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EXPLICIT TRACE FORMULA OF SL⑰) AND ITS APPLICATIONS 

MASAO TSUZUKI (都築正男（上智大学））

This is a write up of the author's talk given at the RIMS conference "Automorphic 
forms, automorphic representations and related topics". All materials presented here are 
based on joint work with Werner Hoffmann and Satoshi Wakatsuki ([HTW]). 

1. Introduction: the trace formula of SL2(Z) 

First let us recall the Selberg trace formula for SL2(Z) ([Selb], [HejII]). Let Sj = 
{T = x + iylx E恥 y> O} be the Poincare upper half plane with the hyperbolic metric 
d茫 =y―2(d丑+dyりand△= -y2国＋紐） the associated Laplacian. Let 

0= 入。＜入1~ 心~...

be the eigenvalues (counted with multiplicity) of△ onび(SL2(Z)¥fl).Then well-known 
estimate入1;?: 1 / 4 allows us to introduce the spectral parameters pj E恥／｛士1}(j ;?, 1) 

by the relation ふ=¾+PJ (j ;?, 1). We set p0 = i/2. 

Theorem 1.1. Let h(r) is an entire function on IIm(r)I < 1/2 + 8 for some 8 > 0 such 
that 

(i) h(r) = h(-r) and 

(ii) lh(r)I≪(1 + IRe(r)l)-2-8 on IIm(r)I < 1/2 + 8. 

Define 

Set 

h(u) = Jい）e―,urdr, U E股．
IR 

((1 + 2s) 
の(s)= A withく(s)= r飛(s)((s),

く(1-2s) 

心(s):= r'(s) = -,o + /1 1 -xs-1 
r(s) 。1-x

dx, 

whereく(s)is the Riemann zeta function and 10 the Euler constant. Then it holds the 
following identity. 

立P1□Jの'(it)h(t) dt =上J'
41r 政の(it) 12 艮

h(t) t tanh(冠）dt 
j=O 

log N(10) h(log N(,)) 
+~ Nb)l/2 -Nb)一1/2

{ -y} hyperbolic 

+~8m(TJ) s~n(0(TJ)) 1恥 h(t)

, cosh((20(TJ)一 1r)t)

{r,} elliptic 

dt 
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1 
-h(O) log 2 ― ~1恥 h(t)心(1 + it) dt, 

where every integral and summation is absolutely convergent. 

The aim of our research to be reported in this write up is to obtain an explicit trace 
formula for the rank 2 lattice SL孔Z)in a similar style, which can be served as a practical 
tool for computations related with the automorphic forms of the 5 dimensional space 
SL3(Z)¥SL孔良）/S0(3). A few remarks on existing works are in order. First, there is a 
series of publications by D. Wallace whose up shot would be the explicit Selberg trace 
formula of SL⑰) • Unfortunately however, as pointed by D. Miller, there is a serious 
defect in the proofs. Second, there is a paper by A.B. Venkov [V2], which is supposed 
to be a first step toward the explicit trace formula of SL孔Z)but it seems that the 
project remain uncompleted. Of course there is a vast work by J. Arthur on the trace 
formula, which is quite general but is not designed for (numerical) computations. Instead 
of working out the trace formula of SL孔Z)from scratch, we rely on Arthur's invariant 
trace formula on the adelization of GL3 to start with. 

2. The trace formula of SL立）

The group SL疇） acts on the 5 dimensional real manifold Sj5 = { Z E M⑰) IZ = 
t Z≫0, det(Z) = 1} as 

知 X SL3偉） 3 (Z,g) → gZtg E玩

The action is transitive so that 

S0(3) = Stabs恥 (I1I)(l3), SL孔股）/S0(3)竺 5恥

where the unit matrix 13 is served as a base point ofふ.The space知 canbe endowed 
with the Riemannian metric stemming from a positive multiple of the Killing form on 
的（良）， andhence carries the Laplace-Beltrami operator△ • It is convenient to use the 
lwasawa coordinate (Y1, Y2心1丘砂，叫） of a point Z = g S0(3) E Sj5 which is determined as 

g=[ >: Y2~11 Yi,] [~>3~1n k, (Y1如） E配。， (x1,Xぁ巧） E配， kE S0(3). 

We use the SL⑬) -invariant measures dμon屈 andthe Haar measure on SL謬） which 
are given as 

dy1 dy2 
dμ(Z) = - -dx1d四 dx3 dg = dμ(Z) dk 

Y1 Y2 

in terms of the lwasawa coordinates. 
For f E C::°(SL孔賊） // S0(3)), define functions 

加：配→ (C, 応： (C2→ C 

as 

朽(t):= et1+t2 ff 1J ([e~1 占;'1),J [g >~:1~]) dx1 dx2dx3 

and 

応(A):= J J h(t) ei(叫十yt2ldt, A=(x,y)EC2, 
民2
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It is enlightening to note the relation 
---
朽(A)=TraceJ(A,f), 

where J(A) is the minimal principal series J(A) := Ind~ 恥 (Ill.)(XA) induced from a char-
acter XA of the Borel subgroup of upper-triangular matrices in SL謂） defined as XA : 

［州1土eぃ：＊］→exp(yCT(t心 +t2y)).The symmetric group邑 (A2Weyl group) 
0 0 士e―'2

acts on <C3 by the rule CY (t1, t2, t3) = (tu―1(1), tu―1(2), t戸 (3))preservmg the hyperplane 

｛い，t凸） E馴tち=o} = {噂，訃，訃）＋叫，ふ予）Ix, y E股｝．
j=l 

---
Thus釣 actsonび={(x, y)lx, y E IC}. Then the function ht possessed the Weyl group 
symmetry 

--- ---
朽(aA)=加(A), a E釣， AEC乞-Moreover, hf is a Paley-Wiener function on <C汽i.e.,there exists a constant C > 0 such 

that for any N > 0 we have the estimate 

而(A)Iい (1+ IIRe(A)ll)-N eCIIIm(A)II_ 

In this article, we are exclusively concerned ourselves with the arithmetic quotient 

f¥.fj5竺 f¥SL3(民）/S0(3) where r = SL3(Z) 

and its L2-space L汀＼釈） • By the identification SL疇） /S0(3)~ 瓜 wehave 

L質＼趾）竺び(f¥SL鵡））S0(3), 

where L打f¥SL3(艮）） is viewed as a unitary representation of SL孔恥） • Any function f E 
c;:o(SL3(罠）） acts onび(「¥SL3(罠）） by 

[R(f)F] (h) = J F(hg) f(g) dg, h ESL繹）．
SL直）

It is known by Langlands that 

び(r¥SL孔股）） = LLc(r¥SL孔股））① (Continuous part) 

and there is a finite multiplicity function mr(7f) E N。onthe unitary dual of SL疇） such 
that 

L~iscげ\SL⑬））竺歪mr(1r) 冗
Taking S0(3)-invariant vectors, we have 

一―→
L~iscげ\SL⑬)）S0(3) =④ 7fS0(3) S0(3) 刀―.

jEN。J
= <CFj 

where 7rj is a set of irreducible closed subspaces of LLcげ¥SL3(民）） with S0(3)-invariant 
unit vectors Fj. From the theory of zonal spherical functions, we have a unique point 
Aj E <C2 /邑 suchthat I (✓ 可Aj)→7rj, which determines the eigenvalues in the joint 
eigenequation : 

Raise(!) Fj =町(Aj)Fj, f E c;:o(SL鵡） // S0(3)). 
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From the classification of discrete spectrum of GL(n) dueto Moeglin-Waldspurger ([Mo Wal), 
it follows that the only non-cuspidal eigenfunction is the constant F;。withA。 =(-A,-✓可），
i.e., Fi (j~1) are all cusp forms. 

REMARK : Contrary to the case of SL心）， thetemperedness of the cuspidal spectrum 
of r = S13(.Z) (i.e., Ai E配 forj~1) is not proved up to now. However, it is known 
that Aj (j~1) belongs to the set (配LJXnon-temp) /釣 with

Xnon-temp :=邑{(x,y)EC門xEV-『(-1,1), X + 2y E股｝．

Theorem 2.1. The trace 
00 

tr Raise(!) = L 町（ふ）
J=O 

for any test function f E C;:'(SL孔股） // S0(3)) can be computed in terms of h := h1 quite 
explicitly through the trace formula identity 

fspect (h) = fgeom伍），

with 

fspect (h) =tr Raise (J) +翌h(O,0) + f P, (h) + Jp。(ii),
10 

fgeom伍） =L{J贔(ii)+贋(h)}+ L 加ii),
i=l J=l 

described in the remaining part of this section. 

2.1. The spectral side. 

with 

00 

fspect伍） =L見）＋恥0,0)+厄(h)+ t叫）
j=O 3 

I尋）＝巳言1ご嘉::こ~] ii(-t一覧加） dt+~1 えば h(-t,0) dt, 
i尋） =~ff {外（出）のも(it2)+¢~(iむ）外 (i(t1 十わ））

IR2 少o(it1)のo(it2) 少o(it2)少o(i(t1+ t2)) 

＋ 
叫(i(t1+t2))外(it1) A 

伽(i(t1+ t2))のo(it1)}h(-ti, ーわ）dt1 dt2, 

where {'Pn}~=o is an ONB of La(GL2(Z)股+¥GL2(政）/ 0 (2)) consisting of even Hecke-Maass 
forms on SL2(Z) such that△臼＝（｝＋叶）やn,and 

Z(s,'Pn) = " 
L(l -s, 五）

L(l + s, 五）
伽(s)= A 

((1 -s) 

〈(1+ s) 

with ((s) = Tip<oo(l -p―s)-1 X 丘(s)and 

L(s心） = IT (1 -c'PJp)p―s+p―2s戸fR(s+加）以(s-irn),
p<oo 
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where cやn(p) is the p-the normalized Fourier coefficient of咋：

五 (T)= こ←(j) Y112 Kirn(21rlJIY) C加 1x,

JEZ-{O} 

C'Pn(l) = 1. 

We set 

、
~
ー

―

―

―

―

 

＊＊ 
*
＊
0
*
＊
＊
 

*
0
0
*
 
0
0
 

―

―

―

―

 

｛
｛
 

＇
＝
＝
 

、
|
'

似

N
O
N
l

M
O
M
l
 

L
 

G
 

=

＝

＝

 

G
P
o
p
l
 

(minimal parabolic), 

(maximal parabolic). 

2.2. The geometric side. First recall that two points 1, 1 E G(Q) are defined to be tl-
equivalent when the semi-simple part of their Jordan decompositions are G(Q)-conjugate. 
The tl-equivalence classes are given by the Jordan canonical form easily. 

(1) {rJ}G(IQl) (with'T/ E G(Q) such that (Q(rJ)/Q is a cubic field) 
(2) {b = [a J。]}G(Q)(with a E (Q又60EGL殴） such that (Q(b0) is a quadratic field) 

(3) {[ab ] } a, b, c E (Qx are distinct 
C G(Q) 

(4) { [b a ]} U { [b a 1]} (a, b E (Qx are distinct 
a G(Q) a G(Q) 

(5) { [ z z z] } G(IQl) U { [ z z;]} G(IQl) U { [ z;;]} G(IQl) (z E (Q汀，

where {, }G(Q) denotes the G(Q)-conjugacy class of I E G(Q). 

REMARK : The elements in (3) do not contribute to SL孔Z)-traceformula, because 
a,b,c E四＝｛土1}can not be distinct. 

The geometric side I (regular semisimple-terms) 

(A) G(Q)-elliptic terms : 

jss h) vol(r11¥SL3(民）17) A A 
3,JR.(= L ID(叫）1 ぷ(h),

{17} 

The terms畠(h)and岳(h)are determined by Harish-Chandra and R. Herb (in a 

more general setting). {rJ} (resp. {rJ'}) runs over all the f-conjugacy classes in r whose 
characteristic polynomial <I>17 (resp. <I>17,) is (Q-irreducible and has no complex roots (resp. 
has two complex roots). 

(B) M1 (Q)-elliptic terms : 

畠(h)= L vol(GL2(Z)J¥GL2偉）J) AJ vol(GL2(Z)J, ¥GL2(股）り
ID(仰 1112

伍 (ii), J~ 訊）=L 忍(ii),
が

ID(的）1112 

where { b} (resp. { b'}) runs over all the GL2(Z)-conjugacy classes in GL2(Z) whose char-
acteristic polynomial <PJ (resp. 的） is (Q-irreducible and no complex roots (resp. has two 
complex roots). 

• The terms畠(h)and品(ii) f・  come rom the mvanant weighted orbital integrals 

IM,(,, f) with 1 = diag(土1,b) E M1 (Q) such that 

M1(Q)1 = G((Q)1竺 (Qxx (Q[X]/<I>J[X])ペ

凰(ti)=~
vol(几¥SL孔戦）7/) Aが ＾ 

ID(虹）1

J3,c(h). 
{'I'} 
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• The explicit formulas of 1贔(h)and 1丘(h)involve the special function 

00 

b(s,z) =~ 
Zn 1 x• 

n=l n + 8 = z 1 l -zx dx (lzl < 1, Re(s) > -1), 

with the integral being convergent for any z E Cー [1,+oo) ([Ho5], [Ho6], [Ho4]). We set 

s 
b(s) := b(s, -1) =一心（— +1) +心(s+ 1) -log 2. 

2 

I The geometric side II (singular terms) I 

The terms Dj(h) (j = 1, ... , 10) arise from the invariant weighted orbital integrals JM('Y) 
with ME  {M。,M1, G} and I E M(Q) such that M(閏 isnot a torus. The general form 

of Di(h) is 

加ii)=q>び(0,0) +心f良呼(t)h(t, o) dt + (五//1即呼(t直）h(t叫）dt1dt公

M1 where叫や(t凸） is a smooth function on配 andc(>. 1 (t) is a smooth function on股with

the estimates I叩Mo(t1 , t2)I≪(1 + lt1I + It叶）3 and I<仰'(t)I≪(1+ 1tl)2, and <1西 isa 
constant. 

(I) The terms from h山） = f(l3) : 
This is settled by the well-known inversion formula of spherical Fourier transform (Plancherel 
formula). 

加h)=vol(いSL鵡））（土）311艮2t山 (t1十 t2)tanh (閉）tanh (予） tanh ((t,+.}2l1r)以t凶）dt1 dt2. 

with vol(f¥SL鵡）） =½((2)((3). 

{II) Term from I叫 13): 

叫 h)= (.};)2 j jい＋む）tanh (苧）｛心(1)一心(-it1+ l)}h(t凶）dt1dt2 
即

＋（点)2 / / t2 tanh (予）｛心（出+1)一心（舟 +1)-log2}h(t凸）dt1 dt2. 
即

{III) Term from JM1(diag(l,-l,-l)): 

l巫 (h,)

＝（点）2/1即む{tanh ((ti十円） + tanh (年）｝｛心(it1+ 1)一心（亨+1) -log2} h(t凶）dt1dt2 

＋ （点）2 ff {ゎtanh(宇） ― (t1 + t2) tanh cti十戸）｝旦 (t凸）dt1dt2 
艮2

, t, 

+ ! f (-t) tanh (号） li(t, 0) dt. 
艮
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(IV) Term from IM0(13) : 

加h)=砂(0,0)+~1民｛加(1) -2 log 2一心(1+~)ー心 (1 +乎）}h(t,O)dt 

+½(f;)2 J J <I>や(t凸）h(t叫）dt1 dt2, 
11?.2 

where <I>や(t1占） is given by the formula below in terms of functions b(s) = -'l/; (~+ 1) + 
心(s+ l) -log 2 and 

as 

'Y _(s1, s2) := f 1 f 1 (正― XS!+1)が1+s2 E i配
0 0 (1-x)(l-xy¥ 

dxdydx, (s1,s2) 

呼 (t1,t砂=Y_(-it1, —由ー妬）

＋（心(1)一ゆ(-it1-iわ+1))(心(1)一心(-it2+ 1)) 

+ 2(ゆ(1)一ゆ(-it1+1))(ゆ(1)一ゆ(-it2+ 1)) 

＋（ゆ(1)一ゆ(-it1+ 1)) (b(it1 + it砂十b(iむ））

＋（心(1)一ゆ(-it1-it2 + 1)) (b(it1) + b(it2)) 

＋（心(1)一ゆ(-iわ+1)) (b(it1) + b(it1 + it2)) 

+ b(it1)b(it1 + it2) + b(it1 + it2)b(it2) + b(iむ）b(it1) 

+½ 叫it2{―心（舟+1) +心（苧+1) +心（苧+1)一心（亨+1) 

+ 2(心(it1+ 1)一心(-it2+ 1)) + 2(一心(-it1+ 1) +い（出+1))}

(V) Term from IM0(diag(l, -1, -1)) : 

D孔h)= 8h(O, 0) 

+~J{加(1) -2log2一い (1+号）→ (1 +チ） + 4b(it) + 4b(-it) h(t, 0) dt 

＋（点;'ff,即呼0(t叫）h(,,, t,) dt, dt,, } 

where <I>炉(tいわ） is given by the formula below in terms of functions b(s) and 

1 1 (x翌＿研1+1)ys1 +s2 
T+(s1, 況）：= J J dxdydx, (s→)  Ei配

o o (l+x)(l+xy¥ 
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砂(t叫）＝い—it1, -it1 -it2) 

＋（心(1)一心(iわ+l))(b(-it1) + b(it1) + b(-it1 -it2) + b(it1 + iわ））

+ b(it1) (b(-it1 -it2) + b(-iわ）） + b(it1 + itり(b(-it1)+ b(-iわ））

+ b(-it1)b(-it1 -it2) + b(-it1 —山）b(-it砂十b(-it2)b(-it1)

+t{心（加+1) +心(-it2+ 1) + b(it砂+b(-iゎ）

一心(it1+ i朽+1)一心(-it1-iむ+1) -b(it1 + it2) -b(-it1 -i朽）｝

1 0 0 
(VI) Term from IM。([011]):

0 0 1 

炉 D贔）＝岳Jh(t,O)dt+ (羞）2
JR 

几｛心(1)-log2一心（芽+1)} h(t凸）dt1dt2 

(VIII) Term from I叫diag(l,-1, -1)) : 

広(li)= (,o -½log2) [ 1} j li(t, 0) dt 
恥

+~ff {心(iゎ+1)一心（閉 +1)-log2}h(t心）dt1dt2]. 
JR2 

(IX) Term from h ([8 >tD and h(diag(l, -1, -1)) : 

Dg(h) = { (2悶靡+3 log 2) 1f -½(log 2戸}~は）211即 h(t1,t砂 tanh信）仙dt2.

(X) Term from h ([g ! 『])and h (diag(l, -1, -1) [合in)
加 (ii)=U(福ー叫 +¼(,0 + log 2) log 2} (古）21! h(t叫）dt1 dt2. 

即

I The geometric side III (peripheral term) I 

This term arises from the splitting formula, which expresses the semi-local invariant 
weighted orbital integral 

/Mo(<Q12xR)(diag(l, -1, -1), f@ lcL3(恥））

as a sum of similar integrals for M。（民） and M。(Qり．

(VII) Term from I幻(diag(l,-1, -1), f): 

(log2)-1 D7(h) = (点）2 ff {⑳ (1)一心（山+1)一心(-山+1)} h(t凸）dt1dt2 
民2

+ ! f h(t,O)dt. 
Ill 
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~.3. Extension of the class of test functions. In Theorem 2.1, the test function 

h: <C2→ <C should be related to a function 

f E C,'.'°(SL孔恥） // S0(3)) 

as h1 = h, which means that h is in the Paley-Wiener class. For example, the "heat 
kernel" 

(2.1) (s1,s砂→ exp (予T(8i+ 8182 +翡））

is not in the Paley-Wiener class. For application, it is better to broaden the class of test 
functions. Toward that direction, we have the following result. 

Theorem 2.2. For K > 2, set気＝配+i Convex({ w(l + K, 1 + K)lw E釣｝）．
Let¢be a holomorphic function defined in a neighborhood of気 withthe following prop-
erties: 

(i)ゆ(wA)=の(A)for all w E邑．
(ii) There existsμ> 5 such that 

1の(A)I≪(1+ IIRe(A)II)―μ, for A E公

Then, the series-integrals fspect (¢) and f geom位） are absolutely convergent in a certain 
sense, and fit in the identity : 

tpect他） = jgeom(の）．

3. INGREDIENTS OF THE PROOF 

3.1. Global ingredient. There are two main ingredients : 

(1) Arthur's works on invariant trace formulas. 
(2) A new description of the unipotent terms including an explicit determination of 

weight factors in the unipotent weighted orbital integrals (Hoffmann-Wakatsuki 
[HW]. cf. Flicker [Fli], Matz [Matzl]). 

3.2. Local ingredient. After a global consideration, the main task boils down to the 
determination of Fourier transform of the invariant weighted orbital integrals on the real 
group GL(3皇）. Recall that the orbital integral of'Y E G(恥） is defined as 

崎 f)= J f(g―1"(g) dg, f E C~(G(股））．
G(鰐 ¥G(股）

Obviously, f→ J如，f)is Ad(G(政））—invariant. As such, JG仇f)is expected to be a 
"superposition" of characters h(1r, f) of irreducible unitary (tempered) representations 1r 
of G(良）：

恥，f)= j h(1r,f)如 ('Y,1r)d1r.
II(G) 

For instance when'Y is regular semisimple, 虹('Y,1r) (the Fourier transform) is determined 
by Harish-Chandra [HC]皿 dR. Herb [Herb2]. Consider a Levi Mand a point'YE M(股）．
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If G(闘=M(股）1, then 

J叫 f)= J f(g―1,g) 叩 (g) dg 
G(JRh ¥ G(JR)'一v—/

weight factor 

If G(隠）7 =/ M(賊）7, then 

如(,,f) =団 Lr如，a)h(,a, f) 
MCL 

where a E AM偉）0 with G(良）,a CM(股） (for more detail see [Ar6]). Due to the factor 
叩 (g),the distributionん(,)(and枯(,))is not invariant when M is proper. Arthur 
invented a way to obtain a set of invariant distributionsは(,)from the family J~(,) (M C 

L) by means of the "weighted characters" of Levi subgroups containing M inductively 
([Ar5], [Ar7], [Ar8]). Since IM(,)= J~(,) is now invariant, one can speak of its Fourier 
transform 1r曰％（戸） which fits in the formula: 

JM(,,j) = J厨 f)<PM (戸）d1r. 
II(G(R)) 

An explicit determination of <I>M行，1r)is partially done by Arthur []; indeed, when a real 
reductive group in question admits discrete series representations (which is not the case 
for GL孔股））， thediscrete part of <I>M (1汀r)has been completely determined. For GL(3直）
(and some other groups of real rank 2 as well as for all real rank 1 groups), W. Hoffmann 
([Ho4]) solved the problem at least when I is regular semisimple (i.e., G(股）り isa torus) 
by finding a solution to the holonomic system known by Arthur, introducing a bunch of 
new generalized hypegeometric functions such as b(s, z) (for rank 1) and 

oo oo n, n2 

叫， S戸 1辺） =LL  Z1 Z2 

四 =ln1=n2
(s1 +叩）（況＋四）．

Thus for GL(3) the regular case is settled, and the singular case (i.e., G(鰐 isnot a torus) 
remains unsettled. Both cases are necessary for the description of trace formula. It is 
shown by Arthur that the limit formula 

恥，n= lim L 屯(,,a) h(,a, f) 
a→1 

Mc£ 

holds true. This suggests that once <I>M (,) is obtained for , E M (恥） with G(恥）7 CM(恥），
then 

如（戸） = lim Lr如，a)<I> L(,a, 1r) 
a→1 

MCL 

should yields the desired formula for the singular case (when G(恥）1ヂM(恥）,). Knowing 
the regular case settled by Hoffmann, we calculate the limit for every singular case that 
is necessary to write down the trace formula for SL孔Z)this time. 
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4. APPLICATIONS 

41 .. Error term estimate m Weyl's law. Recall the sequence Aj E C2 /63 (j~0) 
of the discrete spectral parameters of SL3(Z). We are interested in the discrete spectral 
counting function of r = SL孔Z):

where 

Nに(X)= #{JI IIA』I::;;X}, X > 0, 

IIAll2 :=釘丑 +xy+炉）， A=(x,y)EC乞
3 

To describe the formula shortly, for any lattice r c S13(民） we set 

V(r) := 
vol(f¥Sjり

r(7 /2) (41r)512' 

where vol is taken with respect to the metric ✓ 匂3dμ(Z) on玩 Anasymptotic formula 
(if any) of the counting function N. に(X)as X grows to infinity is an obvious analogue of 
Wey's law, which is established for a spectrum of an elliptic pseudo-differential operator 
on a compact Riemann manifolds by Hormander. Since our r¥知 isnot compact, Weyl's 
law for N£sc(X) does not follow from a general theorem of Hormander. For r = SL⑰)， 
the Wey's law is first established by S. D. Miller [Miller] in the form 

N SLa(Z) disc (X) ~ V(f) X > X • 00. 

By a method of Duistermaat-Kolk-Varadarajan [DKV], an error term estimate for N 
I'(N) 
disc 

(N~3) is obtained by Lapid-Muller (2009): 

Nは:¥x)= V(r(N)) X5 + O(X4(logX)3), X→ 00. 
Note that Lapid-Muller [LM] actually prove a similar formula for any principal congruence 
subgroup r(N) (N~3) of an arbitrary SLn(罠）. As an application of our explicit trace 
formula for SL3(Z), we have a small improvement: 

Theorem 4.1. 

N嘉戸(X)= V(SL立））炉 +O(Xり， X→ 00. 
4.2. Small time behavior of the heat trace. As is well-known, the Poisson sum-
mation formula shows the transformation formula for Jacobi's theta function 0(t) = 
江迄exp(-1rr仕t)(t > 0) which in turn yields the small-time asymptotic 

罰 ~t―1/2, t→ +o. 
Note that the set of square numbers忙 coincidedwith the spectrum of the Laplacian 

—晶 of the flat torus股/2迄. By our explicit trace formula of SL孔Z),we obtain the 
asymptotic expansion of the heat trace 

00 

e(T) := Lexp(-(IIA』12+ 2) T), T > 0, 
J=O 

which is viewed as a non-commutative analogue of 0(t). By applying Theorem 2.2 to the 
heat kernel (2.1) and computing the asymptotic expansion of each term, we obtain the 
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following result. Besides the main term, which is consistent with Wey's law, the second 

term c r-3/2 log T is determined with explicit coefficient c. 

Theorem 4.2. As T→ +0, we have the asymptotic expansion of the form 

8(T) ~f(7 /2) V(SL立））r-5/2 

＋ 
-1 

31r(41r)5/2 
vol(M心）¥M1(股））T―3/2logT 

00 00 00 

+ r-3/2 L Qn rn/2 + r-l(logT)2 L Q~rn/2 + T―1logT Lばrn/2,

n=O n=O n=O 

where 

M1={[8::]}竺 GL1x GL2. 
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