On orientations of real algebraic curves determined by spin structures

Seiji Nagami
Academic Support Center, Setsunan University

1 Introduction

It is a classical problem to decide possible arrangements of ovals of real algebraic curves in the real projective plane $\mathbf{R} P^{2}$, which is known as the Hilbert's 16 'th problem([2]). Harnack was the first to show that the number of components of ovals of a given nonsinglar real algebraic curve of degree m is less than or equal to $g(m)=(m-1)(m-2) / 2$ ([1]), which is known as Harnack's inequality.

In [4], Rokhlin introduced 'complex orientations' on the algebraic curves of even type, which turned out to be useful for this problem. So searching canonical orientations on a given algebraic curve seems interesting problem.

2 Orientation by Wang

In [5], by using spin structures, Wang gave orientations of fixed point set $E_{\mathbf{R}}$ of a complex conjugate involution $\sigma_{E}: E \rightarrow E$ on a complex vector bundle $\pi: E \rightarrow X$ that covers an involution $\sigma: X \rightarrow X$ on a closed smooth manifold X. Note that, in case $X=$ $\mathbf{C} A=\left\{\left[z_{0} ; z_{1} ; z_{2}\right] \in \mathbf{C} P^{2} \mid A\left(z_{0}, z_{1}, z_{2}\right)=0\right\}, E=T \mathbf{C} A$, and σ_{E} is the differential of the involution $\sigma: X \rightarrow X$ given by $\sigma\left(\left[z_{0} ; z_{1} ; z_{2}\right]\right)=\left[\overline{z_{0}} ; \overline{z_{1}} ; \overline{z_{2}}\right], E_{\mathbf{R}}$ is the total space of real vector bundle of the real algebraic curve $\mathbf{R} A=\left\{\left[z_{0} ; z_{1} ; z_{2}\right] \in \mathbf{R} P^{2} \mid A\left(z_{0}, z_{1}, z_{2}\right)=0\right\}$, where A is a real non-singular homogenius polynomial of three variables.

In this section, we see the construction given in [5]. Let $\mathbf{U}(E)$ denote the $\mathbf{U}(r)$ frame bundle for E and $\sigma^{*}: \mathbf{U}(E) \rightarrow \mathbf{U}(E)$ its induced involution. Set $P=\mathbf{U}(E) \times_{i}$ $\mathbf{S O}(2 r)$, where $i: \mathbf{U}(r) \rightarrow \mathbf{S O}(2 r)$ is given by $i(X+\sqrt{-1} Y)=\left(\begin{array}{cc}X & -Y \\ Y & X\end{array}\right)$. Note that $i(\overline{X+\sqrt{-1} Y})=\left(\begin{array}{cc}X & Y \\ -Y & X\end{array}\right)=T\left(\begin{array}{cc}X & -Y \\ Y & X\end{array}\right) T^{-1}$, where $T=\left(\begin{array}{cc}E & O \\ O & -E\end{array}\right)$.
Definition 2.1 We define the involution $\sigma_{P}: P \rightarrow P$ by $\sigma_{P}([V, M])=\left[\sigma_{E}(V), T M T^{-1}\right]$ for $V \in \boldsymbol{U}(r)$ and $M \in \boldsymbol{S O}(2 r)$.
Suppose that the principal $\mathbf{S O}(2 r)$ bundle $P \rightarrow X$ admits a spin structure $\xi \in H^{1}\left(P ; \mathbf{Z}_{2}\right)$, i.e., a double cover $\widetilde{P} \rightarrow P$ such that the composite $\widetilde{P} \rightarrow P \rightarrow X$ is a principal $\operatorname{Spin}(2 r)$ bundle whose restriction to a point $* \in X$ is the non-trivial one.

Definition 2.2 The involution $\sigma_{E}: E \rightarrow E$ is compatible with $\xi \in H^{1}\left(P ; \boldsymbol{Z}_{2}\right)$ if and only if there exists a bundle automorohism $\tilde{\sigma}_{P}: \widetilde{P} \rightarrow \widetilde{P}$ such that $\tilde{\sigma}_{P}(x g)=\tilde{\sigma}_{P}(x) \bar{g}$ holds for any $g \in \boldsymbol{S p i n}(2 r) \subset \boldsymbol{C l}\left(\boldsymbol{R}^{2 r}\right)=\boldsymbol{C l}\left(\boldsymbol{C}^{r}\right)$, and that the following diagram commutes;

We say that σ_{P} is compatible with a spin structure ξ, and that $\tilde{\sigma}_{P}$ a conjugate lift of σ_{P}.
With this notation, Wang showed in [5];
Theorem 2.1 Suppose that $\sigma_{E}: E \rightarrow E$ is compatible with a spin structure $\xi \in H^{1}\left(P ; \boldsymbol{Z}_{2}\right)$. Then for each conjugate lift $\tilde{\sigma}_{E}: P_{\xi} \rightarrow P_{\xi}$ there is a canonical orientation of real vector bundle $E_{R} \rightarrow X_{R}$, where X_{R} denotes the fixed point set of the involution $\sigma: X \rightarrow X$.
(Case 1) First suppose that $E \rightarrow X$ is a complex line bundle. Then $P \rightarrow X$ is a principal $\mathbf{U}(1)$ bundle. Let P^{σ} denote the fixed point set of σ_{P}. Then $P^{\sigma} \rightarrow X_{\mathbf{R}}$ is a principal \mathbf{Z}_{2} bundle associated with $E_{\mathbf{R}} \rightarrow X_{\mathbf{R}}$. By our assumption, we have a spin structure $P_{\xi} \rightarrow P$ and a conjugate morphism $\sigma_{\xi}: P_{\xi} \rightarrow P_{\xi}$ such that the following diagram commutes;

Since σ_{ξ} is conjugate, $P_{\xi}^{\sigma} \rightarrow X_{\mathbf{R}}$ also is principal \mathbf{Z}_{2} bundle. Let $x \in X_{\mathbf{R}}$, and set $\pi^{-1}(x)=\{a, b\}$. Then we have that $b=-a$. Therefore any fiber of $P_{\xi}^{\sigma} \rightarrow X_{\mathbf{R}}$ is sent to one point. This implies that P_{ξ}^{σ} determines a section of $P^{\sigma} \rightarrow X_{\mathbf{R}}$. Thus we obtain an orientation of $E_{\mathbf{R}}=P^{\sigma} \times_{\mathbf{Z}_{2}} \mathbf{R} \rightarrow X_{\mathbf{R}}$.
(Case 2) When the complex dimension of the complex vector bundle $E \rightarrow X$ is greater than 1 , we apply the meathod of Case 1 to the complex line bundle $\operatorname{det}_{\mathbf{C}} E \rightarrow X$.

3 Construction of orientations by using pin structures

Let $L \rightarrow X$ be a complex line bundle and $\sigma_{L}: L \rightarrow L$ a complex congugate involution such that the following diagram commutes;

Let $\mathbf{U}(1) \rightarrow \mathbf{U}(L) \rightarrow X, \mathbf{S O}(2) \rightarrow \mathbf{S O}(L) \rightarrow X$, and $\mathbf{O}(2) \rightarrow \mathbf{O}(L) \rightarrow X$ denote the principal bundles associated with $L \rightarrow X$.

Then for each $e \in \mathbf{U}(L)$, set $\sigma(e)=\alpha e$, where $\alpha=a+\sqrt{-1} b \in \mathbf{U}(1)$. Then we have that $\sigma(\sqrt{-1} e)=-\sqrt{-1} \sigma(e)=(b-\sqrt{-1} a) e$. Thus we obtain that, by setting $M_{\alpha}=$ $\left(\begin{array}{cc}a & b \\ b & -a\end{array}\right), \sigma(e, \sqrt{-1} e)=(e, \sqrt{-1} e) M_{\alpha}=(e, \sqrt{-1} e) R_{\alpha} T$, where $R_{\alpha}=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ and $T=$ $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Define $i_{P}: P=\mathbf{U}(L) \times{ }_{\rho} \mathbf{S O}(2) \rightarrow \mathbf{S O}(L)$ by $i_{P}([e, A])=(e, \sqrt{-1} e) A$. Then we have the following commutative diagram, where R_{T} denotes the right multiplication by T;

Therefore the following diagram commutes between the induced homomorphisms of cohomology;

Definition 3.1 For a spin structure $\xi \in H^{1}\left(\boldsymbol{S O}(L) ; \boldsymbol{Z}_{2}\right)$, set $\tilde{\xi}=\xi \oplus R_{T}^{*}(\xi) \in H^{1}\left(\boldsymbol{S O}(L) ; \boldsymbol{Z}_{2}\right) \oplus$ $H^{1}\left(\boldsymbol{S O}(L) T ; \boldsymbol{Z}_{2}\right)=H^{1}\left(\boldsymbol{O}(L) ; \boldsymbol{Z}_{2}\right)$.

With this definition, we have the following;
Proposition $3.1 i_{P}^{*}(\xi) \in H^{1}\left(P ; \boldsymbol{Z}_{2}\right)$ is compatible with σ_{U} if and only if $\tilde{\xi} \in H^{1}\left(\boldsymbol{O}(L) ; \boldsymbol{Z}_{2}\right)$ is a pin sturucture that is preserved by σ.

By a similar method in [3], we obtain a section $\left.\tilde{d \sigma} \sigma \Gamma\left(\operatorname{Ad}\left(\left.\boldsymbol{\operatorname { P i n }}(L)\right|_{X_{\mathbf{R}}}\right)\right) \subset \Gamma(\operatorname{Pin})(X)\right|_{X_{\mathbf{R}}} \times_{A d}$ $\mathbf{C l}(2) \cong \Gamma\left(\left.{ }_{\wedge}^{*} L\right|_{F}\right)$ via $\tilde{\xi}$.

Fix a point $x \in X_{\mathbf{R}}$. Then we my assume that $L_{x}=\mathbf{R}\langle u, w\rangle$ and that $\left.\sigma_{L}\right|_{x}$ is the reflection determined by v. Thus we have that $\left.\tilde{d \sigma}\right|_{x}= \pm v$.

Whether this section coinsides with the section given in Sectoin 2 or not should be investigated.

References

[1] Harnack. Uber vieltheiligkeit der ebenen algebraischen curven. Math. Ann., 10:189-99, 1876.
[2] David Hilbert. Mathematische probleme. Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, 1900.
[3] Kaoru Ono et al. On a theorem of edmonds. In Progress in differential geometry, pages 243-245. Mathematical Society of Japan, 1993.
[4] Vladimir Abramovich Rokhlin. Complex orientations of real algebraic curves. Functional Analysis and its Applications, 8(4):331-334, 1974.
[5] Shuguang Wang. Orientability of real parts and spin structures. JP J. Geom. Topol, 7(1):159-174, 2007.

