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Alternating groups and Borsuk-Ulam groups

Toshio Sumi

Faculty of Arts and Science, Kyushu University

1 Introduction

For a compact Lie group G, a G-map f: X — Y is said to be a G-isovariant map if f
preserves the isotropy subgroups: G, = Gy, for any z € X, where G, is the isotropy
subgroup, that is, G, ={g € G | g-x = x}. We call a group G is a BUG (Borsuk-Ulam
group) [8] if

dimV — dim VY < dim W — dim W

for any isovariant G-map f: V — W between G-representation spaces V and W. For
example, any finite solvable group is a BUG. So, we expect that any group is a BUG. In
this paper, we always assume that a group is a finite group. Since a group extension of
BUGs is also a BUG, if every simple group is a BUG, then any group is a BUG. Nagasaki
and Ushitaki [4] showed that projective special linear group PSL(2, q) of 2 x 2 matrices
over a finite field IF, consisting of ¢ elements is a BUG. Let f: V — W be a G-map
between G-representation spaces. For a subgroup H of G| let

gr(H) = (dim W — dim W) — (dim V — dim V"),

The map gy is a class function S(G) — Z, where S(G) is the set of subgroups of G. If
f is isovariant and G is cyclic, then g;(G) > 0 by (mod p) Borsuk-Ulam theorem [5, 3].
Nagasaki and Ushitaki used the M&bius function and showed g;(PSL(2, ¢)) can be written
as a conical combination of g;(C')’s for cyclic subgroups C' of PSL(2, ¢), that is, a linear
combination of ¢,(C')’s with nonnegative coefficients.

Last year in [7] we gave a sufficient condition CCG for a group G to be a BUG and
showed that PSL(3, ¢) for ¢ < 33 and A, for n < 21 are BUGs. In particular, we showed
that the alternating group A,, for n < 21 is a CCG but A,y is not. This paper consists of
2 parts. The first part is for PSL(3,¢) and PSU(3, ¢) and we show they are BUGs. The
second part is for A, and we propose a new condition and show that A, for 22 < n < 27
is a BUG.
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2 Some families of finite groups

Let u: N — {0, £1} be the Mobius function defined as

1 n=1
pun) =<0 if p?|n for some prime p
(=1)" n=pips---p, for distinct primes py, ps, ..., pr.

Let RCycl(G) be the set of representatives of conjugacy classes of all cyclic subgroups of
G and let RCycl,(G) be the set of representatives of conjugacy classes of all nontrivial
cyclic subgroups of G. Recall that g;({e}) = 0. We define [ as

(2. () < (D)

i(C, D) = .
0, otherwise,

where (C') denotes the conjugacy class of C. Let

_ |C1a(C, D)
D= e

and

Be(C) = Z Ba(C, D).

DERCycl(G)

Proposition 2.1 (cf. [7, Proposition 6])

5@ = Y AelO(C) (1)
CERCyel(G)
We recall that G is a Borsuk-Ulam group (BUG) if g;(G) > 0 for any isovariant G-map
f between G-representation spaces.
From now on, let f: V' — W be an isovariant G-map between G-representation spaces.
We abbreviate to write g;(G) as ¢(G) if f is obvious.

Theorem 2.2 (Fundamental properties [8], [7, Proposition 3.1]) (1) A finite cyclic
group is a BUG.

(2) For a subgroup Hy, Hy of G with Hy < Hy, gr(Hz) — gf(H1) = gpm (Hy/Hy) and if
H,/H, is a BUG then g;(Hs) > g;(Hy). In particular, a finite group which is a
group extension of a BUG by a BUG is also a BUG.

(3) If G is a BUG, then any factor group of G is a BUG.
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In [7] we proposed that G is a CCG (cyclic condition group), if for an arbitrary map

Ya: RCycl (G) — Qs such that 7¢(C) <va(D) if (C) < (D), > Ba(C)a(C) >
CeRCyel, (G)
0.

Proposition 2.3 A CCG is a BUG.

Proof Let G be a CCG and f a G-map between representation (GG-spaces. The map
gflreyea) : RCycl(G) — Z satisfies that g;(C') < g¢(D) if (C) < (D) by Theorem 2.2,
since a cyclic group is a BUG. Thus we have

gr(G) = Y BalC)gs(C) =0,

CERCycl, (@)
which implies G is a BUG. 1

Let RCyclf (G) and RCycl; (G) be the subsets of RCycl,(G) consisting of C' with
Bc(C) > 0 and Bg(C) < 0, respectively.
We consider the following linear programming:

Maximize min <BG(D) + > Y(C, D))

¥: RCycl] (G)xRCyclf (G)—=Q<g DeRCycl (G) CERCydl; (G)
Y(C,D) <0
(€, D) =0if (C) £ (D)

subject to > Y(C, D) < Ba(C) for C € RCycl; (G)

DERCycl (Q)
3 Y(C, D) > —Ba(D) for D € RCycl{ (G)
CeRCycly (G)

and had the following theorem by using the software GAP [2].

Theorem 2.4 ([7]) (1) Alternating groups A,, and symmetric groups S, forn < 21 are
CCGs.

(2) Ay is not a CCG although Sa is a CCG.
(3) All sporadic groups and automorphism groups of all sporadic groups are CCGs.
(4) (Cs0)® is not a CCG.

Let 7¢: RCycly(G) = Qs be a map such that v5(C) < v4(D) if C is subconjugate
to D in G and let Cycl,(G) be the set of all nontrivial cyclic subgroups of G. We define
Fa: Cycly(G) — Qs as a class function which sends a cyclic subgroup C' of G to v5(C")
such that ¢’ € RCycl,(G) is conjugate to C' in G. Let

S={(C,D) | C,D € RCycl,(G), C is subconjugate to D, and |D|/|C| is a prime}.
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Let C, D € Cycl,(G) with D > C. We take Dy, Dy, ..., Dy € RCycl,(G) of G such that
Dq and Dy, are conjugate to D and C' in G respectively and (D;, D;_;) € Sfori=1,... k.

Then
k

76(D) = 76(C) = 3_(06(Di1) = 16(D1).

i=1

Therefore, we obtain the following proposition.

Proposition 2.5 A finite group G is a CCG if and only if it can be detected by {(C, D) |
C, D € RCycl(G), (D) C (C), |D|/|C] is a prime}.

By Theorem 2.4 (2), CCG is not closed under extensions although BUG is closed.

We say that a finite group G has subgroup-condition property (SCP) if g;(G) is equal
to a conical combination of {g;(K2) — g7(K1) | Ko/K; is a BUG with K; <« Ky < G} for
any isovariant G-map f between representation spaces.

Proposition 2.6 A group having SCP is a BUG.

Proof Let f:V — W be an isovariant G-map between representation spaces. Let
K, <Ky < G. Note that

91 (K2) — g7 (K1) = gpri (K2/ Ky).

Thus if K,/ Ky is a BUG, then g, (K3/ K1) > 0. Therefore g;(G) is a sum of nonnegative
integers. 11

Proposition 2.7 The family of groups having SCP is closed under the group extension.

Proof Let1 -+ H — G — K — 1 be a short exact sequence and f an isovariant G-
map. Suppose H and K have SCP. There are (H;1, H2), a; > 0 for i € I and (K1, Kjs),
bj > 0 for j € J such that H;y <H;, < Hfori € I, Kj1 <Ky < K for j € J, and Hy»/H;1,
Kjo/ Kji are BUGs, g;(G) = %ai(g(hﬁ )—9(Hi1)), and gpu (K) = ];]bj(g(Ki2>_g(R’i1))-
Let 7: G — K be a canonical projection. Since
95(G) = gy (H) + gsu (K)
=Y ai(g(Hi2) — g7(Hin)) + 3 b (97 (Kj2) — gpu (K1)

= ;ﬂz (9r(Hi2) — g7(Hi1)) + ;} bj (95 (m " (Kj2)) — g5 (' (K1)

and 7 1(Kjp)/m (K1) = Kjs/Kj1, the group G has SCP. 1
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3 Projective special linear groups

The projective special linear group PSL(2, ¢) over the 2-dimensional vector space over
a finite field F, is a BUG [4] and a CCG [7]. In this section, we show that the projective
special linear group PSL(3, ¢) over the 3-dimensional vector space over a finite field Fj, is
a SCG.

The group SL(3,q) is of order ¢*(¢*> — 1)(¢®> — 1). Let ¢: SL(3,q) — PSL(3,q) be a
natural surjective homomorphism. Put ¢ = p* for a prime p, G = PSL(3,q), r = ¢ — 1,
d=gedB,r), p =11 =r/d,s=q+1,t=¢+q+1,t =t/d, o =p=71". A
maximal cyclic subgroup of PSL(3, ¢) is conjugate to one of the followings, whose generator
is represented by a corresponding to Jordan canonical form over a suitable extension field:

p 1 o 7"
Cpr’ = <¢ P >a Cr’s = <(/) o >~ Ct’ = <¢ T >7
-2 —1 qZ,,,
p p T
16 -9
c=w| 16| o0<i<a, ={" P77,
1 4, p=2
b a
CT(((Z,();):@ o ) (0<a<r,a<b<r, (ra,b)=1),
—a—b
p
where r(a,b) =1 if d =3 and r’a = rb/d = —r'(a + b) mod r, and r(a,b) = r otherwise

[6, Table 1a]. Note that there may contain a duplicated group within the above groups:
For example, C%’S) and CS)’S) are conjugate in PSL(3,11) = SL(3,11). We may assume
that RCycl(G) is a subset of the set of the above cyclic subgroups.

Let T be an abelian subgroup of G of order r1’ generated by the image of diagonal
matrices of SL(3,¢) by ¢. Note that any nontrivial subgroup of C,, Cy is not a subset of
(T') and Cr({(lab;) < T. We may assume that (Cp ) NT = Cf,,l’l) = (Cws) NT. Note that
d = 3if and only if 7(1,1) = /3. If d = 3 then (diag(p’’, p", p")) is the center of SL(3, ¢).

1+br! 1+b7-’)
T d

In addition if 7’ is not divisible by 3, then C’S D ig a subgroup of Cr( E
d, where 1 + b’ =0 mod d. Cpv N (Crry) is a subgroup of Cp, of order r'.

with index



Cy

Cyprr Chg Cy Cprr Cyrs
T T
G cf ﬁ:z))) C: a ) Cf ((la’.)t))) o
o 7
\ N/
/ ~
Cé' /2,0 /2) Cwér' /2.,0'/2)
Case where 2|r, and 3 /r or 9|r Case where 6|r and 97
Copr Cps ¢y ¢ Copr Cys
T T
y ab . J(ab
G Cﬁ('(u)‘) L C ct) Cf»&,,?,) s
oy 7
fo

Case where p =2, and 3 /7 or 9|r

Case where p =2, 3|r and 9 /7

An arrow A — B means that B is a subgroup of A and C!, for n = 2,p, s denotes a

cyclic group of order n.
Let v: RCycl;(G) — Qs be a map satisfying that v(H;) < ~(H,) for subgroups
H1 ﬂ HQ < G with H2/H1 a BUG.

We see

where

Y(G) =ny +ng +ng + ng + ns (2)

ny =

Ng —

Ny =

ng =

> 2. BalC D)(C),

D<C, C<D

2. Pa(C,D)(C),

DERCyal(G) C<D
pl|D|

> X Ba(C D)y(0),
p<C,, C<D
c(Vep

> > Ba(C,D)y(C), and

p<c(th <D

> 2 Be(C.D(C).

DERCycl(G) C<D
DT

bz

We show each of ny, no, n3, ny, ny is nonnegative.
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Lemma 3.1 ([7, Lemma 12]) Let C be a cyclic subgroup of a finite group K. Suppose
that there is a unique mazximal cyclic subgroup D of K with C < D. Then Nk(C) =

Ni(D), Bx(C) =0, and fx(D) = \N|D<|D 5> 0.

By Lemma 3.1, we have

t 1(Cr)
ny = ~ C/ = > 0 3
1 |NG(CH)| /( t) 3 - ( )
and
Chh(C
Y Y@= Y |' e, p)
D<C . C<D D<(‘ o C<D
Dgc(l 1) Dgc(l 1)
Cly (4)
DCILICIN B N i AN
c<C |Np( Cpr)| D<C,,/ TRY)
="pr D<c,
pr'! r (1,1)
- - (V) >0
Ne(Co ")~ g )
Therefore
Ny = Z ZﬁgCD C)+a>a (5)
D<C,. C<D
DZC(}A)
where
= > > BalC, D)
»||Dl C<D
DLC

If p is odd then

d—1
a=Y Ba(CNCH) >0 (6)
=0
and otherwise
d—1
a =Y (Ba(C, CiNC) + Bal(Ch, CL ) (Ch))
IR (7)
_ S H(ey) - 29y
= INs(C?)|

Lemma 3.2 Let Cy and Cs be cyclic subgroups of a finite group K with C; < Cs. Suppose
that Ny (D) = N (Cy) for any D with D < Cy and D £ Cy. Then

’ e (G
Z Z Br (C’ D)'V(C) - |NK(02)| <W(Cz> |02/Cl|> .

C<(Cy D<Cy
DZLCy
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Proof We straightforwardly see
> > Br(C,D)(C)

o ICIp(C.D)¥(C)
- I T e

C<Cy D<Cy
DZCY
Cly(C
S N SR SR ()
C'<Cy D<C> D<Cq
_ [Clv(C) [Cv(C)
= Z \NKW(CQN Z ,M(C,D)— Z |NKAE(;2)\ Z H(CaD)
C'<Cq D<C> Cc<Cq D<Cq
_ |Cy(C2) _ |Civ(Ch)
[Nk (C2)l [Nk (C2)[

Under the assumption of Lemma 3.2, since v(C3) > ~(C;) > 0, we have

S Y se(C, Dyy(C) 0.

D<Cy C<D
Cc1 4D

By seeing the eigenvalues of the preimage by ¢ of the generator of C.,, for any cyclic

subgroup D of C}, with D £ C’T(,l'l) the equality N (D) = Ng(C,ss) holds. By Lemma 3.2,

r's !

= NelCo O ~ Watge O 2 0 ®)

ns r

We see [Ng(C)| = |GL(2,q)|/d for {1} < € < C*) and thus
d

"= Tl ;‘mww(m ;])M(C,D)=m%0ﬁ’”)20- (9)
c<cy D<Cty
We put
1 1
T=1(11 : 1| |teT).
—1 1

Note that 7" is a normal subgroup of T with index 6. For a nontrivial cyclic subgroup
D < T, we see Ng(D) = N;(D) and the conjugacy class of D in T is the union of
6|T|/|N+#(D)| conjugacy classes of D in T. The conjugation action preserves the set
of eigenvalues. For a cyclic subgroup D of T with (D) £ (Cr(,l ’1))7 any matrix of the

preimage of the generator of D has distinct diagonal elements and thus Ng (D) = N;(D).
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Therefore we see

_ [Clp(C, D)V (C)
n= o 2 X TN
D<RCycl(T) C<D
DT
D$C£}’1)
— <46”’ >_ Z |C|u(C,D)¥(C) “/(C)
D<RCycl(T) INz(D)] INz(D)]
DT
pgolY
1
= > — > )X [CluC D)(C)
D<RCyel(T) ~ D<RCyel(T) C<D
D<T

pectbh
,

=il X mOnO -t T Buw(@1(0)
CERCycl(T) cercyel(ctV) T
= (1)~ )

Since 7" is an extension of a cyclic group by a cyclic group and then solvable. Therefore,
we conclude

ns = W ~(CD) > 0. (10)
The equality (2) and inequalities (3)—(10) for v = g, complete the proof of the following.
Theorem 3.3 PSL(3,¢) has SCP.

Therefore, PSL(3, ¢) is a BUG by Proposition 2.6.
Lemma 3.4 Let L be a cyclic subgroup of a finite group K and let Cy and Cy be distinct
proper subgroups of L. Suppose that N (D) = N (L) for any D with D < L, D £ C4
and D £ Cs. Then
L] ( (C1)  A(Cy) (CiNCy) >
B (C,D)y(C) = ~v(L) — - + .
2 2 e Pn(@) = a0 = e ~ el * e nca

DLCY
DZCy

Proof Let C5=C1NC,. We see
>, > Br(C,D)y(C)

C<I D<L
DLCy
DZCy

— [Clu(C, D)~ (C)
=2 2 [Nk (D)

C<L D<L
DLCY
DZCh

= L RHE - £ - %+ £ uED)

D<L D<Ci D<C; D<Cs

Z I\C\’Y(C) Z u(C, D) — ; |‘1€/l,j(§)\ Z 1(C, D)

D<

- z ouich S o)+ 5 G z u(C. D)

IL\“/(L) \61\7(01) |Ca(C2) +|CJ\W(CJ) ]
T INk(@D)] T INk(D)] [Nk (D) [Nk (D)



Under the assumption of Lemma 3.4, we have

) |L|v(L) G |G| |C3]7(Cs)
2 2 ox(C.Pn(€) = 15 ( )+ 2

L L]

4 Projective special unitary groups

Let o be an automorphism of a finite field Fj2 defined by o(z) = 2% For a matrix
A = (ay;) over Fig, let A* = (af;) and U(n, q) = {A € GL(n,¢*) | AA* = I,,}. The unitary
group U(n,q) has order ¢"™ V2T (¢* — (—1)"). The special unitary group SU(n,q)
is defined by U(n,q) N SL(n, q) whose order is ¢"""V/2T]""_,(¢" — (—1)?). The projective
special unitary group PSU(n, ¢) has order |[SU(n, ¢)|/ ged(n, ¢+ 1). In particular, SU(3, q)
is a subgroup of SL(3,¢?) of order ¢*(¢> — 1)(¢®> + 1) and PSU(3,¢) has order ¢*(¢*> —
D(g®+1)/ged(3,q+1).

Note that PSU(2, ¢) is isomorphic to PSL(2, ¢). In this section, we show that PSU(3, ¢)
is a SCG. The argument is quite similar as those of the projective special linear groups
PSU(3, q).

Let ¢: SU(3,¢q) — PSU(3,¢) be a natural surjective homomorphism. Put ¢ = p* for a
prime p, G = PSU(3,q), r = q+1,d =ged(3,7), p" = 1,7 =r/d, s =q—1,t = ¢*—q+1,
t'=t/d, o = p=7". A maximal cyclic subgroup of PSU(3, ¢q) is conjugate to one of the
followings, whose generator is represented by a corresponding to Jordan canonical form
in GL(3,F) over a suitable extension field F:

-1

P o T
C&W ::<¢ P >7 CL% ::<¢ ol >7 C%’::<¢ T %
p2 pl Fa°r
16 59
ch=w| 1 6¢|) 0<i<a, =" 777
1 4, p=2
p(l
C,(,Z’lljl))):w o ) 0<a<r,a<b<r, (rab)=1),
—a—b
P

where 7(a,b) =" if d =3 and r’'a = rb/d = —r'(a +b) mod r, and r(a,b) = r otherwise
[6, Table 1a]. Note that there may contain a duplicated group within the above groups.
We may assume that RCycl(G) is a subset of the set of the above cyclic subgroups.
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Let T' be an abelian subgroup of G' of order rr’ generated by the image of diagonal
matrices of SU(3,¢) by ¢. Note that any nontrivial subgroup of C,, Cyy is not a subset of
(T) and C*Y CT(a b)) < T. We may assume that (Cp ) NT = C’T(,l’l) = (Cps)NT. Note
that d = 3 if and only if r(1,1) = r/3. If d = 3 then (diag(p", o, p"")) is the center of
SU(3,¢). In addition if 7" is not divisible by 3, then C( Yis a subgroup of C(Hbr )
with index d, where 1+ b’ =0 mod d. Cp» N (Cyv) is a subgroup of Cy, of order 7.

Cr Y Chprr Crry Cr Y Chpr Crrg

T T
/ ab (a,b
“p Cy((a,l);) e G C( R Ce
G
\ // C(l 1) \ //
C;r’/'z,r’/'z) /2,0 /2)
Case where 2|r, and 3 fr or 9|r Case where 6|r and 9}
Cy Cﬁi) Copr Cys Cy Cy) Cop
\ T \ T
o cleh o4 et o o) o
o 7
C(/l,l)

Case where p = 2, and 3 /7 or 9|r Case where p = 2, 3|r and 9 fr

Let v: RCycli(G) — Qs¢ be a map satisfying that v(H;) < ~(Hs) for subgroups
H, < H, < G with Hy/H; a BUG. We see

"/(G) =Ny + Ny +nNg +nyg +ns

(11)

where
ni= > > BalC,D(C), na= > 3 BalC,D)yC),
D<C, C<D DeRCyal(@) O<D
ng = Z Z ﬁG‘(Ca D)7(C)’ Ny = Z Z ﬁG(Cv D)’V(C)’ and
D<C,, C<D Pt C<D
Vg p =C
ns = > Ba(C, D)y(C).

DeRCycl(G) <D

Dgc(l 1)



We show each of ny, ns, ng, n4, ns is nonnegative. By Lemma 3.1, we have

n; = 4\]\7@26}/”7(0” >0 (12)
and
d—1
na= Y Y Ba(C.DINC)+ D Be(CiHv ()
D<Cp. C<D i=0

DZC

Cl(C

CSCPV./ DSCIH" D<C,,
p,rl 7,/
= (Cp) — Y (C) 2 0.
|]\°G(Cpr’)‘ ! |NG(Cpr’)|

By seeing the eigenvalues of the preimage by ¢ of the generator of C,.,, for any cyclic
subgroup D of C,/, with D £ C’T(,l’l) the equality N (D) = Nk (Cyrs) holds. By Lemma 3.2,

_ r's / 7’ LDy > 14
|NG(Cr's)|rY(CT S) Y(C, ) > 0. ( )

 Ne@o

ns

We see |[Ng(C)| = |U(2,q)|/d for {1} < C < Cr(,l’l) and thus

d T (1,1)
ng = Cly(C w(C, D) = ———~(C),"") > 0. 15
el 2 10O 2 WD) =g o)
o<cG p<cY
We put
1
T = (t, -1 |teT).
1

For a nontrivial cyclic subgroup D < T, we see Ng(D) = N;(D) and the conjugacy
class of D in 7" is the union of [7'/T|/|Nj(D)/Ny(D)

conjugation action preserves the set of eigenvalues. For a cyclic subgroup D of T with

conjugacy classes of D in T. The

(D) £ (C,E,1 ’1))7 any matrix of the preimage of the generator of D has distinct diagonal

137



138

elements and thus Ng(D) = N;(D). Therefore we see
_ IClu(CDI(C)
N5 = Z . Z TNT(D;‘
D<RCycl(T) C<D
DT
pgcliD

_ \0\#((“ D) (C)
B > (\ (D)/Nz (D)|> Z N#(D)|

D<RCycl(T)
DT

1
prc(Y

_ 1 1C1p(C, D) (C)
Y - ¥ )y laweng
D<RCycl(T) D<RCycl(T) C<D
DT D<C(1 1)

=1 > Br(C)(C) — ﬁ > Bean(C)y(C)

CERCycl(T) CeRCyel(C) T’
(1,1)
=37(T) = 5,7(C)

Since T is an extension of a cyclic group by a cyclic group and then solvable. Therefore,
we conclude

r—1
ng > T

The equality (11) and inequalities (12)—(16) for v = gy complete the proof of the following.

¥ () =0, (16)

Theorem 4.1 PSU(3, ¢q) has SCP.

Therefore, PSU(3, ¢) is a BUG by Proposition 2.6.

5 Alternating groups

Let A, be an alternating group on letters 1,2,...,n. In this section we show that A,
22 < n < 27 have SCP and in particular are BUGs.

Let So(n) = {(C, D) | C, D € RCycl,(A,), (D) > (C), |D/C| is a prime}. By using its
character table and computer, we get the following result.

Example 5.1 Let Si(n, k) = {(A;, (A, (1,2)" 9 (j+1,...,n))) | k <j <n—2}. g(A,)
is written as a conical combination of {g(Hy) — g(Hy) | (Hy, Hy) € So(n) U Si(n, ki(n))}
and is not a conical combination of {g(Hs) — g(Hy) | (Hy, Hy) € So(n)USi(n, ki(n)+1)}
form = 22,23, 24,25,26,27, where

n [[22]23]24]25] 2627
ky(n) [l 20 |18 |18 222123

Theorem 5.2 The alternating groups Ass, Assg, Aoy, Ass, Asg, and Az have SCP.



Proof Recall that A, is a BUG since it is a CCG for k£ < 21 by Theorem 2.4. Let
n = 22. For (Hy, Hy) € Si(n, k), groups H; and Hy are BUGs, H; is a normal subgroup
of Hy, Hy/H, is cyclic, and g(H;) — g(Hz) > 0. Therefore, A, has SCP by Example 5.1.
Now, let 22 < n < 27. As the induction hypothesis, we suppose Ay, is a BUG for k£ < n.
By the similar argument as above, we see that A, has SCP. 1
Example 5.3 Let Sy(n, k) = {(A;,A; x Amj) | B < j < n—3} g(A,) is written
as a conical combination of {g(H2) — g(Hy) | (Hy, Hy) € So(n) U Sa(n, ka(n))} and is
not a conical combination of {g(Hs) — g(Hy) | (H1, Hz) € So(n) U Sy(n, ko(n) + 1)} for
n = 22,23,24,25, 26,27, where

n 221232425126 |27
ko(n) || 19 | 18 | 17 [ 20 | 21 | 22

The vector (---,dimVj},---) is not a conical combination of
(-, dim V™ —dim V2 .. ) | (Hy, Hy) € 55(28) U S(28,14)},
where V; runs over nontrivial irreducible representation spaces.
Question 5.4 Does Ass have SCP?

To attack this problem we may assume that any proper subgroup of Asg is a BUG.
However there are quite many subgroups (even up to conjugate). By the following theorem
supports that the number of necessary subgroups has upper limit.

Theorem 5.5 (Carathéodory’s theorem [1]) If a point x of R? lies in the conver hull
of a set P, x lies in an r-simplex with vertices in P, where r < d.

By Carathéodory’s theorem, if a point = of R? lies in the conical hull of P, then = can be
written as the conical combination of at most d+ 1 points in P. Therefore, we can choose
some pairs (Hy, Hy) of subgroups with H; < Hy whose number is less than or equal to the
cardinality of RCycl(G), that is, the number of conjugacy classes of cyclic subgroups.
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