Alternating groups and Borsuk-Ulam groups

Toshio Sumi

Faculty of Arts and Science, Kyushu University

1 Introduction

For a compact Lie group G, a G-map $f: X \rightarrow Y$ is said to be a G-isovariant map if f preserves the isotropy subgroups: $G_{x}=G_{f(x)}$ for any $x \in X$, where G_{x} is the isotropy subgroup, that is, $G_{x}=\{g \in G \mid g \cdot x=x\}$. We call a group G is a BUG (Borsuk-Ulam group) [8] if

$$
\operatorname{dim} V-\operatorname{dim} V^{G} \leq \operatorname{dim} W-\operatorname{dim} W^{G}
$$

for any isovariant G-map $f: V \rightarrow W$ between G-representation spaces V and W. For example, any finite solvable group is a BUG. So, we expect that any group is a BUG. In this paper, we always assume that a group is a finite group. Since a group extension of BUGs is also a BUG, if every simple group is a BUG, then any group is a BUG. Nagasaki and Ushitaki [4] showed that projective special linear group $\operatorname{PSL}(2, q)$ of 2×2 matrices over a finite field \mathbb{F}_{q} consisting of q elements is a BUG. Let $f: V \rightarrow W$ be a G-map between G-representation spaces. For a subgroup H of G, let

$$
g_{f}(H)=\left(\operatorname{dim} W-\operatorname{dim} W^{H}\right)-\left(\operatorname{dim} V-\operatorname{dim} V^{H}\right)
$$

The map g_{f} is a class function $\mathcal{S}(G) \rightarrow \mathbb{Z}$, where $\mathcal{S}(G)$ is the set of subgroups of G. If f is isovariant and G is cyclic, then $g_{f}(G) \geq 0$ by $(\bmod p)$ Borsuk-Ulam theorem [5, 3]. Nagasaki and Ushitaki used the Möbius function and showed $g_{f}(\operatorname{PSL}(2, q))$ can be written as a conical combination of $g_{f}(C)$'s for cyclic subgroups C of $\operatorname{PSL}(2, q)$, that is, a linear combination of $g_{f}(C)$'s with nonnegative coefficients.
Last year in [7] we gave a sufficient condition CCG for a group G to be a BUG and showed that PSL $(3, q)$ for $q \leq 33$ and A_{n} for $n \leq 21$ are BUGs. In particular, we showed that the alternating group A_{n} for $n \leq 21$ is a CCG but A_{22} is not. This paper consists of 2 parts. The first part is for $\operatorname{PSL}(3, q)$ and $\operatorname{PSU}(3, q)$ and we show they are BUGs. The second part is for A_{n} and we propose a new condition and show that A_{n} for $22 \leq n \leq 27$ is a BUG.

2 Some families of finite groups

Let $\mu: \mathbb{N} \rightarrow\{0, \pm 1\}$ be the Möbius function defined as

$$
\mu(n)= \begin{cases}1 & n=1 \\ 0 & \text { if } p^{2} \mid n \text { for some prime } p \\ (-1)^{r} & n=p_{1} p_{2} \cdots p_{r} \text { for distinct primes } p_{1}, p_{2}, \ldots, p_{r}\end{cases}
$$

Let $\operatorname{RCycl}(G)$ be the set of representatives of conjugacy classes of all cyclic subgroups of G and let $\operatorname{RCycl}_{1}(G)$ be the set of representatives of conjugacy classes of all nontrivial cyclic subgroups of G. Recall that $g_{f}(\{e\})=0$. We define $\tilde{\mu}$ as

$$
\tilde{\mu}(C, D)= \begin{cases}\mu\left(\frac{|D|}{|C|}\right), & (C) \leq(D) \\ 0, & \text { otherwise }\end{cases}
$$

where (C) denotes the conjugacy class of C. Let

$$
\beta_{G}(C, D)=\frac{|C| \tilde{\mu}(C, D)}{\left|N_{G}(D)\right|}
$$

and

$$
\beta_{G}(C)=\sum_{D \in \operatorname{RCycl}(G)} \beta_{G}(C, D) .
$$

Proposition 2.1 (cf. [7, Proposition 6])

$$
\begin{equation*}
g_{f}(G)=\sum_{C \in \operatorname{RCycl}(G)} \beta_{G}(C) g_{f}(C) . \tag{1}
\end{equation*}
$$

We recall that G is a Borsuk-Ulam group (BUG) if $g_{f}(G) \geq 0$ for any isovariant G-map f between G-representation spaces.
From now on, let $f: V \rightarrow W$ be an isovariant G-map between G-representation spaces. We abbreviate to write $g_{f}(G)$ as $g(G)$ if f is obvious.

Theorem 2.2 (Fundamental properties [8], [7, Proposition 3.1]) (1) A finite cyclic group is a BUG.
(2) For a subgroup H_{1}, H_{2} of G with $H_{1} \triangleleft H_{2}, g_{f}\left(H_{2}\right)-g_{f}\left(H_{1}\right)=g_{f} H_{1}\left(H_{2} / H_{1}\right)$ and if H_{2} / H_{1} is a BUG then $g_{f}\left(H_{2}\right) \geq g_{f}\left(H_{1}\right)$. In particular, a finite group which is a group extension of a BUG by a BUG is also a BUG.
(3) If G is a BUG, then any factor group of G is a BUG.

In [7] we proposed that G is a CCG (cyclic condition group), if for an arbitrary map $\gamma_{G}: \operatorname{RCycl}_{1}(G) \rightarrow \mathbb{Q}_{\geq 0}$ such that $\gamma_{G}(C) \leq \gamma_{G}(D)$ if $(C) \leq(D), \sum_{C \in \operatorname{RCycl}_{1}(G)} \beta_{G}(C) \gamma_{G}(C) \geq$ 0.

Proposition 2.3 A CCG is a BUG.
Proof Let G be a CCG and f a G-map between representation G-spaces. The map $\left.g_{f}\right|_{\mathrm{RCycl}(G)}: \operatorname{RCycl}(G) \rightarrow \mathbb{Z}$ satisfies that $g_{f}(C) \leq g_{f}(D)$ if $(C) \leq(D)$ by Theorem 2.2, since a cyclic group is a BUG. Thus we have

$$
g_{f}(G)=\sum_{C \in \operatorname{RCycl}_{1}(G)} \beta_{G}(C) g_{f}(C) \geq 0
$$

which implies G is a BUG.
Let $\operatorname{RCycl}_{1}^{+}(G)$ and $\operatorname{RCycl}_{1}^{-}(G)$ be the subsets of $\operatorname{RCycl}_{1}(G)$ consisting of C with $\beta_{G}(C)>0$ and $\beta_{G}(C)<0$, respectively.
We consider the following linear programming:

$$
\begin{aligned}
& \underset{\psi: \operatorname{RCycl}_{1}^{-}(G) \times \operatorname{RCycl}_{1}^{+}(G) \rightarrow \mathbb{Q}_{\leq 0}}{\operatorname{Maximize}} \min _{D \in \operatorname{RCycl}_{1}^{+}(G)}\left(\beta_{G}(D)+\sum_{C \in \operatorname{Rycl}_{1}^{-}(G)} \psi(C, D)\right) \\
& \text { subject to }\left\{\begin{array}{l}
\psi(C, D) \leq 0 \\
\psi(C, D)=0 \text { if }(C) \not 又(D) \\
\sum_{D \in \operatorname{RCycl}_{1}^{+}(G)} \psi(C, D) \leq \beta_{G}(C) \text { for } C \in \operatorname{RCycl}_{1}^{-}(G) \\
\sum_{C \in \operatorname{RCycl}_{1}^{-}(G)} \psi(C, D) \geq-\beta_{G}(D) \text { for } D \in \operatorname{RCycl}_{1}^{+}(G)
\end{array}\right.
\end{aligned}
$$

and had the following theorem by using the software GAP [2].
Theorem 2.4 ([7]) (1) Alternating groups A_{n} and symmetric groups S_{n} for $n \leq 21$ are CCGs.
(2) A_{22} is not a CCG although S_{22} is a CCG.
(3) All sporadic groups and automorphism groups of all sporadic groups are CCGs.
(4) $\left(C_{30}\right)^{5}$ is not a CCG.

Let $\gamma_{G}: \operatorname{RCycl}_{1}(G) \rightarrow \mathbb{Q} \geq 0$ be a map such that $\gamma_{G}(C) \leq \gamma_{G}(D)$ if C is subconjugate to D in G and let $\operatorname{Cycl}_{1}(G)$ be the set of all nontrivial cyclic subgroups of G. We define $\bar{\gamma}_{G}: \operatorname{Cycl}_{1}(G) \rightarrow \mathbb{Q} \geq 0$ as a class function which sends a cyclic subgroup C of G to $\gamma_{G}\left(C^{\prime}\right)$ such that $C^{\prime} \in \operatorname{RCycl}_{1}(G)$ is conjugate to C in G. Let

$$
\mathcal{S}=\left\{(C, D) \mid C, D \in \operatorname{RCycl}_{1}(G), C \text { is subconjugate to } D, \text { and }|D| /|C| \text { is a prime }\right\} .
$$

Let $C, D \in \operatorname{Cycl}_{1}(G)$ with $D>C$. We take $D_{0}, D_{1}, \ldots, D_{k} \in \operatorname{RCycl}_{1}(G)$ of G such that D_{0} and D_{k} are conjugate to D and C in G respectively and $\left(D_{i}, D_{i-1}\right) \in \mathcal{S}$ for $i=1, \ldots, k$. Then

$$
\bar{\gamma}_{G}(D)-\bar{\gamma}_{G}(C)=\sum_{i=1}^{k}\left(\gamma_{G}\left(D_{i-1}\right)-\gamma_{G}\left(D_{i}\right)\right) .
$$

Therefore, we obtain the following proposition.
Proposition 2.5 A finite group G is a CCG if and only if it can be detected by $\{(C, D) \mid$ $C, D \in \operatorname{RCycl}(G),(D) \subset(C),|D| /|C|$ is a prime $\}$.

By Theorem 2.4 (2), CCG is not closed under extensions although BUG is closed.
We say that a finite group G has subgroup-condition property (SCP) if $g_{f}(G)$ is equal to a conical combination of $\left\{g_{f}\left(K_{2}\right)-g_{f}\left(K_{1}\right) \mid K_{2} / K_{1}\right.$ is a BUG with $\left.K_{1} \triangleleft K_{2}<G\right\}$ for any isovariant G-map f between representation spaces.

Proposition 2.6 A group having SCP is a BUG.
Proof Let $f: V \rightarrow W$ be an isovariant G-map between representation spaces. Let $K_{1} \triangleleft K_{2}<G$. Note that

$$
g_{f}\left(K_{2}\right)-g_{f}\left(K_{1}\right)=g_{f}{ }_{K_{1}}\left(K_{2} / K_{1}\right) .
$$

Thus if K_{2} / K_{1} is a BUG, then $g_{f} K_{1}\left(K_{2} / K_{1}\right) \geq 0$. Therefore $g_{f}(G)$ is a sum of nonnegative integers.

Proposition 2.7 The family of groups having SCP is closed under the group extension.
Proof Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a short exact sequence and f an isovariant G map. Suppose H and K have SCP. There are $\left(H_{i 1}, H_{i 2}\right), a_{i}>0$ for $i \in I$ and $\left(K_{j 1}, K_{j 2}\right)$, $b_{j}>0$ for $j \in J$ such that $H_{i 1} \triangleleft H_{i 2}<H$ for $i \in I, K_{j 1} \triangleleft K_{j 2}<K$ for $j \in J$, and $H_{i 2} / H_{i 1}$, $K_{j 2} / K_{j 1}$ are BUGs, $g_{f}(G)=\sum_{i \in I} a_{i}\left(g\left(H_{i 2}\right)-g\left(H_{i 1}\right)\right)$, and $g_{f^{H}}(K)=\sum_{j \in J} b_{j}\left(g\left(K_{i 2}\right)-g\left(K_{i 1}\right)\right)$. Let $\pi: G \rightarrow K$ be a canonical projection. Since

$$
\begin{aligned}
g_{f}(G) & =g_{f}(H)+g_{f H}(K) \\
& =\sum_{i \in I} a_{i}\left(g_{f}\left(H_{i 2}\right)-g_{f}\left(H_{i 1}\right)\right)+\sum_{j \in J J} b_{j}\left(g_{f H}\left(K_{j 2}\right)-g_{f^{H}}\left(K_{j 1}\right)\right) \\
& =\sum_{i \in I} a_{i}\left(g_{f}\left(H_{i 2}\right)-g_{f}\left(H_{i 1}\right)\right)+\sum_{j \in J} b_{j}\left(g_{f}\left(\pi^{-1}\left(K_{j 2}\right)\right)-g_{f}\left(\pi^{-1}\left(K_{j 1}\right)\right)\right)
\end{aligned}
$$

and $\pi^{-1}\left(K_{j 2}\right) / \pi^{-1}\left(K_{j 1}\right) \cong K_{j 2} / K_{j 1}$, the group G has SCP.

3 Projective special linear groups

The projective special linear group $\operatorname{PSL}(2, q)$ over the 2-dimensional vector space over a finite field F_{q} is a BUG [4] and a CCG [7]. In this section, we show that the projective special linear group $\operatorname{PSL}(3, q)$ over the 3 -dimensional vector space over a finite field F_{q} is a SCG.
The group $\operatorname{SL}(3, q)$ is of order $q^{3}\left(q^{2}-1\right)\left(q^{3}-1\right)$. Let $\phi: \operatorname{SL}(3, q) \rightarrow \operatorname{PSL}(3, q)$ be a natural surjective homomorphism. Put $q=p^{u}$ for a prime $p, G=\operatorname{PSL}(3, q), r=q-1$, $d=\operatorname{gcd}(3, r), \rho^{r}=1, r^{\prime}=r / d, s=q+1, t=q^{2}+q+1, t^{\prime}=t / d, \sigma^{s}=\rho=\tau^{t} . \mathrm{A}$ maximal cyclic subgroup of $\operatorname{PSL}(3, q)$ is conjugate to one of the followings, whose generator is represented by a corresponding to Jordan canonical form over a suitable extension field:

$$
\begin{aligned}
& C_{p r^{\prime}}=\left\langle\phi\left(\begin{array}{lll}
\rho & 1 & \\
& \rho & \\
& & \rho^{-2}
\end{array}\right)\right\rangle, \quad C_{r^{\prime} s}=\left\langle\phi\left(\begin{array}{lll}
\sigma & & \\
& \sigma^{q} & \\
& & \rho^{-1}
\end{array}\right)\right\rangle, \quad C_{t^{\prime}}=\left\langle\phi\left(\begin{array}{ll}
\tau^{r} & \\
& \tau^{q r} \\
& \\
& \\
& \tau^{q^{2} r}
\end{array}\right)\right\rangle, \\
& C_{\ell}^{(i)}=\left\langle\phi\left(\begin{array}{lll}
1 & \theta^{i} & \\
& 1 & \theta^{i} \\
& & 1
\end{array}\right)\right\rangle \quad(0 \leq i<d), \quad \ell=\left\{\begin{array}{ll}
p, & p>2 \\
4, & p=2
\end{array},\right. \\
& C_{r(a, b)}^{(a, b)}=\left\langle\phi\left(\begin{array}{lll}
\rho^{a} & \\
& & \rho^{b} \\
& & \\
& & \rho^{-a-b}
\end{array}\right)\right\rangle \quad\left(0 \leq a<r^{\prime}, a \leq b<r,(r, a, b)=1\right),
\end{aligned}
$$

where $r(a, b)=r^{\prime}$ if $d=3$ and $r^{\prime} a \equiv r b / d \equiv-r^{\prime}(a+b) \bmod r$, and $r(a, b)=r$ otherwise [6, Table 1a]. Note that there may contain a duplicated group within the above groups: For example, $C_{10}^{(2,3)}$ and $C_{10}^{(1,5)}$ are conjugate in $\operatorname{PSL}(3,11) \cong \mathrm{SL}(3,11)$. We may assume that $\operatorname{RCycl}(G)$ is a subset of the set of the above cyclic subgroups.

Let T be an abelian subgroup of G of order $r r^{\prime}$ generated by the image of diagonal matrices of $\operatorname{SL}(3, q)$ by ϕ. Note that any nontrivial subgroup of $C_{p}, C_{t^{\prime}}$ is not a subset of (T) and $C_{r(a, b)}^{(a, b)}<T$. We may assume that $\left(C_{p r^{\prime}}\right) \cap T=C_{r^{\prime}}^{(1,1)}=\left(C_{r^{\prime} s}\right) \cap T$. Note that $d=3$ if and only if $r(1,1)=r / 3$. If $d=3$ then $\left\langle\operatorname{diag}\left(\rho^{r^{\prime}}, \rho^{r^{\prime}}, \rho^{r^{\prime}}\right)\right\rangle$ is the center of $\operatorname{SL}(3, q)$. In addition if r^{\prime} is not divisible by 3 , then $C_{r^{\prime}}^{(1,1)}$ is a subgroup of $C_{r}^{\left(\frac{1+b r^{\prime}}{d}, \frac{1+b r^{\prime}}{d}\right)}$ with index d, where $1+b r^{\prime} \equiv 0 \bmod d . C_{p r^{\prime}} \cap\left(C_{r^{\prime} s}\right)$ is a subgroup of $C_{p r^{\prime}}$ of order r^{\prime}.

An arrow $A \rightarrow B$ means that B is a subgroup of A and $C_{n}^{\prime \prime}$ for $n=2, p, s$ denotes a cyclic group of order n.
Let $\gamma: \operatorname{RCycl}_{1}(G) \rightarrow \mathbb{Q}_{\geq 0}$ be a map satisfying that $\gamma\left(H_{1}\right) \leq \gamma\left(H_{2}\right)$ for subgroups $H_{1} \unlhd H_{2} \leq G$ with H_{2} / H_{1} a BUG.
We see

$$
\begin{equation*}
\gamma(G)=n_{1}+n_{2}+n_{3}+n_{4}+n_{5} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& n_{1}=\sum_{D \leq C_{t^{\prime}}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C), \\
& n_{2}=\sum_{D \in \mathrm{RCycl}(G)} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C), \\
& n_{3}=\sum_{\substack{D \leq C^{\prime}, C^{(1,1)} \notin D}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C), \\
& n_{4}=\sum_{D \leq C_{r^{\prime}}^{(1,1)}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C) \text {, and }
\end{aligned}
$$

We show each of $n_{1}, n_{2}, n_{3}, n_{4}, n_{5}$ is nonnegative.

Lemma 3.1 ([7, Lemma 12]) Let C be a cyclic subgroup of a finite group K. Suppose that there is a unique maximal cyclic subgroup D of K with $C<D$. Then $N_{K}(C)=$ $N_{K}(D), \beta_{K}(C)=0$, and $\beta_{K}(D)=\frac{|D|}{\left|N_{K}(D)\right|}>0$.
By Lemma 3.1, we have

$$
\begin{equation*}
n_{1}=\frac{t^{\prime}}{\left|N_{G}\left(C_{t^{\prime}}\right)\right|} \gamma\left(C_{t^{\prime}}\right)=\frac{\gamma\left(C_{t^{\prime}}\right)}{3} \geq 0 \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{\substack{D \leq C_{p r^{\prime}} \\
D \not C_{r^{\prime}}^{1,1)}}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C) & =\sum_{\substack{D \leq C_{p p^{\prime}} \\
D \nsubseteq C_{r^{\prime}}^{(1,1)}}} \sum_{C \leq D} \frac{|C| \gamma(C)}{\left|N_{G}\left(C_{p r^{\prime}}\right)\right|} \mu(C, D) \\
& =\sum_{C \leq C_{p r^{\prime}}} \frac{|C| \gamma(C)}{\left|N_{G}\left(C_{p r^{\prime}}\right)\right|}\left(\sum_{D \leq C_{p r^{\prime}}}-\sum_{D \leq C_{r^{\prime}}^{(1,1)}}\right) \mu(C, D) \tag{4}\\
& =\frac{p r^{\prime}}{\left|N_{G}\left(C_{p r^{\prime}}\right)\right|} \gamma\left(C_{p r^{\prime}}\right)-\frac{r^{\prime}}{\left|N_{G}\left(C_{p r^{\prime}}\right)\right|} \gamma\left(C_{r^{\prime}}^{(1,1)}\right) \geq 0
\end{align*}
$$

Therefore

$$
\begin{equation*}
n_{2}=\sum_{\substack{D \leq C_{p r^{\prime}} \\ D \nless C_{r^{\prime}}^{1,1)}}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C)+\alpha \geq \alpha \tag{5}
\end{equation*}
$$

where

$$
\alpha=\sum_{\substack{p \| D \backslash \\ D \nless C_{p r^{\prime}}}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C) .
$$

If p is odd then

$$
\begin{equation*}
\alpha=\sum_{i=0}^{d-1} \beta_{G}\left(C_{p}^{(i)}\right) \gamma\left(C_{p}^{(i)}\right) \geq 0 \tag{6}
\end{equation*}
$$

and otherwise

$$
\begin{align*}
\alpha & =\sum_{i=0}^{d-1}\left(\beta_{G}\left(C_{4}^{(i)}, C_{4}^{(i)}\right) \gamma\left(C_{4}^{(i)}\right)+\beta_{G}\left(C_{2}^{\prime}, C_{4}^{(i)}\right) \gamma\left(C_{2}^{\prime}\right)\right) \tag{7}\\
& =\sum_{i=0}^{d-1} \frac{4 \gamma\left(C_{4}^{(i)}\right)-2 \gamma\left(C_{2}^{\prime}\right)}{\left|N_{G}\left(C_{4}^{(i)}\right)\right|} \geq 0
\end{align*}
$$

Lemma 3.2 Let C_{1} and C_{2} be cyclic subgroups of a finite group K with $C_{1}<C_{2}$. Suppose that $N_{K}(D)=N_{K}\left(C_{2}\right)$ for any D with $D \leq C_{2}$ and $D \not \leq C_{1}$. Then

$$
\sum_{C \leq C_{2}} \sum_{\substack{D \leq C_{2} \\ D \mathbb{Z} C_{1}}} \beta_{K}(C, D) \gamma(C)=\frac{\left|C_{2}\right|}{\left|N_{K}\left(C_{2}\right)\right|}\left(\gamma\left(C_{2}\right)-\frac{\gamma\left(C_{1}\right)}{\left|C_{2} / C_{1}\right|}\right) .
$$

Proof We straightforwardly see

$$
\begin{aligned}
& \sum_{C \leq C_{2}} \sum_{\substack{D \leq C_{2} \\
D \mathbb{Z} C_{1}}} \beta_{K}(C, D) \gamma(C) \\
&=\sum_{C \leq C_{2}} \sum_{D \leq C_{2}} \frac{|C| \mu(C, D) \gamma(C)}{\left|N_{K}(D)\right|} \\
&=\sum_{C \leq C_{2}} \frac{|C| \gamma(C)}{\left|N_{K}\left(C_{2}\right)\right|}\left(\sum_{D \leq C_{2}}-\sum_{D \leq C_{1}}\right) \mu(C, D) \\
&=\sum_{C \leq C_{2}} \frac{|C| \gamma(C)}{\left|N_{K}\left(C_{2}\right)\right|} \sum_{D \leq C_{2}} \mu(C, D)-\sum_{C \leq C_{1}} \frac{|C| \gamma(C)}{\left|N_{K}\left(C_{2}\right)\right|} \sum_{D \leq C_{1}} \mu(C, D) \\
&=\frac{\left|C_{2}\right| \gamma\left(C_{2}\right)}{\left|N_{K}\left(C_{2}\right)\right|}-\frac{\left|C_{1}\right| \backslash\left(C_{1}\right)}{\left|N_{K}\left(C_{2}\right)\right|} .
\end{aligned}
$$

Under the assumption of Lemma 3.2, since $\gamma\left(C_{2}\right) \geq \gamma\left(C_{1}\right) \geq 0$, we have

$$
\sum_{\substack{D \leq C_{2} \\ C_{1} \$ D}} \sum_{C \leq D} \beta_{K}(C, D) \gamma(C) \geq 0 .
$$

By seeing the eigenvalues of the preimage by ϕ of the generator of $C_{r^{\prime} s}$, for any cyclic subgroup D of $C_{r^{\prime} s}$ with $D \not \subset C_{r^{\prime}}^{(1,1)}$ the equality $N_{K}(D)=N_{K}\left(C_{r^{\prime} s}\right)$ holds. By Lemma 3.2,

$$
\begin{equation*}
n_{3}=\frac{r^{\prime} s}{\left|N_{G}\left(C_{r^{\prime} s}\right)\right|} \gamma\left(C_{r^{\prime} s}\right)-\frac{r^{\prime}}{\left|N_{G}\left(C_{r^{\prime} s}\right)\right|} \gamma\left(C_{r^{\prime}}^{(1,1)}\right) \geq 0 . \tag{8}
\end{equation*}
$$

We see $\left|N_{G}(C)\right|=|\mathrm{GL}(2, q)| / d$ for $\{1\}<C \leq C_{r^{\prime}}^{(1,1)}$ and thus

$$
\begin{equation*}
n_{4}=\frac{d}{|\mathrm{GL}(2, q)|} \sum_{C \leq C_{r^{\prime}}^{(1,1)}}|C| \gamma(C) \sum_{D \leq C_{r^{\prime}}^{(1,1)}} \mu(C, D)=\frac{r}{|\operatorname{GL}(2, q)|} \gamma\left(C_{r^{\prime}}^{(1,1)}\right) \geq 0 . \tag{9}
\end{equation*}
$$

We put

$$
\hat{T}=\left\langle t,\left(\begin{array}{lll}
& 1 & \\
1 & & \\
& & -1
\end{array}\right), \left.\left(\begin{array}{lll}
& 1 & \\
& & 1 \\
1 & &
\end{array}\right) \right\rvert\, t \in T\right\rangle .
$$

Note that T is a normal subgroup of \hat{T} with index 6 . For a nontrivial cyclic subgroup $D \leq T$, we see $N_{G}(D)=N_{\hat{T}}(D)$ and the conjugacy class of D in \hat{T} is the union of $6|T| /\left|N_{\hat{T}}(D)\right|$ conjugacy classes of D in T. The conjugation action preserves the set of eigenvalues. For a cyclic subgroup D of T with $(D) \not \leq\left(C_{r^{\prime}}^{(1,1)}\right)$, any matrix of the preimage of the generator of D has distinct diagonal elements and thus $N_{G}(D)=N_{\hat{T}}(D)$.

Therefore we see

$$
\begin{aligned}
n_{5} & =\sum_{\substack{D \leq \operatorname{RCycl}(\hat{T}) \\
D \leq T \\
D \nless C_{r^{\prime}}^{(1,1)}}} \sum_{C \leq D} \frac{|C| \mu(C, D) \gamma(C)}{\left|N_{\hat{T}}(D)\right|} \\
& =\sum_{\substack{D \leq \operatorname{RCycl}(T) \\
D \leq T \\
D \nless C_{r}^{(1,1)}}}\left(\frac{6 r r^{\prime}}{\left|N_{\hat{T}}(D)\right|}\right)^{-1} \sum_{C \leq D} \frac{|C| \mu(C, D) \gamma(C)}{\left|N_{\hat{T}}(D)\right|} \\
& =\frac{1}{6 r r^{\prime}}\left(\sum_{\substack{D \leq \operatorname{RCycl}(T) \\
D \leq T}}-\sum_{\substack{D \leq \operatorname{RCycl}(T) \\
D \leq C_{r^{\prime}}^{(1,1)}}}\right) \sum_{C \leq D}|C| \mu(C, D) \gamma(C) \\
& =\frac{1}{6}\left(\sum_{\substack{ \\
C \in \operatorname{RCycl}(T)}} \beta_{T}(C) \gamma(C)-\frac{1}{r} \sum_{C \in \operatorname{RCycl}\left(C_{r^{\prime}}^{(1,1)}\right)} \beta_{\left.C_{r^{\prime}}^{(1,1)}(C) \gamma(C)\right)}\right. \\
& =\frac{1}{6}\left(\gamma(T)-\frac{1}{r} \gamma\left(C_{r^{\prime}}^{(1,1)}\right)\right)
\end{aligned}
$$

Since T is an extension of a cyclic group by a cyclic group and then solvable. Therefore, we conclude

$$
\begin{equation*}
n_{5} \geq \frac{r-1}{6 r} \gamma\left(C_{r^{\prime}}^{(1,1)}\right) \geq 0 \tag{10}
\end{equation*}
$$

The equality (2) and inequalities (3)-(10) for $\gamma=g_{f}$ complete the proof of the following.
Theorem 3.3 PSL $(3, q)$ has SCP.
Therefore, $\mathrm{PSL}(3, q)$ is a BUG by Proposition 2.6.
Lemma 3.4 Let L be a cyclic subgroup of a finite group K and let C_{1} and C_{2} be distinct proper subgroups of L. Suppose that $N_{K}(D)=N_{K}(L)$ for any D with $D \leq L, D \not 又 C_{1}$ and $D \not \leq C_{2}$. Then

$$
\sum_{\substack{C \leq L}} \sum_{\substack{D \leq(L) \\ D \nsubseteq C_{1} \\ D \not \subset C_{2}}} \beta_{K}(C, D) \gamma(C)=\frac{|L|}{\left|N_{K}(L)\right|}\left(\gamma(L)-\frac{\gamma\left(C_{1}\right)}{\left|L / C_{1}\right|}-\frac{\gamma\left(C_{2}\right)}{\left|L / C_{2}\right|}+\frac{\gamma\left(C_{1} \cap C_{2}\right)}{\left|L /\left(C_{1} \cap C_{2}\right)\right|}\right) .
$$

Proof Let $C_{3}=C_{1} \cap C_{2}$. We see

$$
\begin{aligned}
& \sum_{C \leq L} \sum_{\substack{D \leq L \\
D \geq C_{1} \\
D \not 又 C_{2}}} \beta_{K}(C, D) \gamma(C) \\
&= \sum_{C \leq L} \sum_{\substack{D \leq L \\
D \leq C_{1} \\
D \leq C_{2}}} \frac{|C| \mu(C, D) \gamma(C)}{\left|N_{K}(D)\right|} \\
&= \sum_{C \leq L} \frac{|C| \gamma(C)}{\left|N_{K}(L)\right|}\left(\sum_{D \leq L}-\sum_{D \leq C_{1}}-\sum_{D \leq C_{2}}+\sum_{D \leq C_{3}}\right) \mu(C, D) \\
&= \sum_{C \leq L} \frac{|C| \gamma(C)}{\left|N_{K}(L)\right|} \sum_{D \leq L} \mu(C, D)-\sum_{C \leq C_{1}} \frac{|C| \gamma(C)}{\left|N_{K}(L)\right|} \sum_{D \leq C_{1}} \mu(C, D) \\
&-\sum_{C_{C \leq}} \frac{|C| \gamma(C)}{\left|N_{K}(L)\right|} \sum_{D \leq C_{2}} \mu(C, D)+\sum_{C \leq C_{3}} \frac{|C| \gamma(C)}{\left|N_{K}(L)\right|} \sum_{D \leq C_{3}} \mu(C, D) \\
&= \frac{|L| \gamma(L)}{\left|N_{K}(L)\right|}-\frac{\left|C_{1}\right| \gamma\left(C_{1}\right)}{\left|N_{K}(L)\right|}-\frac{\left|C_{2}\right| \gamma\left(C_{2}\right)}{\left|N_{K}(L)\right|}+\frac{\left|C_{3}\right| \gamma\left(C_{3}\right)}{\left|N_{K}(L)\right|} .
\end{aligned}
$$

Under the assumption of Lemma 3.4, we have

$$
\left.\sum_{\substack{C \leq L \\ C \leq L \\ D \leq C_{1} \\ D 区 C_{2}}} \sum_{\substack{ \\\sum_{K} \\ \hline}} \beta_{K} D\right) \gamma(C) \geq \frac{|L| \gamma(L)}{\left|N_{K}(L)\right|}\left(1-\frac{\left|C_{1}\right|}{|L|}-\frac{\left|C_{2}\right|}{|L|}\right)+\frac{\left|C_{3}\right| \gamma\left(C_{3}\right)}{\left|N_{K}(L)\right|} \geq 0 .
$$

4 Projective special unitary groups

Let σ be an automorphism of a finite field $F_{q^{2}}$ defined by $\sigma(x)=x^{q}$. For a matrix $A=\left(a_{i j}\right)$ over $F_{q^{2}}$, let $A^{*}=\left(a_{j i}^{\sigma}\right)$ and $U(n, q)=\left\{A \in \operatorname{GL}\left(n, q^{2}\right) \mid A A^{*}=I_{n}\right\}$. The unitary group $U(n, q)$ has order $q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-(-1)^{i}\right)$. The special unitary group $\mathrm{SU}(n, q)$ is defined by $U(n, q) \cap \mathrm{SL}(n, q)$ whose order is $q^{n(n-1) / 2} \prod_{i=2}^{n}\left(q^{i}-(-1)^{i}\right)$. The projective special unitary group $\operatorname{PSU}(n, q)$ has order $|\operatorname{SU}(n, q)| / \operatorname{gcd}(n, q+1)$. In particular, $\mathrm{SU}(3, q)$ is a subgroup of $\operatorname{SL}\left(3, q^{2}\right)$ of order $q^{3}\left(q^{2}-1\right)\left(q^{3}+1\right)$ and $\operatorname{PSU}(3, q)$ has order $q^{3}\left(q^{2}-\right.$ 1) $\left(q^{3}+1\right) / \operatorname{gcd}(3, q+1)$.

Note that $\operatorname{PSU}(2, q)$ is isomorphic to $\operatorname{PSL}(2, q)$. In this section, we show that $\operatorname{PSU}(3, q)$ is a SCG. The argument is quite similar as those of the projective special linear groups $\operatorname{PSU}(3, q)$.
Let $\phi: \operatorname{SU}(3, q) \rightarrow \operatorname{PSU}(3, q)$ be a natural surjective homomorphism. Put $q=p^{u}$ for a prime $p, G=\operatorname{PSU}(3, q), r=q+1, d=\operatorname{gcd}(3, r), \rho^{r}=1, r^{\prime}=r / d, s=q-1, t=q^{2}-q+1$, $t^{\prime}=t / d, \sigma^{s}=\rho=\tau^{t}$. A maximal cyclic subgroup of $\operatorname{PSU}(3, q)$ is conjugate to one of the followings, whose generator is represented by a corresponding to Jordan canonical form in $\operatorname{GL}(3, \mathbb{F})$ over a suitable extension field \mathbb{F} :

$$
\begin{aligned}
& C_{p r^{\prime}}=\left\langle\phi\left(\begin{array}{lll}
\rho & 1 & \\
& \rho & \\
& & \rho^{-2}
\end{array}\right)\right\rangle, \quad C_{r^{\prime} s}=\left\langle\phi\left(\begin{array}{lll}
\sigma^{-1} & & \\
& \sigma^{q} & \\
& & \rho^{-1}
\end{array}\right)\right\rangle, \quad C_{t^{\prime}}=\left\langle\phi\left(\begin{array}{lll}
\tau^{r} & & \\
& \tau^{-q r} & \\
& & \tau^{q^{2} r}
\end{array}\right)\right\rangle, \\
& C_{\ell}^{(i)}=\left\langle\phi\left(\begin{array}{lll}
1 & \theta^{i} & \\
& 1 & \theta^{i} \\
& & 1
\end{array}\right)\right\rangle \quad(0 \leq i<d), \quad \ell=\left\{\begin{array}{ll}
p, & p>2 \\
4, & p=2
\end{array},\right. \\
& C_{r(a, b)}^{(a, b)}=\left\langle\phi\left(\begin{array}{lll}
\rho^{a} & & \\
& \rho^{b} & \\
& & \rho^{-a-b}
\end{array}\right)\right\rangle \quad\left(0 \leq a<r^{\prime}, a \leq b<r,(r, a, b)=1\right),
\end{aligned}
$$

where $r(a, b)=r^{\prime}$ if $d=3$ and $r^{\prime} a \equiv r b / d \equiv-r^{\prime}(a+b) \bmod r$, and $r(a, b)=r$ otherwise [6, Table 1a]. Note that there may contain a duplicated group within the above groups. We may assume that $\operatorname{RCycl}(G)$ is a subset of the set of the above cyclic subgroups.

Let T be an abelian subgroup of G of order $r r^{\prime}$ generated by the image of diagonal matrices of $\operatorname{SU}(3, q)$ by ϕ. Note that any nontrivial subgroup of $C_{p}, C_{t^{\prime}}$ is not a subset of (T) and $C_{r}^{(0,1)}, C_{r(a, b)}^{(a, b)}<T$. We may assume that $\left(C_{p r^{\prime}}\right) \cap T=C_{r^{\prime}}^{(1,1)}=\left(C_{r^{\prime} s}\right) \cap T$. Note that $d=3$ if and only if $r(1,1)=r / 3$. If $d=3$ then $\left\langle\operatorname{diag}\left(\rho^{r^{\prime}}, \rho^{r^{\prime}}, \rho^{r^{\prime}}\right)\right\rangle$ is the center of $\mathrm{SU}(3, q)$. In addition if r^{\prime} is not divisible by 3 , then $C_{r^{\prime}}^{(1,1)}$ is a subgroup of $C_{r}^{\left(\frac{1+b r^{\prime}}{d}, \frac{1+b r^{\prime}}{d}\right)}$ with index d, where $1+b r^{\prime} \equiv 0 \bmod d . C_{p r^{\prime}} \cap\left(C_{r^{\prime} s}\right)$ is a subgroup of $C_{p r^{\prime}}$ of order r^{\prime}.

Case where $2 \mid r$, and $3 \nmid r$ or $9 \mid r$

Case where $p=2$, and $3 \nmid r$ or $9 \mid r$

Case where $6 \mid r$ and $9 \nmid r$

Case where $p=2,3 \mid r$ and $9 \nmid r$

Let $\gamma: \operatorname{RCycl}_{1}(G) \rightarrow \mathbb{Q}_{\geq 0}$ be a map satisfying that $\gamma\left(H_{1}\right) \leq \gamma\left(H_{2}\right)$ for subgroups $H_{1} \unlhd H_{2} \leq G$ with H_{2} / H_{1} a BUG. We see

$$
\begin{equation*}
\gamma(G)=n_{1}+n_{2}+n_{3}+n_{4}+n_{5} \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& n_{1}=\sum_{D \leq C_{t^{\prime}}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C), \quad n_{2}=\sum_{\substack{D \in \mathrm{CHycl}(G) \\
p \| D \mid}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C) \text {, } \\
& n_{3}=\sum_{\substack{D \leq C^{\prime}, C_{r}^{(1,1)} \notin D}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C), \quad n_{4}=\sum_{D \leq C_{r^{\prime}}^{(1,1)}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C) \text {, and } \\
& n_{5}=\sum_{\substack{\left.D \in \mathrm{RCycl}(G) \\
\text { Dצ } \\
D Z C \\
C r^{\prime}, 1\right)}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C) .
\end{aligned}
$$

We show each of $n_{1}, n_{2}, n_{3}, n_{4}, n_{5}$ is nonnegative. By Lemma 3.1, we have

$$
\begin{equation*}
n_{1}=\frac{t^{\prime}}{\left|N_{G}\left(C_{t^{\prime}}\right)\right|} \gamma\left(C_{t^{\prime}}\right) \geq 0 \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
n_{2} & =\sum_{\substack{D \leq C_{p r^{\prime}} \\
D \leq C_{r^{\prime}}}} \sum_{C \leq D} \beta_{G}(C, D) \gamma(C)+\sum_{i=0}^{d-1} \beta_{G}\left(C_{\ell}^{(i)}\right) \gamma\left(C_{\ell}^{(i)}\right) \\
& \geq \sum_{C \leq C_{p r^{\prime}}} \frac{|C| \gamma(C)}{\left|N_{G}\left(C_{p r^{\prime}}\right)\right|}\left(\sum_{D \leq C_{p r^{\prime}}}-\sum_{D \leq C_{r^{\prime}}}\right) \mu(C, D) \tag{13}\\
& =\frac{p r^{\prime}}{\left|N_{G}\left(C_{p r^{\prime}}\right)\right|} \gamma\left(C_{p r^{\prime}}\right)-\frac{r^{\prime}}{\left|N_{G}\left(C_{p r^{\prime}}\right)\right|} \gamma\left(C_{r^{\prime}}\right) \geq 0 .
\end{align*}
$$

By seeing the eigenvalues of the preimage by ϕ of the generator of $C_{r^{\prime} s}$, for any cyclic subgroup D of $C_{r^{\prime} s}$ with $D \not \leq C_{r^{\prime}}^{(1,1)}$ the equality $N_{K}(D)=N_{K}\left(C_{r^{\prime} s}\right)$ holds. By Lemma 3.2,

$$
\begin{equation*}
n_{3}=\frac{r^{\prime} s}{\left|N_{G}\left(C_{r^{\prime} s}\right)\right|} \gamma\left(C_{r^{\prime} s}\right)-\frac{r^{\prime}}{\left|N_{G}\left(C_{r^{\prime} s}\right)\right|} \gamma\left(C_{r^{\prime}}^{(1,1)}\right) \geq 0 \tag{14}
\end{equation*}
$$

We see $\left|N_{G}(C)\right|=|U(2, q)| / d$ for $\{1\}<C \leq C_{r^{\prime}}^{(1,1)}$ and thus

$$
\begin{equation*}
n_{4}=\frac{d}{|U(2, q)|} \sum_{C \leq C_{r^{\prime}}^{(1,1)}}|C| \gamma(C) \sum_{D \leq C_{r^{\prime}}^{(1,1)}} \mu(C, D)=\frac{r}{|U(2, q)|} \gamma\left(C_{r^{\prime}}^{(1,1)}\right) \geq 0 \tag{15}
\end{equation*}
$$

We put

$$
\hat{T}=\left\langle t, \left.\left(\begin{array}{lll}
& & 1 \\
& -1 & \\
1 & &
\end{array}\right) \right\rvert\, t \in T\right\rangle .
$$

For a nontrivial cyclic subgroup $D \leq T$, we see $N_{G}(D)=N_{\hat{T}}(D)$ and the conjugacy class of D in \hat{T} is the union of $|\hat{T} / T| /\left|N_{\hat{T}}(D) / N_{T}(D)\right|$ conjugacy classes of D in T. The conjugation action preserves the set of eigenvalues. For a cyclic subgroup D of T with $(D) \not \leq\left(C_{r^{\prime}}^{(1,1)}\right)$, any matrix of the preimage of the generator of D has distinct diagonal
elements and thus $N_{G}(D)=N_{\hat{T}}(D)$. Therefore we see

$$
\begin{aligned}
& n_{5}=\sum_{\substack{D \leq \operatorname{Ryycl}(\hat{T}) \\
D\left(T_{0} \\
D \mathbb{Z} C_{r^{\prime}}^{(1,1)}\right.}} \sum_{C \leq D} \frac{|C| \mu(C, D) \gamma(C)}{\left|N_{\hat{T}}(D)\right|} \\
& =\sum_{\substack{D \leq \mathrm{R} \text { cycl(T) } \\
D \leq 1 \\
D \sharp C_{1}^{(1,1)}}}\left(\frac{2}{N_{\hat{\mathcal{T}}}(D) / N_{T}(D) \mid}\right)^{-1} \sum_{C \leq D} \frac{|C| \mu(C, D) \gamma(C)}{\left|N_{\hat{\mathcal{T}}}(D)\right|} \\
& =\frac{1}{2}\left(\sum_{\substack{D \leq \mathrm{RCycl}(T) \\
D \leq T}}-\sum_{\substack{D \leq \mathrm{RCycl}(T) \\
D \leq C_{r^{\prime}}^{\prime, 1)}}}\right) \sum_{C \leq D} \frac{|C| \mu(C, D) \gamma(C)}{\left|N_{T}(D)\right|} \\
& =\frac{1}{2}\left(\sum_{C \in \operatorname{RCycl}(T)} \beta_{T}(C) \gamma(C)-\frac{r^{\prime}}{|T|} \sum_{C \in \operatorname{RCycl}\left(C_{r^{\prime}}^{(1,1)}\right)} \beta_{C_{r^{\prime}}^{(1,1)}}(C) \gamma(C)\right) \\
& =\frac{1}{2} \gamma(T)-\frac{1}{2 r} \gamma\left(C_{r^{\prime}}^{(1,1)}\right)
\end{aligned}
$$

Since T is an extension of a cyclic group by a cyclic group and then solvable. Therefore, we conclude

$$
\begin{equation*}
n_{5} \geq \frac{r-1}{2 r} \gamma\left(C_{r^{\prime}}^{(1,1)}\right) \geq 0 \tag{16}
\end{equation*}
$$

The equality (11) and inequalities (12)-(16) for $\gamma=g_{f}$ complete the proof of the following.
Theorem 4.1 $\operatorname{PSU}(3, q)$ has SCP.
Therefore, $\operatorname{PSU}(3, q)$ is a BUG by Proposition 2.6.

5 Alternating groups

Let A_{n} be an alternating group on letters $1,2, \ldots, n$. In this section we show that A_{n}, $22 \leq n \leq 27$ have SCP and in particular are BUGs.
Let $\mathcal{S}_{0}(n)=\left\{(C, D)\left|C, D \in \operatorname{RCycl}_{1}\left(A_{n}\right),(D)>(C),|D / C|\right.\right.$ is a prime $\}$. By using its character table and computer, we get the following result.

Example 5.1 Let $\mathcal{S}_{1}(n, k)=\left\{\left(A_{j},\left\langle A_{j},(1,2)^{n-j+1}(j+1, \ldots, n)\right\rangle\right) \mid k \leq j \leq n-2\right\} . g\left(A_{n}\right)$ is written as a conical combination of $\left\{g\left(H_{2}\right)-g\left(H_{1}\right) \mid\left(H_{1}, H_{2}\right) \in \mathcal{S}_{0}(n) \cup \mathcal{S}_{1}\left(n, k_{1}(n)\right)\right\}$ and is not a conical combination of $\left\{g\left(H_{2}\right)-g\left(H_{1}\right) \mid\left(H_{1}, H_{2}\right) \in \mathcal{S}_{0}(n) \cup \mathcal{S}_{1}\left(n, k_{1}(n)+1\right)\right\}$ for $n=22,23,24,25,26,27$, where

n	22	23	24	25	26	27
$k_{1}(n)$	20	18	18	22	21	23

Theorem 5.2 The alternating groups $A_{22}, A_{23}, A_{24}, A_{25}, A_{26}$, and A_{27} have SCP.

Proof Recall that A_{k} is a BUG since it is a CCG for $k \leq 21$ by Theorem 2.4. Let $n=22$. For $\left(H_{1}, H_{2}\right) \in \mathcal{S}_{1}(n, k)$, groups H_{1} and H_{2} are BUGs, H_{1} is a normal subgroup of $H_{2}, H_{2} / H_{1}$ is cyclic, and $g\left(H_{1}\right)-g\left(H_{2}\right) \geq 0$. Therefore, A_{n} has SCP by Example 5.1.
Now, let $22<n \leq 27$. As the induction hypothesis, we suppose A_{k} is a BUG for $k<n$. By the similar argument as above, we see that A_{n} has SCP.

Example 5.3 Let $\mathcal{S}_{2}(n, k)=\left\{\left(A_{j}, A_{j} \times A_{n-j}\right) \mid k \leq j \leq n-3\right\} . g\left(A_{n}\right)$ is written as a conical combination of $\left\{g\left(H_{2}\right)-g\left(H_{1}\right) \mid\left(H_{1}, H_{2}\right) \in \mathcal{S}_{0}(n) \cup \mathcal{S}_{2}\left(n, k_{2}(n)\right)\right\}$ and is not a conical combination of $\left\{g\left(H_{2}\right)-g\left(H_{1}\right) \mid\left(H_{1}, H_{2}\right) \in \mathcal{S}_{0}(n) \cup \mathcal{S}_{2}\left(n, k_{2}(n)+1\right)\right\}$ for $n=22,23,24,25,26,27$, where

n	22	23	24	25	26	27
$k_{2}(n)$	19	18	17	20	21	22

The vector $\left(\cdots, \operatorname{dim} V_{j}, \cdots\right)$ is not a conical combination of

$$
\left\{\left(\cdots, \operatorname{dim} V_{j}^{H_{1}}-\operatorname{dim} V_{j}^{H_{2}}, \cdots\right) \mid\left(H_{1}, H_{2}\right) \in \mathcal{S}_{0}(28) \cup \mathcal{S}_{2}(28,14)\right\}
$$

where V_{j} runs over nontrivial irreducible representation spaces.
Question 5.4 Does A_{28} have SCP?
To attack this problem we may assume that any proper subgroup of A_{28} is a BUG. However there are quite many subgroups (even up to conjugate). By the following theorem supports that the number of necessary subgroups has upper limit.

Theorem 5.5 (Carathéodory's theorem [1]) If a point x of \mathbb{R}^{d} lies in the convex hull of a set P, x lies in an r-simplex with vertices in P, where $r \leq d$.

By Carathéodory's theorem, if a point x of \mathbb{R}^{d} lies in the conical hull of P, then x can be written as the conical combination of at most $d+1$ points in P. Therefore, we can choose some pairs $\left(H_{1}, H_{2}\right)$ of subgroups with $H_{1} \triangleleft H_{2}$ whose number is less than or equal to the cardinality of $\operatorname{RCycl}(G)$, that is, the number of conjugacy classes of cyclic subgroups.

Acknowledgement

The author was partially supported by JSPS KAKENHI, Grant number JS16K05151.

References

［1］C．Carathéodory，Über den Variabilitätsbereich der Fourierschen Konstanten von pösitiven harmonischen Funktionen，Rend．Circ．Mat．Palermo， 32 （1911），193－217．
［2］The GAP Group，GAP－Groups，Algorithms，and Programming，Version 4．10．2； 2019，（https：／／www．gap－system．org）．
［3］T．Kobayashi，The Borsuk－Ulam theorem for a Z_{q}－map from a Z_{q}－space to $S^{2 n+1}$ ， Proc．Amer．Math．Soc． 97 （1986），714－716．
［4］I．Nagasaki and F．Ushitaki，New examples of the Borsuk－Ulam groups，RIMS Kôkyûroku Bessatsu，B39（2013），109－119．
［5］A．Necochea，Borsuk－Ulam theorems for prime periodic transformation groups，Group actions on manifolds，Contemp．Math． 36 （1985），135－143．
［6］W．A．Simpson and J．S．Frame，The character table for $\operatorname{SL}(3, q), \operatorname{SU}\left(3, q^{2}\right), \operatorname{PSL}(3, q)$ ， $\operatorname{PSU}\left(3, q^{2}\right)$ ，Can．J．Math． 25 （1973），486－494．
［7］T．Sumi，A sufficient condition for a finite group to be a Borsuk－Ulam group，RIMS Kôkyûroku（2018），148－161．
［8］A．G．Wasserman，Isovariant maps and the Borsuk－Ulam theorem，Topology Appl． 38 （1991），155－161．

Faculty of Arts and Science
Kyushu University
Motooka 744，Nishi－ku，Fukuoka，819－0395
JAPAN
E－mail address：sumi＠artsci．kyushu－u．ac．jp

