EXPLICIT TRACE FORMULA OF SL3(Z) AND ITS APPLICATIONS

MASAO TSUZUKI (#EIES (EFRF))

This is a write up of the author’s talk given at the RIMS conference “Automorphic
forms, automorphic representations and related topics”. All materials presented here are
based on joint work with Werner Hoffmann and Satoshi Wakatsuki ([HTW]).

1. Introduction: the trace formula of SLy(Z)

First let us recall the Selberg trace formula for SLo(Z) ([Selb], [HejIl]). Let $ =
{r =z +iy|lz € R, y > 0} be the Poincaré upper half plane with the hyperbolic metric

ds? = y72(dz? + dy?) and A = —32 (6‘9—;2 + 6‘9—;2) the associated Laplacian. Let
0=X <A <A<

be the eigenvalues (counted with multiplicity) of A on L?(SLy(Z)\$). Then well-known
estimate A; > 1/4 allows us to introduce the spectral parameters p; € R/{£1}(j > 1)
by the relation \; = § + p7 (j > 1). We set pg = i/2.

Theorem 1.1. Let h(r) is an entire function on [Im(r)| < 1/2+ 6 for some 6 > 0 such
that

(i) () = h(=r) and
(ii) |A(r)| < (1 + |Re(r)])~27% on |[Im(r)| < 1/2 + 6.
Define

h(u) = / h(r)e ™ dr, ueR.
R
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where ((s) is the Riemann zeta function and vy the Euler constant. Then it holds the
following identity.
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log N(79) h(log N(7))
+{w}h§erbonc N(7)1/2 = N(y)1/2

N Z 1 /Ril(t) cosh((20(n) — F)t)dt

{n} elliptic 8m(n) sin(6(n)) cosh(nt)
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where every integral and summation is absolutely convergent.

The aim of our research to be reported in this write up is to obtain an explicit trace
formula for the rank 2 lattice SL3(Z) in a similar style, which can be served as a practical
tool for computations related with the automorphic forms of the 5 dimensional space
SL3(Z)\SL3(R)/SO(3). A few remarks on existing works are in order. First, there is a
series of publications by D. Wallace whose up shot would be the explicit Selberg trace
formula of SL3(Z). Unfortunately however, as pointed by D. Miller, there is a serious
defect in the proofs. Second, there is a paper by A.B. Venkov [V2], which is supposed
to be a first step toward the explicit trace formula of SL3(Z) but it seems that the
project remain uncompleted. Of course there is a vast work by J. Arthur on the trace
formula, which is quite general but is not designed for (numerical) computations. Instead
of working out the trace formula of SL3(Z) from scratch, we rely on Arthur’s invariant
trace formula on the adelization of GL3 to start with.

2. The trace formula of SL;3(Z)
The group SL3(R) acts on the 5 dimensional real manifold 5 = {Z € M3(R)| Z =
7 > 0,det(Z) =1} as
Hs xSLs(R) > (Z,9) — gZ'g €9
The action is transitive so that
SO(3) = Stabsr,g)(13). SL3(R)/SO(3) = 95,

where the unit matrix 13 is served as a base point of $)5. The space 3 can be endowed
with the Riemannian metric stemming from a positive multiple of the Killing form on
sl3(R), and hence carries the Laplace-Beltrami operator A. It is convenient to use the
Iwasawa coordinate (y1, ya, 1, g, x3) of a point Z = g SO(3) € $5 which is determined as

v 0 0 1 x3 x

g= { 0 yay;! ol} {o ) zﬂ E, o (y1,v2) € R2, (31, 19, 3) € R3, k € SO(3).

0 0wy
We use the SL3(R)-invariant measures du on $)5 and the Haar measure on SL3(R) which
are given as

dy; dya

du(Z2) = = = day dzo das dg =du(Z)dk
Y1 Y2

in terms of the Iwasawa coordinates.
For f € C(SL3(R) / SO(3)), define functions

hf:R24>(C7 hf:CZ—HC

0 1 z3 x2
elittz 0 ptz oo } [o 1 z1]> dzdzydas
e~t2] Loo 1

() = / /R (O A= (,y) € C,

as

and



It is enlightening to note the relation
hf(A) = Trace I(A, f),

where I(A) is the minimal principal series I(A) = IndSLg (xa) induced from a char-
acter xa of the Borel subgroup of upper-triangular matrices in SL3(R) defined as x, :

+et1 * *
{ 0 27k *} — exp(v/—1(t1x +t2y)). The symmetric group &3 ( Ay Weyl group)
0 0 +e~'2

acts on C* by the rule o (t1,t2,t3) = (ty-1(1), to-1(2), Lo-1(3)) Preserving the hyperplane

3

j=1

Thus &3 acts on C? = {(x,y)|z,y € C}. Then the function }/L; possessed the Weyl group
symmetry

hi(oA) = h(A), o€ & AeC

Moreover, E; is a Paley-Wiener function on C2, i.e., there exists a constant C' > 0 such
that for any NV > 0 we have the estimate

[hy(A)] < (1+ [Re(A)]])~ eClml,
In this article, we are exclusively concerned ourselves with the arithmetic quotient
'\$H; = T\SL3(R)/SO(3) where I' = SL3(Z)
and its L%*space L?(I'\$)5). By the identification SL3(R)/SO(3) = §5, we have
L*(T\$)5) = L*(T\SLs(R))**®,

where L?(T'\SL3(R)) is viewed as a unitary representation of SL3(R). Any function f €
C>(SL3(R)) acts on L*(T'\SL3(R)) by

ROFI0 = [P0 16)dg. b e SLyE)

It is known by Langlands that

L*(T\SL3(R)) = L3,.(T\SL3(R)) @ (Continuous part)
and there is a finite multiplicity function mr(7) € Ny on the unitary dual of SL3(R) such
that

—

dlbc(F\SL3( )) = @ﬂan(ﬂ-) Q
Taking SO(3)-invariant vectors, we have
2 SO3) _ Ty S0B) _SO0() _ g
LdlsC(F\SL5(R)) - ®j€N0 7Tj ’ 7rj =C F]
where 7; is a set of irreducible closed subspaces of L3, (I"\SL3(R)) with SO(3)-invariant
unit vectors Fj. From the theory of zonal spherical functions, we have a unique point

A; € C?/G; such that I(v/—1A;) — m;, which determines the eigenvalues in the joint
eigenequation :

Rase(f) Fy = (M) Fj, - f € C(SLa(R) J/ SO(3)).



From the classification of discrete spectrum of GL(n) due to Moeglin-Waldspurger ([MoWal),
it follows that the only non-cuspidal eigenfunction is the constant Fy with Ag = (—v/—1, —/—1),
ie., F;(j > 1) are all cusp forms.

REMARK : Contrary to the case of SLy(Z), the temperedness of the cuspidal spectrum
of I' = SL3(Z) (i.e., A; € R? for j > 1) is not proved up to now. However, it is known
that A; (5 > 1) belongs to the set (R? |J Xpon—temp)/S3 with

Xnonftemp = 63 {(‘T,‘ 7/) € CQI:I'. €V _1(_17 ]-)7 T+ 27/ € R}
Theorem 2.1. The trace

tr Rdl\c Z hf

for any test function f € C(SL3(R) /SO(3 )) can be computed in terms of h == f/L; quite
explicitly through the trace formula identity

jSPeCt(h) = Igeom(il)~,
with
jSPeCt(iL) =tr Rdisc(f) § L (0 0) + fpl (iL) —+ fpo(}ALL

Teom( Z{JS?R (h) + J5(h)} + Z Dy(

described in the remaining part of this section.

2.1. The spectral side.

Fana(h) = 32 0(A,) + S(0.0) + T, () + i )

with
I, () = EZ/R%;}(_F%QT J+ Rzzé ;h( £,0)dt,
Politr) ¢ulita) | ylita) Gpli(ts + t2))
IPO //R?{ @o(it1) olits) * Go(ita) doli(ty +t2))
Poli(ts +t2)) do(it1)

( j — —
Go(i(t1 + t2)) do(ity )}h( t1, —ta) dtydty,
a(G

where {(,, }°°; is an ONB of L3(GLy(Z )R+\GL2( )/O(2)) consisting of even Hecke-Maass
forms on SLy(Z) such that Ay, = (+ +72)¢,, and

_La-se) =)
Z(van) - L(1+S ,En) (Z)O( )_ 5(14_5)

with ((s) = [1,coc(l =p*) " x Tr(s) and
L(s,pn) = H (1—cp,(p)p 5 +p %) ' Tr(s +ir,)Tr(s —iry,),

p<oo



where ¢, (p) is the p-the normalized Fourier coefficient of ¢,,:

on(r) = 3 o () 9 K, (21 jly) 7, e, (1) = 1.

jez—{0}
We set
G = GL(3),
Po = MyNy = { [é »E ﬂ } (minimal parabolic),
P, = M\N; = { [é z ﬂ } (maximal parabolic).

2.2. The geometric side. First recall that two points v,y € G(Q) are defined to be O-
equivalent when the semi-simple part of their Jordan decompositions are G(Q)-conjugate.
The O-equivalence classes are given by the Jordan canonical form easily.

1) {n}e (with n € G(Q) such that Q(n)/Q is a cubic field)
{0 =1"61}ew (with a € Q*, §y € GLy(Q) such that Q(d) is a quadratic field)

(

(2)

(3) { [u b J }G(Q) (a,b,c € Q* are distinct)

4) { {b a J }G@) U { {b a ﬂ }G(Q) (a,b € Q* are distinct)
()

where {7}¢(q) denotes the G(Q)-conjugacy class of v € G(Q).

REMARK : The elements in (3) do not contribute to SLj(Z)-trace formula, because
a,b,c € Z* = {£1} can not be distinct.

‘The geometric side I (regular semisimple-terms) ‘

(A) G(Q)-elliptic terms :

I =3 R iy, sl = > o )

The terms f;’R(h) and fgc(ﬁ) are determined by Harish-Chandra and R. Herb (in a
more general setting). {n} (resp. {n'}) runs over all the I'-conjugacy classes in T whose
characteristic polynomial ®,, (resp. ®,/) is Q-irreducible and has no complex roots (resp.
has two complex roots).

(B) M;(Q)-elliptic terms :

Jraiy =3 vol(GLQIE(Zq))Sﬁ/I;Q(R)J) (i) ) =Y vol(GLglg (g/\)ﬁ/L;( )s) (),

s &
where {0} (resp. {0'}) runs over all the GLy(Z)-conjugacy classes in GLy(Z) whose char-
acteristic polynomial ®s (resp. ®4) is Q-irreducible and no complex roots (resp. has two
complex roots).

& The terms Jg 2(h) and J2 me from the invariant weighted orbital integrals

(h) co
I, (7, f) with v = diag(£1, O) € M;(Q) such that
Mi(Q), = G(Q), = Q* x (Q[X]/2s[X])".



& The explicit formulas of JS,R(/A?/) and Jg:c(fz) involve the special function

> on 1 s
b(s, 2) = =z dr (2 ) > -1
=3 = [ i (<R > ),

with the integral being convergent for any z € C — [1, +00) ([Hob], [Ho6], [Ho4]). We set

b(s) = bs, 1) = —¢ (% + 1) (s +1) — log2.

‘The geometric side II (singular terms) ‘

The terms D;(h) (j = 1,...,10) arise from the invariant weighted orbital integrals Iy (7)
with M € {Mg, My, G} and v € M(Q) such that M(Q), is not a torus. The general form
of D;(h) is
D, (i) =88 5(0,0) + / M (1) i, 0) lt + ( / / (1, £2) h(t, £2) dtrdts,
R2

where CDL\-/'O(tl, 1) is a smooth function on R? and CID;/'l(t) is a smooth function on R with
the estimates |®(t1,)] < (1 + [t1] + |t2])® and [@}(¢)] < (1 + [t[)?, and @ is a
constant.

(I) The terms from Ig(1;3) = f(13) :
This is settled by the well-known inversion formula of spherical Fourier transform (Plancherel
formula).

Dy (h) =vol(T\SL3(R // tita(ty + to) tanh (4T) tanh (27) tanh (M) h(ti, t) dt,dty.

with vol(T\SLs(R)) = 1{(2)¢
(IT) Term from Iy, (13) :

].2D2 // tl + t2 tanh (27) {’(/)( ) ( Ztl + 1)}h(t1,t2)dt1dt2
(% // to tanh (27) {g(ity + 1) — 9 (& + 1) — log 2}h(t1, t5) dtydts.
(III) Term from Iy, (diag(1,—1,—1)) :
12Ds(h)
i)2 // ty tanh (W) + tanh (’527”)} {1/)(711%1 +1) =79 (”71 + 1) — log 2} ;I/(thtg) dt,dty
tom (t1+t2)m 17
// Lz tanh T (Ll + [2) tanh (T)} Eh(h’ [g)dlldl/g
]RZ
+$ /( t) tanh () A(t,0)dt.
R



(IV) Term from Iy, (13) :

Dy(h) =5h(0,0) + 9/{21/;(1) —2log2 — ¢ (1+ %) — (1+ %)} h(t,0)dt

% oy // tl,tg h tl,tz) dtldtg,
R2

where ®Y(t,,t,) is given by the formula below in terms of functions b(s) = —t (2+1)+
(s + 1) —log2 and

_ 61+1 81+52
_(s1,82) == // =) 1—13 drdydz, (s1,s,) € iR?

OYO(ty, 1) =0T (—ily, —ity — ity)
+ (1) — p(—ity — ity + 1)) ((1) — P(—ity + 1))
+2((1) = (=it + 1)) (b (1) — ¥(—ita + 1))
+ (1h(1) = p(—ity + 1)) (b(ity + its) + b(its))
+ (P(1) — p(—ity — ity + 1)) (b(ity) + b(ita))
+ (p(1) — p(—ita + 1)) (b(st1) + b(ity +it2))

+ b(it1)b(ity + ita) + b(ity + ita)b(ita) + b(ity)b(it1)
+§m{ w(%ﬂ)w(%mw%ﬂ)—w(%ﬂ)
(V) Term from Iy, (diag(l,—1,-1)) :

Ds(h) = 8h(0,0)

g/{w( ) —2log2 — v (1+%) — o (14 ) +4b(z‘t)+4b(—z‘t)}h(t,o)dt

+ () // O(ty, ty) h(ty. ty) dt1dis,
R2

where ®Y°(t,,t,) is given by the formula below in terms of functions b(s) and

rs2 — psitl y91+92
1 (s1,89) = // A2+ 23) dedydz, (s1,s,) € iR?




DM (t), 1) = Y (—ity, —ity — ity)
+ (1) = ity + 1)) (b(—ity) + b(ity) + b(—ity — its) + b(ity + its))
+ b(ity) (b(—ity — i) + b(—ity)) + b(ity + its) (b(—ity) + b(—ity))
4 b(—ity)b(—ity — ity) 4 b(—ity — ity)b(—ity) + b(—its)b(—it,)

+ %{w(z‘tg + 1) + (—ityg + 1) + b(ita) + b(—its)
(Ltl + Ztg -+ ].) (—Ltl - th -+ ].) - b(Ltl + ZtZ) - b( Ztl - ZtQ)}
100
(VI) Term from Iy, ({8 ! ﬂ) :

7ot Dg(h) = %/sz(t 0)dt + (%)2 //RQ{’L/)(l) —log2 — 1 (% + 1)} h(ty, ty) dt,dt,.

(VIII) Term from Iy, (diag(1l,—1,—1)) :

Dg(i},) = (% — %log 2) {%/}AL(LO) dt
R
+ % // {w(z‘tg +1)—¢ (% +1) —log 2} h(ty, tg)dtldtg} .
R2

(IX) Term from I¢ (L(l;

oo

?]) and Ig(diag(1, -1, 1)) :
Dy(h) :{( o) +310g2> z - %(log? // It ts) ts tanh< 5 ) dtydts.
D and I¢ (diag(l, —1,-1) {é g ﬂ) :

Dw(il) = {%("/ — )+ i(“/o +log2)log 2} (i)z//Rz il(thh)dtldtz-

(X) Term from I¢ ([

oo~
O
—_—o

’The geometric side IIT (peripheral term) ‘
This term arises from the splitting formula, which expresses the semi-local invariant
weighted orbital integral

Ino(@oxr) (diag(1, =1, —1), f ® lary(z,))

as a sum of similar integrals for Mo(R) and My (Q>).
(VII) Term from I’v“(diag(l7 —1,-1), f):

(log2) ' D // {2@; Plity + 1) — P(—ity + 1)} h(ty. ty) dtydt,

+%/h(t,0) dt.
R




2.3. Extension of the class of test functions. In Theorem 2.1, the test function
h : C* — C should be related to a function

f e CZ(SLs(R) /SO(3))

as ﬁ; = h, which means that h is in the Paley-Wiener class. For example, the “heat
kernel”

-2
(2.1) (81, 82) — exp (?T(Q% + 5189 + 55))

is not in the Paley-Wiener class. For application, it is better to broaden the class of test
functions. Toward that direction, we have the following result.

Theorem 2.2. For x> 2, set 9, = R? +i Convex({w(1 + £, 1+ k)|w € S3}).
Let ¢ be a holomorphic function defined in a neighborhood of 2, with the following prop-
erties:

(i) p(wA) = @(A) for all w € Gs.

(ii) There exists > 5 such that

(M) < (1 + [[Re(A)[)™ for A € D

Then, the series-integrals fspect(qb) and fgeom(qb) are absolutely convergent in a certain
sense, and fit in the identity :

-[spect (Qb) = fgeom ((25) .

3. INGREDIENTS OF THE PROOF

3.1. Global ingredient. There are two main ingredients :
(1) Arthur’s works on invariant trace formulas.
(2) A new description of the unipotent terms including an explicit determination of

weight factors in the unipotent weighted orbital integrals (Hoffmann-Wakatsuki
[HW]. ¢f. Flicker [Fli], Matz [Matzl1]).

3.2. Local ingredient. After a global consideration, the main task boils down to the
determination of Fourier transform of the invariant weighted orbital integrals on the real
group GL(3,R). Recall that the orbital integral of v € G(R) is defined as

T = [ fahe g T e CRGR),
G(R),\G(R)
Obviously, f — Jg(v, f) is Ad(G(R))-invariant. As such, Jg(7v, f) is expected to be a
“superposition” of characters Ig(m, f) of irreducible unitary (tempered) representations
of G(R):
Jetv. )= [ Ielm. f) Bely.m) .
11(G)

For instance when ~ is regular semisimple, ®¢ (7, 7) (the Fourier transform) is determined
by Harish-Chandra [HC] and R. Herb [Herb2]. Consider a Levi M and a point v € M(R).
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If G(R), = M(R),, then

Jm(“/,f):/ flg™"vg) vmlg) dg
G(R)-\G(R) ——

weight factor

If G(R), # M(R),, then

Tu(y. f) =lim 7 rig(v.a) JL(ya, )

McL

where a € An(R)° with G(R),, C M(R) (for more detail see [Ar6]). Due to the factor
um(g), the distribution Jy(vy) (and J§ (7)) is not invariant when M is proper. Arthur
invented a way to obtain a set of invariant distributions I} (7) from the family J5(v) (M C
L) by means of the “weighted characters” of Levi subgroups containing M inductively
([Ar5], [Ar7], [Ar8]). Since Im(y) = I5(7) is now invariant, one can speak of its Fourier
transform 7 — @y (v, 7) which fits in the formula:

iy, f) = / Io(m, f) Bua(y. ) dr.
TI(G(R))

An explicit determination of @y (v, ) is partially done by Arthur [J; indeed, when a real
reductive group in question admits discrete series representations (which is not the case
for GL3(R)), the discrete part of @y (7, 7) has been completely determined. For GL(3, R)
(and some other groups of real rank 2 as well as for all real rank 1 groups), W. Hoffmann
([Ho4]) solved the problem at least when v is regular semisimple (i.e., G(R) is a torus)
by finding a solution to the holonomic system known by Arthur, introducing a bunch of
new generalized hypegeometric functions such as b(s, z) (for rank 1) and

~ 2Nz
Z Z 1 %2

b(81a82721722 .

(s1 4 n1)(s2 + n2)

no=1ni=nz

Thus for GL(3) the regular case is settled, and the singular case (i.e., G(R)J is not a torus)
remains unsettled. Both cases are necessary for the description of trace formula. It is
shown by Arthur that the limit formula

Iu(v, f) = Llll_)fq (v, @) I(va, f)
McCL
holds true. This suggests that once ®y(y) is obtained for v € M(R) with G(R), € M(R),
then
—1; L A
Dy (7, ) = hn% Z v (7, a) @r(ya, )

a—r
McCL
should yields the desired formula for the singular case (when G(R), # M(R),). Knowing
the regular case settled by Hoffmann, we calculate the limit for every singular case that
is necessary to write down the trace formula for SLs(Z) this time.



4. APPLICATIONS

4.1. Error term estimate in Weyl’s law. Recall the sequence A; € C*/&;3 (j > 0)
of the discrete spectral parameters of SL3(Z). We are interested in the discrete spectral
counting function of I' = SL3(Z) :

Niee(X) = #{] 1IN € X} X >0,

where 5
IAI? = 3 (a* + 2y +97), A= (z,y)€C
To describe the formula shortly, for any lattice I' C SL3(R) we set
vol(T'\$5)
V()= ——rr—
0= Ty

where vol is taken with respect to the metric 1/8/3du(Z) on 5. An asymptotic formula
(if any) of the counting function N1 .(X) as X grows to infinity is an obvious analogue of
Wey’s law, which is established for a spectrum of an elliptic pseudo-differential operator
on a compact Riemann manifolds by Hormander. Since our I'\$)5 is not compact, Weyl’s
law for NL_ (X) does not follow from a general theorem of Hormander. For I' = SL3(Z),

the Wey’s law is first established by S. D. Miller [Miller] in the form
NBE(X) ~ V(D) X, X — oo

disc

By a method of Duistermaat-Kolk-Varadarajan [DKV], an error term estimate for Nig)
(N > 3) is obtained by Lapid-Miiller (2009):

NEM(X) = V(T(N) X° + O(X*(log X)?), X — oc.

disc
Note that Lapid-Miiller [LM] actually prove a similar formula for any principal congruence

subgroup I'(N) (N > 3) of an arbitrary SL,(R). As an application of our explicit trace
formula for SL3(Z), we have a small improvement:

Theorem 4.1.
NSL3(Z)(X) =V(SL3(Z)) X° + O(X*), X — oo.

disc
4.2. Small time behavior of the heat trace. As is well-known, the Poisson sum-

mation formula shows the transformation formula for Jacobi’s theta function 0(t) =
> nez €xp(—mn?t) (t > 0) which in turn yields the small-time asymptotic

O(t) ~t72 t — 40.

Note that the set of square numbers n? coincided with the spectrum of the Laplacian

—%; of the flat torus R/27Z. By our explicit trace formula of SL3(Z), we obtain the
asymptotic expansion of the heat trace

o(T) = Zexp(*(lll\jHZ +2)T), T>0,

which is viewed as a non-commutative analogue of 6(t). By applying Theorem 2.2 to the
heat kernel (2.1) and computing the asymptotic expansion of each term, we obtain the

11
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following result. Besides the main term, which is consistent with Wey’s law, the second
term ¢ T~%2log T is determined with explicit coefficient c.

Theorem 4.2. AsT' — +0, we have the asymptotic expansion of the form
O(T) ~I'(7/2) V(SLs(Z)) T~

+ m vol(My(Z)\M; (R)) T~*?log T

+TN QT+ T (log T)* Y QLT+ T og T Y Qn T,
n=0 n=0 n=0
where

Mlz{{’g‘gg”gGleGLg.
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