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We report on the first step of a method for computing the Fourier transforms of 

weighted orbital integrals, which appear in the Arthur-Selberg trace formula. For more 

details on that formula and its role in the theory of automorphic forms, see [1]. The full 

computation of those Fourier transforms has been carried out for groups of rank up to 

two, and the first step, which consists in the solution of a certain holonomic system of 

differential equations, has been performed for groups of rank up to three. The case of 

the symplectic group was the subject of the diploma thesis by Christian Dietz [2]. We 

give an introduction and an overview of the results. The statement has been somewhat 

streamlined in order to allow for generalisation to higher rank. 

1 Weighted orbital integrals 

Weighted orbital integrals are the terms on the geometric side of the Arthur-Selberg 

trace formula. They are distributions on the set of adelic points of a reductive linear 

algebraic group, which we assume to be connected. Splitting formulas express them in 

terms of weighted orbital integrals on the points of that group with coordinates in the 
local completions of Q. Our method of studying them by means of differential equations 

works only for the field且 whencewe restrict to that case and denote the set of real points 
of our group by G. The local weighted orbital integral over the orbit of an element 1, 

which we assume to be semisimple for simpicity, is then defined as 

叫 f)= IDb)l112 J f(x,x―1)四 (x)d出，
G/G, 

where Mis a Levi subgroup of G (i.e., a Levi component of p紅 abolicsubgroup P of G), 

f is a Schwarz function on G, 

D(ry) = det9;9,.,(Ad(ry) -id) 

is the Weyl discriminant, d尤isan invariant measure on G / G, and the weight factor v M 

is a specific function on G / M whose definition we will not recall here. In order for the 
integrand to be left-invariant under the centraliser G,, we have to assume that the latter 
be contained in M. 

The set Greg of strongly regular points is characterised by the property that G, be a 

Cartan subgroup. After fixing a Cartan subgroup T of M and restricting ry to T n Greg, 
the measure dわonG /T can be chosen independent of ry. 
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2 Differential equations 

Let況 beIC-algebra of bi-invariant differential operators on G. We say that an admissible 

representation 7r of G has the infinitesimal character x : 3c→ IC if 7r(z) = x(z)• id for 
all z E 30. The Harish-Chandra homomorphism況→ 3M, Z→ 知 ischaracterised 

by the condition that whenever 7r is parabolically induced from a representation of M 

with infinitesimal character w, we have x(z) = w(zM)- In fact, this homomorphism is 

determined by the complexified Lie algebras of G and M. Thus we may replace M by T, 
in which case we get the Harish-Chandra isomomorphism of況 ontothe set of elements 

of切 invariantunder the Weyl group Wr・

Arthur has shown that for all Levi subgroups M containing T there exist maps 

如： (T n Greg) X況 → 3r 

such that知 z)= Zr and 

心("'!,zf) =と改("Y叫 Hにf),
LつM

where the sum is taken over all Levi subgroups L of G containing M and at is the 
analogue of [)M in which the ambient group G is replaced by L. 

3 Fourier transforms 

The Fourier transform of a Schwarz function f on G is the function J on the tempered 
dual Iltemp(G) of G defined by 

加） = trn(f), where 1r(f) = J J(g)1r(g) dg. 
G 

The Fourier transform J of a tempered distribution I on G invariant under inner auto-

morphisms is defined by 

I(f) = i(f). 

If it exists, one says that I is supported on characters. In order to take care of the reducibil-

ity of certain induced representations, Arthur has introduced a set T(G) of isomorphism 

classes of virtual representations whose distributional characters span the same vector 

space as those of the tempered representations. All elements of T(G) are parabolically 

induced virtual representations T叉whereT E T(M) is elliptic for a Levi subgroup M. 

The Fourier transform of I is a regular distribution if there exists a function <I> on T(G) 

such that 

I(f) = Lf 亨）尼）dT, 
[M] 匹 ¥Ten(M)

where the sum runs over all conjugacy classes of Levi subgroups and dT is the image of 
a measure on Ten(M) invariant under the action of the group of unramified characters 

of M. 



103

4 Invariant distributions 

The weighted orbital integrals JM(,, f) are non-invariant tempered distributions evalu-
ated on a test function f. There is an invariant version of the trace formula in which 
the geometric terms are invariant distributions obtained from the weighted orbital inte-

grals and so-called weighted tempered characters. They also satisfy a splitting formula, 

and their archimedean components IM(,, f) satisfy the same differential equations. The 
knowledge of their Fourier transforms is useful for applications of the trace formula. 

Arthurh邸 shownthat, although those Fourier transforms are not regular distributions, 

a similar formula 

伍 (ry,f) = J 知 (ry戸）炉）dT 
WM¥Tdisc(M) 

is valid in which the set Ten(M) of elliptic virtual representations is replaced by a larger 

set Tdisc (M) which is still discrete modulo the action of the group of unramified characters 
of M. 

Ifwe fix T with infinitesimal character x and a Cartan subgroup T, the tuple (cpM)MつT
of functions of ry, restricted to T n Greg, satisfies the system of differential equations 

x(z)・ 知 ("f,T)= L咋('Y五）的("f,T).
LコM

Thus, the first step in computing the Fourier transforms is the determination of the 
finite-dimensional space of solutions of this holonomic system for a given infinitesimal 

character X. 
Such a character is determined by the orbit of a linear form入onthe complexified Lie 

algebra tc under the action of the complex Weyl group W by x(z) =叶（入）， wherethe 
invariant differential operator叶 onthe torus Tic can be interpreted as an element of the 

symmetric algebra of its Lie algebra or as a polynomial on the dual space. The equation 

for M = G is particularly simple, as a叫z)= zr, and if入isregular, it has the solutions 

<l>cb) =,¥which for non-integral入existonly on the universal cover of Tic. 

5 Standard solutions 

Let P be minimal among the parabolic subgroups of G containing T, 均pthe set of roots 

of tic in the unipotent radical of Pie, and A.p the semigroup generated by嘉.We cover 

the complexified torus Tic up to a set of measure zero by the ch皿 bers

TP,c ={"IE Tc : l'Y門>1 ¥/ a E~P} 

for various P and restrict our differential equations to each of them. The reason for 

doing so is the fact that the map ('Y, μ)→ 7―μembeds Tp,c into the affine toric vari-

ety Homrings(Ap, C), on which we get a system of differential equations with a regular 
singularity at zero. 

The theory of such systems of differential equations implies that, for regular入Efc, 
there is a unique solution (むO叩 T on the universal cover of Tp,c such that 

• 虹 ('Y)="(入9
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・知(,)→ 0 as 1→ oo for M =J G, 
p 

where 1→ oo means that all I, 叶→ oo for all a: E I:p. If we replace G by a Levi subgroup 
p 

LコT,the standard solutions (<I> M)に MつTof the corresponding system can be completed 

to solutions of the original system by setting知=0 for M (/_ L. If we let L run through 

the Levi subgroups containing T and入througha regular W-orbit, these tuples span the 

space of solutions on TP,C・We will not be discuss here the subsequent tasks of glueing 

the solutions across wall chambers with the help of jump relations and determining the 

Fourier transforms among them as functions of T using limit formulas. 

6 Series expansions 

Due to the theory of holonomic systems with regular singularities, the solutions on TP,C 

with regular exponent A can be expanded in series 

知 b)= L 知(µ)'Y入—µ'
μEAMnAp 

where AM is the group generated by the set I.;M of weights of tc in gic/mic. 
General explicit formulas for the differential operators are available only if z is the 

Casimir element corresponding to an invariant symmetric bilinear form〈,〉onthe Lie 

algebra g. In that case, 

8c(z), 入＝〈入，入〉・化 如 (z)=一〉 |〈T/i,a〉|

aEEM 

for M maximal in G, while如 (z)= 0 otherwise. Here'T}位isthe volume form on a位竺
llM/lla used in the definition of the weight factor VM, where AM is the largest split torus 

in the centre of M. The operators如 (z)for M ヂGare of degree zero and also have 

senes expans10ns, as 

1 
00 

、＝一 Lm'Y-ma_
m=l 

7 The recursion formula 

Plugging the series expansions of differential operators and of solutions into the differential 

equation for the Casimir element and infinitesimal character W入andequating coefficients, 

we obtain a recursion formula for the coefficients: 

00 

〈μ-2入，μ〉a叫μ)=2 L LI〈心，a〉ILmaL(μ-ma). 
LつM aEE炉nEp m=l 

dim a幻=l

In case of the standard solution, it allows in principle to determine all components知

descending from M = G. 
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E. g., if M is maximal, 

00 I (-
知 ('Y)= 区とりM a)I'Y入ーma

m —入（＆）
aE~M⑪ pm=l 

Now let dim llM = 2 and L1, L2 intermediate Levi subgroups: 

G 
／ ＼  

L1 L2 

"" / M 

We have contributions to 8カ(,,z)虹(,)of the form 

|〈n仇，m〉lm;,-miai IT/Li (図）1

' n; —入（向）
入—n泣i

For m1a1 + n凸 =μ=m幻 +n退 theycan be brought on a common denommator. 

Under certain assumptions on A=  {a1,a2} and B = {(31,(32}, the numerator becomes 

〈μ-2入，μ〉， hencecancels against the same factor on the left-hand side of the recursion 

formula. These assumptions motivate the following notion. 

8 Root cones 

Definition 1. Let I: be a subset of a root system. A root cone in I: is a quadruple 

K, = (A,B,c, り， whereA, B are subse~s of I: spaりningthe same real vector space V 

{hence A, B span the same vector space V), c : V x V→股 isa perfect pairing and >--is 

a relation between A and B satisfying the following conditions. 

{i) The sets A and B are the sets of maximal proper faces resp. vertices of an abstract 
polytope {see [4}) of rank dim V with incidence relationど

{ii) Given a E A, (3 E B with a >--(3, we have 

c(a, iJ) = 0 

and, for all a'E A, (3'E B, 

a'>--(3, a >--(31⇒ c(a', が）＞〇

with strict inequality for some a', (3'. 

{iii) For all a EA, (3 EB  we have c(a, iJ) E Z. 

{iv) For all (3, (3'E B we have 

2〈(3,(3'〉=c(/3, iJ')〈(3',(3'〉+c(/3', iJ)〈(3,(3〉．



106

We say that the root cone K, is convex if 

CA= {入 EVI c(入，~) > 0 ¥/(3 EB}, 

り ={XEVI c(a,X) > 0 ¥/a EA} 

are polyhedral cones with edges恥 afor a E A {resp. 恥~for /3 E BJ. 

It follows from (iv) that c(/3, ~) = 1 for all /3 E B. In the convex case, the first 
condition in (ii) is an equivalence and >--is encoded in c. 

Via c, the elements of A define hyperplanes in V. If we choose an orientation on V, a 
point X not lying on any of these hyperplanes induces an orientation on each face of the 
polytope, hence the latter becomes a cycle in V. It can be viewed as a cone over a cycle 
in a hyperplane W C V through X, which represents a multiple of the fundamental class 
in the homology group of W ¥ {X} with respect to the orientation induced by OE V. In 
this way, we get a multiplicity m(X) defined for generic X E V. In the convex case, mis 

just the characteristic function of CB・ 
In [3], the name "root cone" was given to what we now call convex root cone, but with 

a slightly more restrictive condition than (iii) allowing only one non~er? value. For root 
cones K = (A, f!, c) in that restricted sense, it was proved that K = (B, A, c) is also a root 
cone, where c(/3, a) = c(a, /3). In [2], it was checked that this duality remains intact for 
all convex root cones. It is open whether this is true in general, if we set~,;- a⇔ a >--/3. 

9 Special functions 

As in sections 5-7, we fix P and T again. If M is a Levi subgroup of G containing T, 
a root cone /C = (A, B, c, >---) in the root system of (gc, tc) will be called a root cone for 
(M,P) if A, B c 麟 n~P and the projection V→ a岱isbijective. In this case, let T/v be 
the pullback of the volume form T)~under that projection. If, moreover, there is no other 
root cone (A', B', c, >---') for (M, P) such that B C B'and >---'has the same restriction to 
(An A') x Bas >---, then we call/Cam訟 imalroot cone for (M, P). 

Given an element of 

位 ={μEAI c(µ,X)~0'v XE  esssuppm}, 

we define 

叫 μ,A)=J e入(X)-c(μ,,X)m(X) I d77v (X) 1-
V 

The integral converges if入isnegative on ess supp m _and extends rnerornorphically to tc 

with at most simple poles along the hyperplanes入(/3)E Z:::: ゚ for(3_ E B. In the special 
case that JC is simplicial with B = {(31, ... , 灼},we have A,c =An CA and 

吹(μ,入）＝
伽（応，．．．，向） 1 

IT (c(μ, i3) —入(i3)) . 
f!EB 

In the case l = 2, one recognises the common denominator mentioned at the end of 
section 7. 
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If, in addition, we are given a set ¥JI C AK of weights, we define a special function of 

1 E TP,<C with parameter入by

仮，wb,入）=L叫μ,入）1―μ_

μEW 

This series is absolutely convergent. In the special case that ¥J! is the submonoid Arr of A 

generated by a linearly independent subset II C A, there is a closed formula 

入(X)

c/>JC,An(r, 入）=! e 

v IT (1 _ ,-o -c(o,X)) 
m(X)ldw(X)I, 

e 

OEII 

Theorem 1 (see [3]). Suppose that G is one of the following: 

(i) a group of real rank one, 

(ii) a split group of real rank two, or 

(iii) the group GL(4). 

Then the standard solution on Tp,c with exponent入isgiven by 

伽(,)='入〉仮，w(,,入），
IC 

where the sum is over all maximal root cones K, = (A, B, c) for (M, P) and each ¥JI is 
determined by the corresponding K,. 

All root cones appearing in the above theorem are convex. For each root cone, ¥JI is 

a subset of AA n CA n CB, where AA is the lattice generated by A. It can be a proper 

subset only in case (iii). 

10 The case of the split symplectic group of rank 

three 

Having extendes the notion of root cones, we can now state the result of [2] in a streamlined 

way. 

Theorem 2. The above theorem is also true for the split symplectic group of rank three 

if we allow nonconvex root cones. 

The component <T?r is a sum of 198 special functionsゅK,w,of which 

• 154 come from simplicial (three-sided) root cones, 

• 12 come from four-sided root cones, 

• 26 come from five-sided root cones, 

• 6 come from seven-sided root cones. 
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The nonconvex root cones are the five-and seven-sided ones. 

In the rest of this paper, we try to give some feeling for the statement and the proof. 
In all the subsequent figures, we depict the Lie algebra t of the maximal split torus T, 
which we identify with its dual space using some Weyl-group-invariant pairing. First we 
depict the convex hull of the roots, which is an octahedron, and indicate some system 
of positive roots by black dots. The corresponding root spaces make up the unipotent 
radical of a minimal parabolic subgroup P. The corresponding Weyl chamber intersects 
the surface of the octahedron in the grey triangle. 

The components知 ofthe solution are indexed by the Levi subgroups M of G contain-
ing T. The map M → 知 setsup a bijection with the special subspaces of t, whose 
intersections with the octahedron are depicted in the next figure. 

First one computes the componentsゆLfor the maximal Levi subgroups L, i. e., those 

with dim aL = 1, and then the components伽 forthe Levi subgroups M with dim aM = 2, 
in terms of special functions¢JC, ゥ withroot cones K, of rank 1 resp. 2. Next one considers 
the differential equation for向.The right-hand side is a sum over the 9 Levi subgroups M 
of the terms 8炉知.If we plug in the formulas just obtained, we obtain a sum of 258 
series over semigroups generated by triples { a, (3しあ}.They have to be split up into up 
to 10 partial sums and recombined into the special functions¢ にwattached to root cones 
K, of rank 3. Each of the intermediate partial series runs over the intersection of a lattice 
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with some polyhedral cone in t*. The next figure shows the walls of all the cones which 

appear in this process. 

The final result in Theorem 2 is a sum over root cones. The next figure shows one of 154 

three-sided root cones. The elements of B are indicated by solid dots, those of A by hollow 

dots. Via the pairing c, the elements of A determine edges connecting the elements of B, 

which are drawn as thick lines, whereas the elements of B determine edges connecting 

the elements of A, which are drawn as dotted lines. The edges and vertices drawn on the 

octahedron (which is not part of the structure) are just the intersections of faces resp. 

edges of polyhedral cones with the octahedron. This is the reason for seemingly broken 

edges. 

The set'1! is the intersection of the lattice AA with a cone whose intersection with the 

surface of the octahedron is shaded in gray. The edges already drawn prevent us from 

indicating graphically which faces are included in this cone. 
The following figure shows one of 12 four-sided root cones. These are convex as well. 

In order to characterise the pairing c, it would suffice to indicate the relation >---, e. g., by 

labelling the edges of one cone and the faces of the other. 
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Next~e show one of 26 five-sided root cones, which are not convex. Here it happens 
that c(a, /3) = 0 although a f (3. To indicate such a spurious incidence in the figure, we 
have interrupted the edge corresponding to a at the vertex /3, and similarly with roles 

reversed. 

Our last figure shows one of 6 seven-sided root cones. For simplicity, we have only 

drawn the vertices in B and the edges corresponding to the elements of A. 

A detailed account of the proof will appear elsewhere. 
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