,w\in W_n$ とする。 $V_i=\langle e_{v(\overline{n})},\cdots,e_{v(\overline{n-i+1})}\rangle (i\in\{1,\cdots,n\})$ によって決まる旗多様体の元を e_v とかく。 e_v はトーラス作用による固定点である。

定義 8.2 (シューベルト多様体) C 型の旗多様体の元 e_w の B'_- -orbit の閉包をシューベルト多様体といい Ω_w とかく。

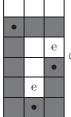
定理 8.3 (ブリュア順序) $v,w \in W_n$ に対して $v \ge w$ であるとは全ての $1 \le p,q \le n$ に対して $r_v(p,q) \le r_w(p,q)$ であるときをいう。

 $\Omega_w = \coprod_{v \geq w} B'_- e_v$ であり、 $v \geq w$ であるとき $e_v \in \Omega_w$ である。また、エッセンシャルボックスについては A 型の場合とは異なる。D(w)の左半分のみのダイアグラムを $D(w)^-$ とする。

定義 8.4 (エッセンシャルボックス (Anderson and Fulton)) $D(w)^-$ の残ったマスの南東の角がエッセンシャルボックスであるが次の 2 つの場合を除く。 $1.(p,-1), -n \le p \le -2$ であるマスのもの。

2.q>1 であり、p>0 であるもののうち、 $(p-1,\overline{q})$ と $(\overline{p},\overline{q})$ が $D(w)^-$ の南東の角であり、 $k=r_w(p,\overline{q})=r_w(\overline{p}+1,\overline{q})-p+1$ であるとき (k,q,p) に対応するマスのもの。

例 8.5 $w=(\overline{1},\overline{3},2)$ の場合



の e と書いてあるマスがエッセンシャルボックスである。(1,3)

は定義8.4の除く場合の1からエッセンシャルボックスではない。

定義 8.4 について vexillary である w を考える場合、エッセンシャルボックスから除く 2 つの場合のうち 2 つ目のものは考えなくてもよい。(2 つ目に書いてあるようなことは起こらないため)

定義 8.6 (Vexillary signed permutation(Anderson and Fulton)) wが vexillary permutation であるとは、A 型の場合の意味で w によって定まる エッセンシャルボックスを考え、A 型の意味で vexillary permutation である ことをいう。

C型の旗多様体の元 e_v の B' 軌道を U'^+_v とかき、 U'^+_v を行列としてみたものを M'^v とかく。 M'^v の (p,q) 成分を含む左上の部分行列を $M'^v_{p,q}$ とかき、 $I'_{w,v} = \langle M'^v_{p,q} \text{ o } r_w(p,q) + 1$ 次である小行列式 $|(p,q) \in Ess(w)\rangle$ とする。 $I'_{w,v}$ の零点集合は $U'^+_v \cap \Omega_w$ と一致する。

予想 8.7 (Anderson and Fulton) $I'_{w,v}$ は reduced、 したがって $\mathbb{C}[U'^+_v\cap\Omega_w]=\mathbb{C}[U'^+_v]/I'_{w,v}$

9 数式処理による重複度の計算

C 型の旗多様体のシューベルト多様体 Ω_w の点 e_v の重複度 $\operatorname{mult}_{e_v}\Omega_w$ の計算を予想 8.7 をもとに Singular を用いて行った。 Singular では以下のように入力を行う。 例として $n=3, w=(\overline{2},\overline{1},3), v=(\overline{1},\overline{2},\overline{3})$ の場合を用いる。

>ring R = 0,x(1..9),ds; */9 は多項式環の変数の数 >matrix M[6][3] = x(1), -x(9)*x(3)+x(4)*x(8)-x(7)*x(5)+x(2), x(6)*x(8)*x(9)-x(5)*x(9)-x(7)*x(6)+x(4), x(2), x(3), -x(8)*x(6)+x(5), x(4), x(5), x(6), x(7), x(8), 1, x(9), 1, 0, 1, 0, 0; */6,3 は行、列の数。vによって定まる行列の成分を入力する。 >matrix B1[3][3]=M[1..3,1..3]; */上で定めた行列 M の部分行列、これは wによって定まるエッセンシャルボックスによるものである。例は3行3列の小行列。

>ideal I=(minor(B1,2)); */minor(B1,2) は B1 の 2 × 2 小行列式全体である。

>ideal J=std(I); */Iの standard base を求めている。これにより 重複度の計算が行える。

>mult(J); */重複度を表示する。

こうして $n=3, w=(\overline{2},\overline{1},3), v=(\overline{1},\overline{2},\overline{3})$ の場合 $\operatorname{mult}_{e_v}\Omega_w=4$ という結果が得られる。

10 励起されたヤング図形による C 型の旗多様体の シューベルト多様体の点の重複度の表示

数式処理による計算結果から C 型の旗多様体のシューベルト多様体の点の 重複度は、シューベルト多様体とその点から定まる 2 つのシフトされたヤン グ図形によって求まるという予想を立てた。ここから予想に用いる 2 つのシフトされたヤング図形の定め方について記述する。この節では $v,w\in W_n$ とする。

予想に用いる1つめのシフトされたヤング図形はwによって定まる。

定義 **10.1** $(p,q) \in Ess(w)$ とする。このとき各 $(p-r_w(p,q),q-r_w(p,q))$ を含み転置してできる最小のシフトされたヤング図形を λ とする。

定義 10.1 の λ の作り方を例をあげて見てみると次のようになる。

予想に用いるもう1つのシフトされたヤング図形はv, wによって定まる。

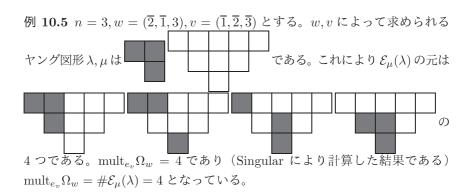
定義 10.3 $(p,q) \in Ess(w)$ とする。このとき各 $(p-r_v(p,q),q-r_v(p,q))$ を含み転置してできる最小のシフトされたヤング図形を μ とする。

つまり、定義 10.3 の μ と定義 10.1 の λ の作り方の違いは v で見たランク 関数を用いるか、w で見たランク関数を用いるかである。

予想 10.4 (Anderson-Ikeda-Jeon-K) vexillary である w と $v(\ge w)$ に対して定義 10.1,10.3 で定まる λ,μ について

$$\operatorname{mult}_{e_v}\Omega_w = \#\mathcal{E}_\mu(\lambda)$$

が成り立つ。



参考文献

- [KR] V. Kodiyalam and K.N. Raghavan, Hilbert functions of points on Schubert varieties in the Grassmannian, J. Algebra, 270, (2003),28–54.
- [GR] Sudhir R. Ghorpade and K. N. Raghavan, Hilbert functions of points on Schubert varieties in the symplectic Grassmannian, Transactions of the American mathematical society, (2006), 5401–5423.
- [IN] Takeshi Ikeda and Hiroshi Naruse, Excited Young diagrams and equivariant Schubert calculus, Transactions of the American mathematical society, (2009), 5193–5221.
- [LY] Li Li and Alexander Yong, Some degenerations of Kazhdan-Lusztig ideals and multiplicities of Schubert varieties, Adv. Math. 229 (2012), no. 1, (2010),633-667.
- [AF] David Anderson, William Fulton, Degeneracy Loci, Pfaffians, and Vexillary Signed Permutations in Types B, C, and D, arXiv:1210.2066v1, (2012).
- [A] David Anderson, Diagrams and essential sets for signed permutations, Electron.J. Combin. 25(2018), no. 3, Paper 3.46, 23 pp.