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Higher uniruledness, Bott towers
and “Higher Fano Manifolds”
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Abstract

A sufficient criterion for higher uniruledness via Bott towers is given. This sufficient criterion proposes
new kinds of “higher Fano manifolds.”

1 Higher (uni)ruledness and Lower (uni)rationality

Let us recall a coupld of basic concepts of algebraic geometry:

- (uni)ruled and (uni)rational N

For a projective n-dimensional variety X,

e X is uniruled (resp. ruled ), if there exist a (n — 1)-dimensional Z and a rational dominant
(resp. birational) map
P!x Z——>X,

May replace a rational dominant (resp. birational) map with an honest domiant (resp. bira-

tional) morphism.

e X is unirational (resp. rational ), if there exist a rational dominant (resp. birational) map

P ——-> X,

May NOT replace with an honest morphism!
N J

Here, it would be self-evident to propose the following definition:

*This work was partially supported by JSPS KAKENHI Grant Number 15K04872.
fnori@nitech.ac.jp
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— Higher (uni)ruledness: (uni-)k-ruled = (uni-)( — (n — k))-rational :Lower (uni)rationality —

For a projective n-dimensional variety X, and
1 <k <n, let us say:
X is uni-k-ruled or = uni-(k — n)-rational (resp. k-ruled or = —(n — k)-rational ),

if there exist a (n — k)-dimensional Z"~* and a rational dominant (resp. birational) map

PFx ZnF - - > X,

rational =—————= O-rational =——=> - -+ =—————"> —(n — k)-rational= k-ruled e 1-ruled ruled

L | |

unirational uni-0-rational =—=> ... === uni-( — (n — k))-rational = uni-k-ruled =——= - - - =——> uni-1-ruled =———— uniruled

e These concepts are birational invariant.

e However... For k > 2, may NOT replace a rational dominant (resp. birational) map with an

honest domiant (resp. birational) morphism.

N J

Thus, it makes sense to consider the following

NON birational invariant properties also...

. - k_
- (uni)regular-R"-ruled N
Fix a rational k-fold R* (1 <1 < n). For a projective n-dimensional variety X, let us say:

X is uniregular-R¥-ruled (resp. regular-RF-ruled ), if there exist a (n — k)-dimensional

Z" % and a dominant (resp. birational) morphism
RF x 7k - X.

e Clearly,
regular-R*-ruled === k-ruled = —(n — k)-rational

ﬂ ﬂ

uniregular-R¥-ruled == uni-k-ruled = uni-(—(n — k))-rational

e (uni)regular-R*-ruledness’ are NOT birational invariant.

J

Now the purpose of this paper is to report a sufficient criterion for uniregular-7*-ruledness, with 7* a

k-dimensional smooth projective toric variety, and so, for uni-k-ruledness (thus for higher uniruledness).

2 Past works for sufficient criteria for higher (uni-)ruledness

Let us start with Mori’s famous work:
S. Mori, Annals of Math. 79

Any Fano manifold X is covered by P! , i.e. any general point € X is contained in the image of

a map from P!, which is an immersion at x.




Then, Kollar pointed out the following:

-

uniruledness ~

For a projective n-dimensional variety X, TFAE:
e X is covered by P! .

e X is uniruled , i.e. there exists a (n — 1)-dimensional Z and a rational, dominant (i.e. the

image contains a non-empty open) map

P'xZ——>X,

N J
To study a uniruled manifold, a standard method is to consider the following:
- polarized minimal family of rational curves N
e For a uniruled manifold X of dimension n, with z € X a general point,
v, iC Hom (P!, X,0 s z)
irred. open
Gy = Aut (]P’l)o C Aut(P') = PGL(2,C)
()= £(t)
P' x V, —— U, = (P! x V) //Go s X, (1)
{o}xid CJ MJ{ > Ox
Vo —— H, =V, //Go
e By results of Miyaoka [Kol96, V,3.7.5.Prop] and Kebekus [Keb02, Th.3.3], every curve
parametrized by H, is immersed at x, and the subvarietry H3"&® parametrizing curves sin-
gular at z, is at most finite.
e There is a normalization onto its image (Kebekus [Keb02, Th.3.3,3.4] Hwang-Mok [HMO04] ) of
the finite morphism
Tt Hy = P (Tx,) 2P
giving a polarization (H,,7;O(1)) =: (H,, L;), called a PMFRC ( polarized minimal family of
rational curves ) through z.
e Denote this situation by ‘
N J

It turns out that PMFRC (H,, L,) possesses a very rich information about X :
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Cho-Miyaoka-Shepherd-Barron, Kebekus

4 N

For PMFRC (H,, L;) of a uniruled manifold X, we know

l'=dimH,+2<(n—1)+2=n+1 (2)
becuase
Tt Hy = P(Tx,) 2P
is a finite morphism (Miyaoka, Kebekus).
If (2) becomes an equality, i.e. if
l:=dmH, +2=n+1,
then X = P™.
J

Here, let us compare Mori’s theorem and the theorem of Cho-Miyaoka-Shepherd-Barron and Kebekus:

Theorem || Condition Conclusion in particular...
Mori ¢ (X)>0 uniruledness | lowest uniruledness
Cho-Miyaoka-Shepherd-B )
OVHYRORATBREPRCIEBATION, | dimH, +2=dim X +1 | X 2P¥X | highest ruledness
Kebekus

So, these two theorems suggest sufficent criteria, which give a hierachy of uniruledness, might be
expressed as possitivity of certain polynomial of ¢;(X) (1 <i < n) and some restrictions on [ := dim H,,

or the pseudo-index of X :
ix :=min{-Kx -C | C C X rational curve},

which enjoys
l:=dimH,+2 > ix (VzeX)

In fact, most past work which considered the hierachy of uniruledness were stated under such condi-

tions, i.e. in terms of ix or [ := dim H, + 2, and the so-called “higher Fano conditions”:

s Various definitions of “k-Fano” (de Jong-Starr (Harris)) ~
For k € N, let us call X

strong k-Fano ch;(X)>0(1<i<k),
k-Fano if $chy(X)>0(1<i<k—1), chpg(X)>0, , respectively.
weak k-Fano chi(X) > 0,ch;(X) >0 (2<i<k),

Note:

{degree d hypersurface XEcprt | @b <n+ 1}
C {strong k-Fano’s} C {k-Fano’s} C {weak k-Fano’s}

N J

but confined to statements like

“Any general point of X is contained in the image of a generically injective morphism R* — X,

”

where R” is a some rational k-fold (which is in many cases just P*).
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And, the first attempt was given by de Jong-Starr:
de Jong-Starr, DukeJM 07

For any 2-Fano manifold, its general point is contained in the image of a generically injective mor-
phism R? — X for some rational 2-fold R2.
(However, it is not clear what kind of rational 2-fold R? show up for each general point.)

To go furhter, Araujo-Castravet and Taku Suzuki chose to consider iterated PMFRC:

- Is H, Fano again? - Druel, Math. Ann. 2006 N
(&= £ (1)
P! x V, —— U, = (P' x V) //Go ———— X,

Vo ————— Hy .=V, //Go
e The unique section o, characterized by
evy (04(Hy)) = x.
determines a divisor (line bundle)
Ou, (04), or simply, (o),
on U,, giving:
— Uz 2P((m)+ 00, (02)).

- Ty m)*(((ev;Tvam)(—m).
q y,
(— Is H, Fano again? - ARAUJO-CASTRAVET, Prop.1.3 AJM 2012 —

e Let X be smooth complex projective uniruled,

e Let (Hy, L;): PMFRC through a general point z € X.

Then, for any k > 1, (Bj; : j-th Bernouilli number with B; = —1)

Fundamental Formula

k in. )
chi(Hy) = Zmq@,)m*eV;(cth_]-(X)) 7%CI(LI)’V.
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s suggested basic strategy ~
e Given astrong k-Fano X (ch;(X) > 0, 1 <4 < k), construct inductively a sequence of PMFRC’s:
X=Hy— Hy— Hoys---Hj_4
so that X is strong (k — j)-Fano ( ch;(X) >0, 1 <i <k —j).

e Araujo-Castravet did this for (strong) 2-Fano and (strong) 3-Fano, under some extra condition.

e Taku Suzuki did this for weak k-Fano ( ch;(X) > 0,ch;(X) > 0) for general k > 2,

under some extra condition.

N J
- Araujo-Castravet, AmerJM 12 ~
e For any strong 2-Fano with ix > 3, its general point € X is contained in the image of a

generaically injective morphism P2 — X if (H,, L,) 2 (P4, 0(2)), (P*, O(3)).
e For any 3-Fano with ix > 4, its general point € X posseses a sequence of PMFRC’s:
X +— H, — Wy, and is contained in the image of a generaically injective morphism P? — X,
if (Hz7 LI) % (Pdv 0(2)) and (Wh’ ]\/Ih) %Z (]ijv 0(2))7 (]Pﬂv 0(3))
N J
e Taku Suzuki  (Nagaoka, M.) ~

For any weak k-Fano X with ix > k? —k + 1, its general point x € X its general point z € X

posseses a sequence of PMFRC’s:
X—H,=Hy— - Hp_1,

and is contained in the image of a generaically injective morphism PF — X,
if Hy Q™A g 2 plimHi(] <4 < k).

(There is  also a  similar  k-Fano  version, but  still  with  ix >k*—2k+1 and

if (Hy, Li) % (PP, 0(2)) 1 <i < k), (Hi1,Li1) 2 (P,O(3)). (M.))

J

Thus, there are | two major drawbacks |:

e In general, we do not know appriori whether the assumptions on (H;, L;) are satisfied or not. So, we

can only claim X s covered by P* under these conditions, when we are fortunate!

e The condition ix > k% — k+1 (or ix > k® — 2k + 1) is too strong.

For instance, when X = P", as ix = n + 1, we can not apply these results to derive the trivial

uni-n-ruledness of P™. even if we are fortunate!

Actually, our sufficient criterion for uniregular 7*'-ruledness, with 7% a k-dimensional smooth projec-

tive toric variety, takes care of these two drawbacks appropriately.



3 How to avoid the extra conditions on (H;, L;)

Let us first axiomatize our situation:

s Height £ toric tower through x € X

For 1 <[ <k, a [-story highet k toric tower through x € X , schemetically denoted as:

TR My )T My LT e 1T My T My=X Sa,

(For our applications, these occur as PMFRC’s: X = M; — M;_1 — -+ —= My — M;.)

consists of the following data: It starts at the first floor with a generically finite onto its image
morphism
fk—l+1 :Tk—H—l N A[l

from a k — I 4+ 1-dimensional smooth projective toric variety 7*~!+1 to a variety M, such that:
if {=1: f*: 7% - M, = X is passing through z € X.
if [ > 2: for each 1 < m <[ — 1, there exists a diagram of varieties:

P(Em) —2 Myyiq

M,

such that

Tm

o P(&,,) == M,, is a projectivized bundle associated with a rank 2 vector bundle &,,, admitting

a short exact sequence , "
0=, =&, =10, —0

with ¢, ® (€2)"" global generated.

m .

e ¢, is generically finite onto its image.

e For each 1 <m <[ — 1, there exists p,, € P(E,,) such that:
—  fhlL TR M s passing through 7 (p1) € M.
— Foreach2<m <Il—1, e 1(Pm-1) = T (Pm):

]P)((c,‘,,,,,l) — M, Pm—1b——€n
€m—1

— e 1(p1)=z€ M =X.

In the definition of “Height k toric tower through x € X", existence of such p,, € P(€,,) (1 <m <

1 —1) is always guaranteed if the e;_; image of any fiber of m;_; contains x € X = M; :

T Ee_q (ﬂ'l:ll(ml—ﬂ) C M; =X forany my_1 € M;_;.

This follows immediately from the surjectivity of mp, : P(En) (1 <m <1—1) - M,, (1 <m <[1-1).

/
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A very important observation is that any l-story height k toric tower produces a simplest 1-story (i.e.
no ceiling | 7) height & tower, not merely a (I —1)-fold iterated P!-bundles over a toric k —I+1-fold
Tk—lJrl:

“Toric Tower Ceilings Removable” Theorem

If there is a [-story height k toric tower passing through = € X, then there is a generically finite onto
its image morphism
f: TF 5 X

from a k-dimensional smooth projective toric variety 7" to X, passing through z € X.

Proof. if I = 1: Nothing to prove.
if [ > 2: Starting at the first story with the generically finite onto its image morphism
fhRelEL Rl
passing through 7 (p1), provided by the definition, we shall ascend the stories so that at the s-th
story (2 < s <1) we have the generically finite onto its image morphism
fk—H—s ZTk_l+S N IVfS,

inductively construcing by the following pullback diagram:

fk—l+s

Tk—H»s =P ((fk—l+s)*857l) N P(gsfl) ﬁ M,

L

Tk: I+s—1 ]\4571
phtts—1

From this, if f*~'*5~! is generically finite onto its image morphism, passing through 7, 1 (ps 1) (=
es—2(ps—2)

if s >3 ), we see immediately fF~!** is also generically finite onto its image morphism, passing
through es_1(ps—1). Of course, we are not done yet. The problem is to show, if T#*~!**~! is smooh
toric, then TF=!+s = P ((f*=+5)*&,_,) is still smooth toric. Then this can be shown in the following

order:

e Since the pullback preserves a short exact sequence of vector bundles (see e.g. Fulton-Lang p.104),

we have an exact sequence:
0= () Ug) = FI0) € = (S (1) = 0 3)

o This extension (3) is classified by

Bxt! ((f571) (120, (FF71°) (1) = Ext! (Ogn o, (F7F) (U @ (102) 7))
S (T (P W) 7),
which is 0 by the Demazurre vanishing [Dem)] [Ful93, §3.5] [CLS], for:
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— Tk=l+s=1is a smooth toric variety by the inductive assumption.
— (fFH) (L, (17 )~ "), apullback of a globally generated line bundle I, _; @ (1_;)~", remains
globally generated.
Consequently, the extension (3) splits.

e Then we see:

(3) splits
~

kaH»s = P((fk7l+s)*gs,1) ~ P((fk*H»s)*(lISil)EB (fkiH»s)*(l;/,l)) ,
which becomes a smooth toric variety [Oda78, §7] [CLS].
Finally, at the last [*" story (s = ), we find a generically finite onto its image morphism f* : 7% — M;,
passing through m;_1(pi—1) = = € X, from a smooh toric k-fold T*, as desired.

O

The importance of having a toric manifold 7% in the above theorem is that, there are at most
countably many distinct isomorphism classes of toric manifolds. Actually, “Toric Tower Ceilings Remov-

abele” Theorem is used to deduce our sufficient criterion for uniregular-7*-rulednes:

e A sufficient criterion for uniregular-7 #-rulednes ~N

For a a smooth projective variety X, suppose there is a subset S C X, which contains a non-emppty

open subset of X, whose arbitrary point z € S posseses a [-story height k toric tower through x:
TT, = (TF"™ s My |7 My |7 o |7 My |7 My=X>az)

Let 7* be the ceilings removed toric k-fold from T'T, by “Toric Tower Ceiling Removable” Theorem.

Then, X is uniregular-7"-ruled for some toric k-fold:

THe{TF|zesS}.

| Consequently, X is uni-k-ruled.

N J

Proof.

o Let A be the set of isomorphism classes of the toric k-folds which show up in {TF } zeS}.

Observe that: A is a countable set.

e Then, the evaluation morphism
1111 (7? X Homhf(frﬁX)) =11 <7;k x (]_[ Hom" (’5&){))) - X,
TEEA hi THEA hi

where h; runs over those generically finite onto its image components of Hom(7;*, X), is dominant,
for its image contains S which contains a non-empty open. Since the coproduct runs over a count-
able quasi-projective schemes , there is some 7;" € A and h; such that the corresponding evaluation

morphism at a generically finite onto its image component

T x Hom" (T, X) = X
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is dominant.
e Now we may take appropriate hypersections succesively to get a desired dominant morphism
TExzr ko X

for some n — k-dimensional Z"~*.

4 How to replace the too strong condition ix > k> — k + 1 (ix >
k* —2k;1)

A*(X) = So<k< —dim x AF(X), Chow ring of X, Aj(X):= A""F(X)

NE(X) = A¥(X)/ ~, Nu(X):= Ap(X)/ ~, intersection quotients, i.e. modulo numerical equivalence
= N¥(X)® Np(X) — Z is a perfect pairing.

NE(X)r =NFX)®zR

Let us assume there exists a sequence of PMFRC’s X =: Hy+ Hy v ---+ H;_1 — H; as follows:

Uy —)el Hy:=X (4)
Uz i} H;
Hy
Up —= Hy o
Hy,
U —5 H 4
H;
This induces:
i
N™(X)z = N" "' (Hi)g —— N *(H2)z N"F(Hyo 1)z —— N'7*(Hy)z N (Hisy)r —— N (Ho)z
71 el T2.€5 Thyh i€

Here, to simplify notations, we have set:

T = mp.er, 1<Vk<i.
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Thus, we have
T" N"(Hj)g = N""™(Hjrm) O<m<r, 0<j<j+m<i)
Then, motivated by Suzuki’s work [Suz16], we made the following explicit calculation [Min17][Min18]:
( 1\'{. \

Assume there exists a sequence of PMFRC’s

X—H — = H_1—H

such that T(cl(Lk,l)) =1(2<k<i). Then, for j >1,i>1 we have

ch; (1)

min{dim X,i+j}

9(i,0); + ;Tk (chi(X))g(i.k);+ Y T (ch(X))er (L)' * g(ik); | ea(Lo)!

scalar k=it1 degree 0

i min{dim X,i+j}
96,00 + Y T (chi(X) gli k); | er(L)) + Y T (chu(X)) gli, k)jer (L) 7%,
o

scalar k=i+1
()
where, using the Stirling number of the first kind |:Z Z q} (see e.g. [AIK14]),
~4 k=0
; q
(1)K el 0 (D)) k>1.5> max{k—i,1
g(’L,k)] — 7! g=max{k—i,1} k (i+q)! ;( ) l =2 L) 2 de{ 2 } (6)
= c(j.a)
0 k>1,j <max{k—1i,1}
N y

In the above formula (5), we assumed j > 1, but the case j = 0, corresponding to cho(H;) = dim H;
can be taken care of by the following classically known result:
[AC12, p.92,15th line], quoted from [Kol96, IV.2.9]

For the sequence of PMFRC’s X =: Hy v+ Hy v -+ +— H; | — H;,

dim Hy, = cho(Hy) =T (chy (Hp_1)) — 2, (2<k<4) (7)

We should also guarantee the condition T (¢ (Lk—_1)) = 1 (2 < k < 4) is satisfied. For this, the following

result of Araujo-Castravet is crucial:

[AC12, Lem.4.5(1)]

For 2 < k < i, suppose
ChQ(kaz) >0, dim Hi_1 > 1, (8)

and Hy, | 2P He1 then T (¢;(Ly_1)) = 1.

All the above are already known to the author when the author announced [Min17][Min18].
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However, as was already emphasized, the resulting conclusions were too restrictive. Now, the idea fo
overcome this difficulty turned out to be very simple:
- BASIC STRATEGY ~

Rewrite (5) (7)(8) in the form

T degree d polynomial of chy(X) (1 <k <n) and the scalar [ := dim H; +2 = T(c1(X)), | > 0.

May be regarded as a variable
(9)
This is because, Araujo-Castravet [AC12, Lem.2.7(3)] preserves “positiveness.” Thus, the condition
(9) is satisfied if the following holds:

degree d polynomial of chy(X) (1 <k <n) and the scalar | :=dimH; +2=T(c1(X)) | >0

May be regarded as a variable

0<d—-i<dimH;+1

essentially d — ¢ < dim H; <= dim H; —d+ 1 > 0, which is also taken care of along the same line.
(10)
Then we shall simply define| “N-Fano manifold” | to be one which satisfy (10)s correspond to those
(5)(7)(8) needed to inductively construct a sequence of PMFRC’s

X:HoHHll—)---?—)HN,l}—}HN

with H; (0 <i < N —1) Fano (also dim Hy > 0, and T(c1(L;)) =1 (1 <i < N —2) ). Then, by

what we had shown in the previous section, we see immediately that any “N-Fano”is automarically

uni- N-ruled.

J
Actually, it is easy to rewrite (5) in the form of (9); we only have to apply the following easy lemmas:
s Compare with [AC12, Lem.2.7(1)] [Suz16, Lem.2.10(2)] ~
 For any £(x) € Qy]],
. c1(X)\ a(X
f(cl(Lz»:T(f( l(l )) l(l )). (11)

T @) =1 (10 (). (12

s er((#59)7) 620
Ten(X)a Ly =T (n(X) (209)") (G<kp=0 (13)

THen (L7 =7 (enelx) (262) )i ko= 0)




Applying (13), we can immediately rewrite (5) as follows:
Y Polished version of ch;(H;) and a sufficient criterion for its positivity (M.) —

Assume there exists a sequence of PMFRC’s

X—=Hy - H_1— H;

such that T (¢;(Lg_1)) =1 (2 <k <i). Then, for j > 1,i > 1, we have

ch; (Hi)

i min{dim X,i+j}
= (ga,m] +>T" <<=hk<X)>g<i,k>j) e (Li) + > T' (chg (X)) g(é, k)jer (L) T

k=1 k=i+1

scalar

min{dim X,i+5}

=T (9(12,0)]' <C1(I—X)>i+7 + i:g(L k)jchg(X) (CI(X)>17}C+J i Z 90, B);chi(X) (<1(X))i7k+7>

k=it1
. ()N g min{dim X,it) (XN B
=7 (g(z:,on ()7 smene (22)
k=1
. i4s  min{dim X,i+j} i j . i— ket
i i cl(X)> +J (—1)7k! z+ c1(X) J
—7 (, K ( ooy R s Z< 1! chi(X) [ 22
Jt ! k=1 J! g=max{k—i,1} (’+q)' ( ) l
= c(d.q)
it min{dim X,i+j} j a _N\i(a . PR
1 . Cl(X)> +i j N CNOL [Z+‘I:| (Cl(X)) ’
==T | —-i| ——= + (-1 k! —_ chp(X) | —=
Jt < ( l v I; q:xnagfhl} (i+q)! k k(X) .

(14)

In particular, if dim H; > j, then we may conclude:

,i<cl(lx))’7+1’ + (-1 '“in{dii‘jwrﬁk! ZJ: > (( D' (Hr [zZq] () (Cl X))i—"ﬂ L

k=1 g=max{k—i,1} i+ !

(15)
When j = 1,2, and , (15) is simplified to the following forms:

<7i+i—¢l—1) (CI(ZX)>M +§ (i fll)!

S Chl(Hi) > 0

i+1
k

i—k+1
chy(X) (Cl(lX)) +chipi(X) > 0

(16)
) l aX)\"? KR i+1 i+1 a(X)\
L(_1+(i+2)(i+l)>( z > +k2:;(i+2)! (2&—1}” k )Ch’“(X)( I )
+ chii (X) (Cl(lX)) + 2ch;5(X) > 0
— Ch2(HZ) > 0.
17
N\ J

For dim H;, we have the following sufficient criterion:

153



154

e dim H; > d; sufficient criterion N

dimH; >d; <— dimH; —d; +1>0

— <(—<i+di)+g> (@) + i% m ) (Cl(lX))i_k“hi(X)) 7y

k=2

— <—(i+d¢)+é>( ) if—:{} chg (X )(@)i_k‘i‘mi(){) > 0

k

For the definition of “N-Fano,’given a uniruled mfd X, for 1 < ¢ < N — 1, we shall inductively

construct a sequence of PMFRC’s as follows:

XHHI---Hi_l’—)Hi

S

Hy : Fano, dimH, > N —k (1 <k <i—1); T(Ly_,) =1 (2§k§i71))
22 either one of the following holds:

X Hy - Hi_y — H; = pdimH (dim H; > N —i: WE ARE DONE IN THIS CASE!)

X Hy---Hi v Hiw Hiy (Hy : Fano,dim H, > N — k (1 < k <i); T(Lp1)=1 @2<k< i)
(19)

Here, noticing that dimH; > 0 = dimH; | >1 = dim H;_5 > 2, the extra conditions 4+«
needed are reduced to the following:
dim H; > N — i, ChZ(HZ'72) >0, Chl(Hi) >0,
N— ——
only when i > 2
i—k

Ny (200) st e g ) (29) T Leanx) > o
( z)(l) Zk_zuk k (l) )

(For ¢ = 1, replace this with [ > N + 1.)

(i—2) (—Hid_n)(‘“S“)uzi;i% 2 ;:11 +(i—2) i;l chk(X)(<1<X>)' ‘

+eh;_1(X) (Cl“”) +2chi(X) > 0

(For ¢ = 1, this condition should be omitted)

96 )

(For ¢ = 2, replace this with chy(X) > 0.)

(This condition apperas exactly like this only for ¢ > 3.)

(<) (202) o St | e (22) ™ v > 0

(20)

Now, we are ready to define our “Higher Fano” manifolds:



“N-Fano” manifolds
We call X a “N-Fano”, if X is a Fano manifold, i.e. ¢;(X) > 0 and the positivity conditions (20)
hold for 1 <¢< N —1.

Of course, any “N-Fano” is uniregular-7V-ruld for some toric N-fold 7% (actually, 7V can be taken
by a generalized Bott N-fold), and so, uni- N-ruled.

A detailed version will be put on the arxiv very soon.
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