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ASYMPTOTIC BEHAVIOR OF AUTOMORPHIC SPECTRA AND THE 
TRACE FORMULA, II 

WERNER MULLER 

ABSTRACT. In this article we discuss some recent developments concerning the asymptotic 
behavior of the discrete spectrum of the right regular representation in L汀¥G)for a 
lattice r in a semisimple Lie group G. 

1. INTRODUCTION 

This article is a continuation of [34]. Some of the problems raised in [34] have been solved 
by now and I will report on some of the new developments. 

Let G be a connected linear semisimple Lie group of non-compact type with a fixed choice 
of a Haar measure. Let II(G) denote the set of all equivalence classes of irreducible unitary 
representations of G, equipped with the Fell topology. We fix a Haar measure on G. Let 
r C G be a lattice in G, i.e., a discrete subgroup such that vol(f¥G) < oo. Let Rr be the 
right regular representation of G on L可¥G).Let Lに(r¥G)be the span of all irreducible 
subrepresentations of Rr and denote by Rr,disc the restriction of Rr to LLJ「¥G).Then 
Rr,disc decomposes discretely as 

(1.1) 

where 

R,,disc 宰〶
託 II(G)

mr(1r)1r, 

mr(1r) = dimHomc(1r, Rr) = dim Hom瓜7r,Rr,disc) 

is the multiplicity with which 1r occurs in Rr. The multiplicities are known to be finite 
under a weak reduction-theoretic assumption on (G, r), which is satisfied if G has no 
compact factors or if r is arithmetic. The study of the multiplicities mr (1r) is one of the 
main concerns in the theory of automorphic forms. Apart from special cases like discrete 
series representations, one cannot hope in general to describe the multiplicity function on 
II(G) explicitly. A more feasible and interesting problem is the study of the asymptotic 
behavior of the multiplicities with respect to the growth of various parameters such as the 
level of congruence subgroups or the infinitesimal character of 1r. This is closely related to 
the study of families of automorphic forms (see [42]). 

We pick three representative problems which we will discuss in some detail. 
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The first problem in this context is the Weyl law. It is related to the basic question 
of the existence of cusp forms. Let K be a maximal compact subgroup of G. Fix an 
irreducible representation a of K. Let II(G; a) be the subspace of all 7r E II(G) such that 
[1rlK: a]> 0. Especially, if a is the trivial representation, then II(G;a) is the spherical 
dual rrsph(G). Given 1r E II(G), denote by入1r= 1r(O) the Casimir eigenvalue of Jr. For 
入;::,:0 let the counting function be defined by 

(1.2) Nr(入） = L mr(1r). 
訳 ,II(G;cr)

|ふ1:c:;入

Then the problem is to determine the behavior of the counting function as入→ 00. 

Another basic problem is the limit multiplicity problem, which is the study of the asymp-
totic behavior of the multiplicities if vol(f¥G)→ oo. For G = GLn(艮） this corresponds 
to the study of harmonic families of cuspidal automorphic representations of GLn(A), A 
being the ring of adeles (see [42]). More precisely, for a given lattice r define the discrete 
spectral measureμr on II(G), associated tor, by 

(1.3) 
1 

μr = 
vol(f¥G) 

L mr(1r)ふ，
1rEII(G) 

whereふris the Dirac measure at 1r. Then the limit multiplicity problem is concerned with 
the study of the asymptotic behavior ofμr as vol(f¥G)→ oo. For appropriate sequences 
of lattices (几） one expects that the measuresμrn converge to the Plancherel measureμP1 
on II(G). 

One can also consider more sophisticated functions of the spectrum. An important 
example is the Ray-Singer analytic torsion Tx(P) of a compact Riemannian manifold X 
and a finite dimensional representation p of its fundamental group 1r1 (X) [40]. The analytic 
torsion Tx(P) is defined as a weighted product of regularized determinants of the Laplace 
operators△ p(p) on~forms on X with values in the flat vector bundle associated top. In 
the present context Xis a compact locally symmetric space f¥G / K, where K is a maximal 
compact subgroup of G and r is a uniform, torsion free lattice in G. Of particular interest 
are representations of r which arise as the restriction of a representation of G. Let (い） be 
a tower of normal subgroups of r. Put Xn =几¥G/K,n EN. Then Xn→ X is a sequence 
of finite normal coverings of X. For appropriate representations, called strongly acyclic, 
Bergeron and Venkatesch [4] studied the asymptotic behavior of logTxJP) as n→ 00. 
One of their main results is 

(1.4) lim 
logTxJp) 

n→ oo vol(X叫
= logT翌(p),

(2) 
where Tx (p) is the L2-torsion [20], [22]. Using the equality of analytic torsion and Reide-
meister torsion [7], [27], (1.4) implies results about the growth of the torsion subgroup in 
the integer homology of arithmetic groups. Let G be a semisimple algebraic group over Q, 
G=  G(股） and r c G(Q) a co-compact, arithmetic subgroup. As shown in [4], there are 
strongly acyclic representations p of G on a finite dimensional vector space V such that V 
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contains a f-invariant lattice M. Let M be the local system of free Z-modules over X, 
attached to M. Then the cohomology H.(X, M) of X with coefficients in M is a finite 
abelian group. Denote by IH.(X, M) I its order. Assume that d = dim(X) is odd. Then 
by [4] one has 

d 

lim L(一 l)P+号 loglHp(ふ，M)I= cM,cvol(X), 
n→OO 

p=l 
[r: 几l

where cM,G is a constant that depends only on G and M. Moreover, if o(G) := rankG -
rank K = l, then cM,G > 0. It is conjectured that the limit 

(1.5) lim 
log IHj(Xn, M)I 

n→ oo [r: 几l

always exists and is equal to zero, unless b(G) = 1 and j = (d -1)/2. In the latter case it 
is equal to cM,G times vol(X). The conjecture is known to be true for G = SL2(<C). 

An important problem is to extend these results to the non-compact case and we will 
discuss the current status of the problem. In the present article we will focus on the Weyl 
law and the analytic torsion. 

2. THE WEYL LAW 

The Weyl law is concerned with the study of the asymptotic behavior of the counting 
function (1.2) as入→ oo. This is the first problem which needs to be solved in order to 
be able to pursue a deeper study of the cuspidal automorphic spectrum. For example, the 
study of statistical properties of the automorphic spectrum requires first of all to know 
that the spectrum is infinite and has the right asymptotic properties. This, in particular, 
concerns the study of families of automorphic forms (see [42]). 

The investigation of the asymptotic behavior of the counting function (1.2) is closely 
related to the study of the counting function of the eigenvalues of the Laplace operator on 
a compact Riemannian manifold. We refer to [34, Sect. 3] for details. 

Th~connection with the estimation of the counting function (1.2) is established as follows. 
Let X = G / !5-It can be equipped with a G-invariant metric which is unique up to scaling. 

Let X =ぃX.Assume that r is tor邑onfr竺.Then X is a complete Riemannian manifold 

of finite volume. Let rJ E Kand let尻 → X be the homogeneous vector bundle associated 

to rJ, which is equipped with the invariant Hermitian metric induced by rJ. Let Eび=r¥尻
be the corresponding locally homogeneous vector_bundle over X. Let炉 bethe connection 

in Eu induced by the canonical connection in Eu. Letふ＝（炉）＊炉 bethe Bochner-
Laplace operator, acting in C00(X, E. 砂 Itis an elliptic, second order, formally self-adjoint 
differential operator of Laplace type, i.e., its principal symbol is given by 11~1 且 Id加，x·Let
0 E Z(gc) be the Casimir element and Rr(O) the Casimir operator acting in 000げ¥G).
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Let C00(X,E: 砂bethe space of smooth sections of E(J". Recall that there is a caJ1onical 
isomorphism 

(2.1) C00(X,Ecr)竺 (C00(f¥G)@Vcr)K. 

With respect to this isomorphism, the Bochner-Laplace operator is related to the Casimir 
operator Rr(D) by 

(2.2) ふ＝ーRr(切＋ふId,

whereふ isthe Casimir eigenvalue of a. Assume that X is compact. Thenふ hasa pure 
discrete spectrum consisting of a sequence of eigenvalues O ::; ふ三入2::; ・・• → oo of finite 
multiplicities. Let 

Nr(入；a)=#{j: ふこ入｝

be the counting function of the eigenvalues, where eigenvalues are counted with their 
multiplicity. Using (2.1) and (2.2), it follows that the counting function (1.2) has the same 
asymptotic behavior as Nr(入；a). Applying the heat equation method [5], [16], we obtain 
the following Weyl law 

(2.3) Nr(入，a)=
dim(a) vol(f¥G/ K) 

(41r)d/2r(d/2 + 1) 
入d/2+ o(入d/2), 入→ oo, 

where d = dim(X). 

Remark 2.1. We emphasize that the heat equation method does not lead to any nontrivial 
estimation of the remainder term. Instead one has to use the wave equation [17]. For a 
locally symmetric manifold this means to use the Selberg trace formula. So far estimations 
of the remainder term are only known if u is the trivial representation, i.e., for the case of 
the Laplace operator on functions. 

Remark 2.2. For a locally symmetric space X = r¥X there is not only the Laplace 

operator, but the whole algebra of invariant dfげ'erentialoperators D戊） on X, which one 
needs to consider. This leads to corresponding asymptotic formulas which contain more 
information about the distribution of the discrete spectrum then just the Weyl law. 

If r is not co-compact, thenふ hasa nonempty continuous spectrum which consists of 
a half-line [c, oo) for some c 2': 0. Then the heat equation method breaks down, because 
the heat operator e-t△ワ isnot trace class anymore. One of the basic tools to study the 
cuspidal automorphic spectrum in the finite volume case is the trace formula. 

We turn now to the case of a general lattice. We assum竺thatG = G(股）， whereG is a 

connected semisimple algebraic group over (Q. Let X =いX= r¥G/K and E。→X beas 
above. Let△ ": C00(X,E砂→ C00(X,E。)be the Bochner-Laplace operator. As operator 
inび(X,E砂itis essentially self-adjoint. Let Lに(X,E砂bethe subspace ofび(X,E砂
which is the closure of the span of all L2-eigensections of△ "" Recall that a cusp form for 
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r is a smooth K-finite function¢: r¥G→ <C which is a joint eigenfunction of the center 
of the universal enveloping algebra Z(gc) and which satisfies 

j¢(nx)dn=O 
rnNp¥Np 

for all uni potent radicals Np of proper rational parabolic subgroups P of G, i.e., P = P(股），
where P is a rational parabolic subgroup of G. Put 

Lに(X,E:砂：= (£~usげ\G) ⑳％）パ

Then Lに(X,E:砂iscontained in Lに(X,E砂.The orthogonal complement Lに(X,E:砂
of Lに(X,E") in Lに(X,E:。)is called the residual subspace. By Langland's theory of 
Eisenstein series it follows that Lに(X,E") is spanned by iterated residues of cuspidal 
Eisenstein series. By definition we have an orthogonal decomposition 

心 (X,E。)=Lに(X,E砂①Lに(X,E砂

Let N茫（入；り， N戸（入；a-), and Nf叫；a-) be the counting function of the eigenvalues with 
eigensections belonging to the corresponding subspace. The following results about the 
growth of the counting functions hold for any lattice r in a real semisimple Lie group. Let 
d = dimX. Donnelly [8] has proved the following bound for the cuspidal spectrum 

(2.4) 
N正（い） dim(u) vol(X) 

limsup < 
入→00 入d/2 ―(41r)d/2r(~+ 1). 

For the full discrete spectrum, we have at least an upper bound for the growth of the 
counting function. The main result of [28] states that 

(2.5) N忙（い） ≪(1+炉）．

This result implies that invariant integral operators are of trace class on the discrete sub-
space which is the starting point for the trace formula. The proof of (2.5) relies on the 
description of the residual subspace in terms of iterated residues of Eisenstein series. 

Let N戸（入） be the counting function with respect to the trivial representation a。ofK, 
i.e., the counting function of the cuspidal spectrum of the Laplacian on functions. Then 
Sarnak [41] conjectured that ifrank(G/K) > 1, Weyl's law holds for N戸（入）， whichmeans 
that equality holds in (2.4). Furthermore, one expects that the growth of the residual 
spectrum is of lower order than the cuspidal spectrum. 

In the meantime Sarnak's conjecture has been verified in quite a number of cases. A. 
Reznikov proved it for congruence groups in a group G of real rank one, S. Miller [26] 
proved it for G = S1(3) and r = S1(3, Z), the author [31] established it for G = SL(n) 
and a congruence group r. The most general result is in the spherical case is due to 
Lindenstrauss and Venkatesh [19] who proved the following theorem. 
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Theorem 2.3. Let G be a split adjoint semi-simple group over Q and let r C G(Q) be a 
congruence subgroup. Let d = dimS. Then 

(2.6) N戸（入）～
vol(r¥X) 

(41r)df2I'(~+ 1) 
入d/2, 入→ 00. 

The method used by Lindenstrauss and Venkatesh is based on the construction of con-
volution operators with pure cuspidal image. It avoids the delicate estimates of the contri-
butions of the Eisenstein series to the trace formula. This proves existence of many cusp 
forms for these groups. 

Now we consider an arbitrary K-type. To formulate our result, we need to pass to the 
adelic framework. Let G be a reductive algebraic group over Q. Let A be the ring of 
幽 lesof Q. Denote by Ac the split component of the center of G and let A叫良）0 be 
the component of 1 in知（股）. Let~。 be the trivial character of A叫股）0 and denote by 
II(G(A), ふ） the set of equivalence classes of irreducible unitary representations of G(A) 
whose central character is trivial on Ac偉）0. Let L~us(G(Q)A叫良）0¥ G(A)) be the subspace 
of cusp forms inび(G(Q)A叫翻¥G(A)).Denote by IIcus(G(A), fo) the subspace of all 7r 

in II(G(A), fo) which are equivalent to a subrepresentation of the regular representation 
in Lに(G(Q)A磯）0¥G(A)). For 1r E IIcus(G(A), 邸） let m(1r) denote the multiplicity 
with which 1r occurs in the space of cusp forms Lに(G(Q)Ac償）0¥G(A)). Let A1 be the 
ring of finite adeles. Any irreducible unitary representation 1r of G(A) can be written 
as 1r =応00R町， where応00and町 areirreducible unitary representations of G(股） and 
G(的）， respectively.Let払 00and鬼 denotethe Hilbert space of the representation 1r00 

Kf 
and町， respectively.Let K1 be an open compact subgroup of G(的） • Denote by鬼 the
subspace of Ki-invariant vectors in鬼.Let G(良）1 be the subgroup of all g E G(戦） with 

I det(g)I = 1. Given 1r E II(G(A), 邸）， denoteby入1rthe Casimir eigenvalue of the restriction 
of厄 toG(股）1. For 入 ~0 let Ilcus(G(A), fo),x be the space of all 1r E Ilcus(G(A), fo) which 
satisfy I入』三入.Then we have the following theorem, which is work in progress and which 
is joint work with J. Matz. 

Theorem 2.4. Let G be one of the following types of groups: An inner form of GL(n) 
or SL(n), a quasi-split classical group, or the exceptional group G2. Let K00 C G(股）1
be a maximal compact subgroup and let K1 C G(約） be a congruence subgroup. Let d = 
dimG(賊）1 / K00. For eve内 aE II(K00) we have 

区 m(1r)dim(砂/)dim(1i1r00RV"t= 

(2.7) 
訳ゴlcus(G(A)io)入

~ dim(び）vol(G(Q)知（股）0¥G(A)/Kり入d/2
(41r)d/2f(d/2 + 1) 

as入→ oo. Furthermore, 

(2.8) ど m(1r) dim(H勾）dim(H1r00RV" t00≪ 入d/2-1.

1rEIIres(G(A),fo)入
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If G is semisimple and simply connected, it satisfies strong approximation. Then (2.7) 
and (2.8) imply the following corollary. 

Corollary 2.5. Let G be as above and assume that G is semisimple and simply connected. 
Then for everyび EII(K00) we have 

-

(2.9) N忙（入，u)~ 
dim(u) vol(いX)
, . ヽ"nー，.'~ "ヽ入d/2

as入→ oo. Moreover, the residual spectrum satisfies 

(2.10) Nf""(入，び）＜＜入d/2-1.

Sketch of the proof. For all details we refer to our forthcoming paper. By Karamata's 
theorem [5, Theorem 2.42] it follows that in order to prove (2.7), it suffices to show that 
there exists an asymptotic expansion of the form 

区 m(7r)et入"00dim(H;[/) dim(H1r00RVu)Koo 

(2.11) 
1rEIIcus(G(A),fo) 

dirn(u) vol(G(Q)¥G(A)1 /的）t―d/2 
(47r)d/2 

as t→ +0. We first establish the corresponding statement (2.7) where the sum runs 
over all of IIdisc(G(A), fo) in place of IIcus(G(A), fo). To this end we apply the Arthur 

trace formula as follows. We choose a certain family of test functions贔iE C'. 戸(G(A)り，
depending on t > 0. At the infinite place <Pi is given by the function h『EC00(G(闘）
whi凸isdefined in terms of the heat kernel Hf: G(翻→ End(V") of the Laplacian△6 

on X by hf(g) := tr Hf(g), g E G(~)1, multiplied by a certain cutoff functionやt・At

the finite placesむisgiven by the normalized characteristic function of an open compact 
subgroup Ki of G(約） • Then by the non-invariant trace formula [1] we have the equality 

Jspec(盈） = Jgeo(尋）， t> 0. 

Then we study the asymptotic behavior of the spectral and the geometric side as t→ 0. 
To deal with the geometric side, we use the fine o-expansion [3] 

(2.12) Jgeo(f) = L L 訂 (S,,)心(,,f), 
MEL咋 (M(Qs))M,S

which expresses the distribution JgeoU) in terms of weighted orbital integrals JM仇f).
Here M runs over the set of Levi subgroups .C containing the Levi component Mi。ofthe 
stand叫 minimalparabolic subgroup P0, Sis a finite set of places of (Q, and (M(Qs))M,S is 
a certain set of equivalence classes in M(Q8). This reduces our problem to the investigation 
of weighted orbital integrals. The key result is that 

limt d/2 
t→O 

心 (¢t,,)= o, 



119

WERNERM訊 LER

叫 essM = G and 1 = 1. This follows from the analysis of the local weighted orbital 

integrals carried out in [2]. In fact, we show that J叫祠，1)has a complete asymptotic 
expansion 

00 TM  

ル（贔い） ~t―d/2+d("!)〉区妬til2(log t)' 

j=O i=O 

as t→ 0, where db)= dimび and01 c G(艮） is the unipotent conjugacy class in G(恥）
induced from M(股） along P(股）. The contributions to (2.12) of the terms where M = G 
and 1 = 1 are easy to determine. Using the behavior of the heat kernel hf(l) as t→ 0, it 
follows that 

(2.13) 
-1 

Jgeo仇）～
dim(u) vol(G((Q)¥G(A)1 / Kりcd/2 

(471")d/2 

as t→ 0. 
To deal with the spectral side we use the refined expansion of the spectral side of 

the trace formula [14, Corollary 1]. This allows us to replace切 bya similar function 
叫EC1(G(A)りwhichis given as the product of the heat kernel ht at infinity and the nor-
malized characteristic function of Ki. The term in Jspec(叫） corresponding to M = G is 
Jspec,G(叫） = tr Rctisc(¢i), which is equal to the left hand side of (2.11). If Mis a proper Levi 
subgroup of G, then Jspec,M国） is given by a finite sum of integrals [14, Corollary 1], [23, 
(5.8)] and the main ingredients of the integrals are logarithmic derivatives of intertwining 
operators 

MQIP(入）： A2(P)→ぷQ),

where P, Q E P(M) and A2(P) and A刊Q)are the spaces of automorphic forms for P and 
Q, respectively (see [34, Sect. 2.2]). To deal with these integrals, we use the standard 
properties of intertwining operators to reduce the problem to the case of intertwining 
operators associated to pairs of adjacent parabolic subgroups. Let a E砂 bea root and 
assume that P and Qare adjacent along a. For 7r E IIdisc(M(A)) let MQIP(1r, s), s EC, be 
the corresponding rank one intertwining operator. It admits a global normalizing factor 
加 (1r,s) [34, (2.2)]. These factors are meromorphic functions of finite order of s E C and 
satisfy the functional equation lna(1r, it)I = 1 for all t E股 Using[34, (2.2)], the estimation 
of the spectral side can be reduced to the study of integrals involving logarithmic derivatives 
of the normalizing factors and of the local intertwining operators. 

In the case of G = GL(n), the normalizing factors are expressed in terms of Ranking-
Selberg£-functions [31]. Using the analytic properties of Rankin-Selberg£-functions, it 
follows that there exist C > 0 and T > l such that for 1r =町⑧ 乃，町 Errdisc(GL(ni, A)), 
we have 

(2.14) JT+l n~(7r, i入） d入 ~Clog T + v 1r1 x西
T n0(1r, i入）

( ( ) ) '  

where v(1r1 x分2)= N(1r1 X 示2)(2+c(1r1X 分2),N(1r1 x ir-2) is the conductor occurring in 
the functional equation and c(1r1 x示2)is the analytic conductor defined in [31, (4.21)]. For 
the proof of (2.14) see [31, Proposition 5.1]. For the groups listed in Theorem 2.4 Tobias 
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Finis and Erez Lapid [12] used functoriality to transfer the problem of the estimation of the 
corresponding integrals to the well-understood problem for GL(n), which implies bounds 
similar to (2.14). For an arbitrary reductive group G we have formulated in [15] more 
general conditions on the normalizing factors, called (TWN) (tempered winding number), 
which are needed to prove that G has the limit multiplicity property. 

Finally we have to deal with normalized intertwining operators 

RQIP(1r, s) =R  虞 QIP(四， s).

Since the open compact subgroup K1 of G(的） is fixed, there are only finitely many 
places v for which we have to consider RQIP(元， s).The key result for the estimation of 
integrals involving the logarithmic derivative of RQIP(1rv, s), which is uniform in叩， isa 
generalization of the classical Bernstein inequality [15, Corollary 5.18]. 

Another problem is that for every Levi subgroup M of G we have to control the growth 
of the residual spectrum. In [28] a polynomial bound was obtained. However, this bound 
is not sufficient for our purpose. We need a bound which is of lower order than the order 
of the growth of the discrete spectrum predicted by the Weyl law. To achieve this goal 
for the groups listed in Theorem 2.4 we combine the approach of [28], which is based on 
the study of rank one intertwining operators, with the estimations of normalizing factors 
obtained in [12]. 

Combining these estimations, it follows that for every proper Levi subgroup M of G we 
have 

(2.15) Jspec,M(c/Jj) = O(t―(d-1)/2) 

as t→ +0. This proves (2.11). As explained above, this implies Theorem 2.4. 
The next problem is to estimate the remainder term in the Weyl law. So far an estimation 

of the remainder term has been only obtained for the spherical spectrum, i.e., the trivial 
K-type. 

For X a congruence quotient of the symmetric space SL(疇）/ SO(n) and the cuspidal 
spectrum of the Laplacian on functions of X, this problem has been studied by E. Lapid 
and the author in [18]. One of the main results is the following theorem. 

Theorem 2.6. Let X = SL(n皇）/SO(n) and d = dimX. Let f(N) be the principal 
congruence subgroup of SL(n, Z) of level N. Then for N~3 we have 

N躙（入）＝
vol(f(N)¥X) 入d/2 (d-1)/2 max(n,3) 

(41r)d/2I'(! + 1) 
+o (入 (log入）），入→ 00. 

Actally, we consider not only the cuspidal spectrum of the spherical Laplacian, but the 

cuspidal spectrum of the whole algebra of invariant differential operators V(X). 

In a recent paper [13], Tobias Finis and Erez Lapid estimated the remainder term of the 
Weyl law for the spherical cuspidal spectrum of a locally symmetric space X defined by 
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a simply connected, simple Chevalley group G and a congruence subgroup of G((Q). The 
main result of [13] is the following theorem. 

Theorem 2.7. Let G be a simpy connected, simple Chevalley group. Then there exists 
o > 0 such that for any congruence sugrnup r of G(Z) we have 

vol(X) 
N戸（入）＝炉+Or(入d/2-6), 入21, 

(41r)d/2r(~+ 1) 

where X = r¥G(民）/Kand d = dimX. 

This is a sharpening of the result of [19]. It is an interesting problem to see, if one can 
also estimate the remainder term for non-trivial K-types. 

3. THE ANALYTIC TORSION 

A more sophisticated spectral invariant is the analytic torsion [40]. In the context of 
locally symmetric spaces it has been used to study torsion in the cohomology of arithmetic 
groups. Recall its definition. 

Let X be a compact Riemannian manifold of dimension n and let p: 1r1 (X)→ GL(V) 
a finite dimensional representation of its fundamental group. Let Ep→ X be the flat 
vector bundle associated with p. Choose a Hermitian fiber metric in Ep. Let今(p)be the 
Laplace operator on Ep―valued p-forms with respect to the metrics on X and in Ep. It 
is an elliptic differential operator, which is formally self-adjoint and non-negative. Since 
X is compact, 午(p)has a pure discrete spectrum consisting of sequence of eigenvalues 
〇こ入。こ入1:S ... → oo of finite multiplicity. Let 

(3.1) (p(s; p) :=区汀
入;>0

be the zeta function of今(p).The series converges absolutely and uniformly on compact 
subsets of the half-plane Re(s) > n/2 and admits a meromorphic extension to s EC, which 
is holomorphic at s = 0. Then the Ray-Singer analytic torsion Tx(p) E恥+is defined by 

(3.2) Tx(p) := exp (~ 戸-l)Pp羞糾s;p)ls=O)

It depends on the metrics on X and EP. However, if dim(X) is odd and p acyclic, which 
means that H*(X, E砂=0, then Tx(p) is independent of the metrics [29]. The analytic 
torsion has a topological counterpart. This is the Reidemeister torsion T悶P(p)(usually it 
is denoted by Tx(p)), which is defined in terms of a smooth triangulation of X [40], [27]. 
It is known that for unimodular representations p (meaning that I detp(,)I = 1 for all 
,E町 (X))one has the equality 

(3.3) Tx(p) = T翌(p)
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[7], [27]. In the general case of a non-unimodular representation the equality does not hold, 
but the defect can be described [6]. 

In [4], [21], [36], the equality (3.3) has been applied to study the growth of torsion in 
the cohomology of co-compact arithmetic groups. A key result used in this context is the 
approximation of£2-torsion (see [20], [22] for its definition) for compact locally symmetric 
spaces. This means the following. Let G be a real connect~d semisimple Lie group of 
non-positive type, Kam訟 imalcompact subgroup of G and X = G / K the corresponding 
symmetric space of non-po迅ivecurvature. Let r C G be a co-com~ 空cttorsion free discrete 

subgroup. Then r acts on X properly discontinuously and X = r¥X is a locally symmetric 
manifold. Let {じhENbe a sequence of normal subgroups of finite index of r satisfying 

rj+1 C r and n T = { } Let Xj r ¥X. Th'. 
J J e . ・1s  1s normal covenng of X of finite 

index. Let T : G→ GL(V) be a finite dimensional representation. Let Pi := Tlrj and let 

八 (T)denote the analytic torsion of Xj with respect to Pi・Let 0: G→ G be the Cartan 
involution and put Te := To 0. Then in [4] Bergeron and Venkatesh proved the following 
theorem concerning the approximation of the£2-torsion. 

Theorem 3.1. Assume that T芦T0.Then 

log八 (T)
(3.4) lim 

j→oo 肛：じ］
= vol(X)t~\T). 

We note that the right hand side is the logarithm of the£2-torsion of X and T. This is a 
key result for the study of the cohomology of arithmetic groups [4]. 

In view of the potential applications to the cohomology of arithmetic groups, it is very 
desirable to extend Theorem 3.1 to the non-compact case. The first problem one faces 
is that the corresponding Laplace operators have a nonempty continuous spectrum and 
therefore, the heat operators are not trace class and the analytic torsion can not be defined 
as above. This problem has been studied by Raimbault [39] for hyperbolic 3-manifolds and 
in [35] for hyperbolic manifolds of any dimension. 

So let G = S0°(n, 1), K = SO(n) and X = G/ K. Equipped with a suitably normalized 

G-invariant metric, X becomes isometric to the n-dimensional hyperbolic space lHI匹 Let

r C G be a torsion free lattice. Then X = r¥X is an oriented n-dimensional hyperbolic 
manifold of finite volume. As above, let T: G→ GL(V) be a finite dimensional complex 
representation of G. The first step is to define a regularized trace of the heat operators 
e―t今 (T).To this end one uses 8Jl appropriate height function to truncate X at sufficient 

high level Y > Yo to get a compact manifold X(Y) C X with boundary 8X(Y), which 
consists of a disjoint union of n -1-dimensional tori. Let KP,T(t, x, y) be the kernel of the 
heat operator e―t今 (T).Using the spectral resolution of今(T),it follows that there exist 

a(t) E股 suchthat fx(Y) tr KP,T(t,x,x) dx -a(t) logY has a limit as Y→ oo. Then we 

define the regularized trace as 

(3.5) Trreg (e―t△ p(T)) := J隠 (L(Y)tr KP,T(t, x, x) dx -a(t) logY). 
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We note that the regularized trace is not uniquely defined. It depends on the choice 
of truncation parameters on the manifold X. However, if X。=f。＼町 isgiven and if 
truncation parameters on X。arefixed, then every finite covering X of X。iscanonically 
equipped with truncation parameters, namely one simply pulls back the height function 
onX。toa height function on X via the covering map. 

Let 0 be the Cartan involution of G with respect to K = SO(n). Let Te= To 0. If T学Te,
it can be shown that Tr reg (e―t△土）） is exponentially decreasing as t→ oo and admits 
an asymptotic expansion as t→ 0. Therefore, the regularized zeta function (reg,p(s; T) of 
△古） can be defined as in the compact case by 

(3.6) 
1 00 

(reg,p(s; T) := f(s) 1 Trreg (e―t△古）） ts-i dt. 

The integral converges absolutely and uniformly on compact subsets of the half-plane 
Re(s) > n/2 and admits a meromorphic extension to the whole complex plane, which 
is holomorphic at s = 0. So in analogy with the compact case, the regularized analytic 
torsion Tx(T) E恥+can be defined by the same formula (3.2). 

In even dimension the analytic torsion is rather trivial. Therefore, we assume that n = 
2m + 1. Furthermore, for technical reasons we assume that every lattice r C G satisfies 
the following condition: For every「-cuspidalparabolic subgroup P of G one has 

(3.7) rnP=rnNp, 

where Np_ denotes the uni potent radical of P. Let r。bea fixed lattice in G and let 

X。＝応¥X.Let rj, j EN, be a sequence of finite index torsion free subgroups of r。.This 
sequence is called to be cuse, unif arm, if the tori which arise as cross sections of the cusps 

of the manifolds X J : =几¥Xsatisfy some uniformity condition (see [35, Definition 8.2]). 

One of the main results of [35] is the following theorem which may be regarded as an 
analog of Theorem 3.1 for oriented finite volume hyperbolic manifolds. 

Theorem 3.2. Let r。bea lattice in G and let ri, i E N, be a sequence of finite-index 
normal subgroups which is cusp uniform and such that each ri, i 2 1, is torsion-free and 
satisfies (3. 7). /flimi→ oo[恥： ri] = oo and if each ro E r。—{1} only belongs to finitely 
many ri, then for each T with T =J Te one has 

(3.8) lim 
logTxJT) 

・ [r:ri] 
=t畠(T)vol(X。)．

t→OO 

In particular, if under the same assumptions「iis a tower of normal subgroups, i.e. ri+l cニ
ri for each i and n;ri = {1}, then (3.8) holds. 

This theorem has applications to the study of the growth of torsion in the cohomology 
of congruence subgroups of S0°(n, 1) [37]. It is based on [38], which establishes a relation 
between analytic torsion and topological torsion similar to (3.3) with an additional defect 
term which can be controlled. 
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The next goal is to extend Theorem 3.2 to higher rank groups. In joint work with J. Matz 
[25] we have defined the analytic torsion for a locally symmetric space defined by a quasi-
split reductive group G and a congruence subgroup of G(Q). For simplicity assume that 
G is a connected semisimple algebraic group over Q. A翌umethat G is not anisotropic. 

Let K00 be a maximal compact subgroup of G(股）. Put X := G(恥）/ K00. Let Kf C G(A) 
be an open compact subgroup. Then we consider the adelic quotient 

X(K1) := G(Q)¥(X x G(的））/K1. 

Recall that X(K1) is the disjoint union of finitely many locally symmetric spaces r; ¥X, 
i = 1, …，l. If G is simply connected, then by strong approximation we have 

X(K1) = r図
where r = (G(艮） x K1) n G(Q). We will assume that K1 is need so that X(K1) is a 
manifold. Let T: G(艮）→ GL(Vr) be a finite dimensional complex representation. Let 
且→ X(Kりbethe associated flat vector bundle and△ p(T) the Laplacian on p-forms 
with values in Er. To define the regularized trace Trreg(e―t△ p(r)) we proceed as above, 
using Arthur's truncation. Let lge。bethe geometric side of the Arthur trace formula. It 
turns out that 

Tr reg(e―t今 (r))= Jgeo(<P戸）

for an appropriate test function <fa戸EC00(G(A)) which吐theinfinite place is given by 

the heat kernel for the Laplace operators on p-forms on X with values in the lifted flat 

bundle且.This is the key fact that allows us to determine the asymptotic behavior of the 
regularized trace as t→ 0 and t→ oo. Then we can use the analogous formula (3.6) to 
define the regularized zeta function and the analytic torsion. 

N f ow we can ormulate our mam result. Let n > 2. Put Xn = SL(n皇）/SO(n). 
Let Kn(N) c SL(n,A) be th . e prmc1pal congruence subgroup of level N~3. Put 

Xn(N) := X(Kn(N)). Note that Xn(N) = r(N)¥Xn, where r(N) c SL(n, Z) is the 
principal congruence subgroup of level N. Then J. Matz and I proved in [24] the following 
theorem 

Theorem 3.3. Let TE Rep(SL(n皇）） • Assume that T~Te. Then for n~2 we have 

lim 
log 7: ふ (N)(T)

= t-
(2) 

N→ co vol(ふ (N)) ふ
(T). 

Moreover, if n > 4, then t翌(T)= 0, and ifn = 3,4, then t図(T)> 0. 

(2) 
Remark 3.4. The number t -(p) can be defined for every finite dimensional representation 

X 
(cf. [4, 4.4]). Moreover, it can be computed explicitly [4, §5]. For example, for the trivial 
representation 7i。ofSL(n, 政）， n= 3,4, one has 

誓(To)= 7r -'t図(To)= 1241r_ 
2 vol(XfI) 45 vol(Xg) 
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[4, 5.9.3, Example 2]. Here 均 denote~the compact dual ofぷ， andthe metric on均
is the one induced from the metric on Xj. For the second equality we used that SL(4, 股）
is a double covering of S0(3, 3), and as explained at the beginning of section 5.8 in [4], 

the corresponding number for S0(3, 3) agrees with that for S0(5, 1). Finally, t~;(To) is 

computed in [4, 5.9.3, Example 1]. 

The next goal is to extend Theorem 3.3 to other reductive groups and use it to study 

the growth of torsion in the cohomology of congreunce subgroups similar to the case of 

hyperbolic manifolds. 

REFERENCES 

[1] J. Arthur, A trace formula for reductive groups. I. Terms associated to classes in G(IQ), Duke 
Math. J. 45(4), 911 -952, (1978). 

[2] J. Arthur, The local behavior of weighted orbital integrals, Duke Math. J. 56 (1988), 223-293. 
[3] James Arthur. On a family of distributions obtained from orbits. Canad. J. Math., 38(1):179-

214, 1986. 
[4] N. Bergeron, A. Venkatesh. The asymptotic growth of torsion homology for arithmetic groups. 

J. Inst. Math. Jussieu 12, no. 2, 391 -447. 
[5] N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators. Grundlehren Text Editions. 

Springer-Verlag, Berlin, 2004. 
[6] J.-M. Bismut, W. Zhang, An extension of a theorem by Cheeger and Muller. With an appendix 

by Franois Laudenbach. Astrisque No. 205, (1992). 
[7] J. Cheeger. Analytic torsion and the heat equation. Ann. of Math. (2) 109 (1979), no. 2, 259-

322. 
[8] H. Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Differential Geom. 

17 (1982), no. 2, 239-253. 
[9] J.J. Duistermaat, V.W. Guillemin, The spectrum of positive elliptic operators and periodic 

bicharacteristics, Invent. Math. 29 (1975), no. 1, 39-79. 
[10] T. Finis and E. Lapid, On the spectral side of Arthur's trace formula―combinatorial setup. 

Ann. of Math. (2), 174(1) (2011), 197-223. 
[11] T. Finis, E. Lapid, An approximation principle for congruence subgroups II: application to the 

limit multiplicity problem, 2015, arXiv:1504.04795. 
[12] T. Finis, E. Lapid, On the analytic properties of intertwining operators I: global normalizing 

factors. Bull. Iranian Math. Soc. 43 (2017), no. 4, 235-277. 
[13] T. Finis, E. Lapid, On the remainder term of the Weyl law for congruence subgroups of Chevalley 

groups, arXiv:1908.06626. 
[14] T. Finis, E. Lapid, and W. Muller, On the spectral side of Arthur's trace formula absolute 

convergence, Ann. of Math. (2), 174 (2011), 173-195. 
[15] T. Finis, E. Lapid, and W. Muller, Limit multiplicities for principal congruence subgroups of 

GL(n) and SL(n). J. Inst. Math. Jussieu 14 (2015), no. 3, 589-638. 
[16] P. B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Second 

edition. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995. 
[17] L. Hormander, The spectral function of an elliptic operator. Acta Math. 121 (1968), 193-218. 
[18] E. Lapid, W. Muller, Spectral asymptotics for arithmetic quotients of SL(n,R)/SO(n), Duke 

Math. J. 149 (2009), no. 1, 117-155. 
[19] E. Lindenstrauss, A. Venkatesh, Existence and Weyl's law for spherical cusp forms, Geom. 

Funct. Anal. 17 (2007), no. 1, 220-251. 



126

[20] J. Lott, Heat kernels on covering spaces and topological invariants, J. Differential Geom. 35 
(1992), no. 2, 471-510. 

[21] S. Marshall, W. Miiller, On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds. 
Duke Math. J. 162 (2013), no. 5, 863-888. 

[22] V. Mathai, L2-analytic torsion, J. Funct. Anal. 107 (1992), no. 2, 369-386. 
[23] J. Matz, W. Miiller, Analytic torsion of arithmetic quotients of the symmetric space 

SL(n,R)/SO(n). Geom. Funct. Anal.27 (2017), no. 6, 1378-1449. 
[24] J. Matz, W. Miiller, Approximation of L2-analytic torsion for arithmetic quotients of the sym-

metric space SL(n, JE.)/ SO(n). arXiv:1709.07764, to appear in J. Inst. Math. Jussieu. 
[25] J. Matz, W. Miiller, Analytic torsion for arithmetic locally symmetric manifolds. in preparation. 
[26] S.D. Miller, On the existence and temperedness of cusp forms for Sら(Z),J. Reine Angew. 

Math. 533 (2001), 127-169. 
[27] W. Miiller, Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math. 28 (1978), 

no. 3, 233-305. 
[28] W. Miiller, The trace class conjecture in the theory of automorphic forms. Ann. of Math. (2), 

130(3) (1989), 473-529. 
[29] W. Miiller, Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc. 

6 (1993), no. 3, 721-753. 
[30] W. Miiller, and B. Speh, Absolute convergence of the spectral side of the Arthur trace formula 

for GLn, Geom. Funct. Anal., 14 (2004), 58-93. With an appendix by E. M. Lapid. 

[31] W. Miiller, Weyl's law for the cuspidal spectrum of SLn, Ann. of Math. (2), 165 (1) (2007), 
275-333. 

[32] W. Miiller, On the spectral side of the Arthur trace formula, Geom. Funct. Anal., 12 (2002), 
669-722. 

[33] W. Miiller, Weyl's law in the theory of automorphic forms, In: Groups and analysis, 133 -163, 
London Math. Soc. Lecture Note Ser., 354, Cambridge Univ. Press, Cambridge, 2008. 

[34] W. Miiller, Asymtotics of automorphic spectra and the trace formula, Families of automorphic 
forms and the trace formula, Simons Symposium, Springer, 2016, pp. 477 -529. 

[35] W. Miiller, J. Pfaff, The analytic torsion and its asymptotic behavior for sequences of hyperbolic 
manifolds of finite volume, J. Funct. Anal. 267 (2014), no. 8, 2731-2786. 

[36] W. Miiller, J. Pfaff On the growth of torsion in the cohomology of arithmetic groups. Math. 
Ann. 359 (2014), no. 1-2, 537-555. 

[37] W. Miiller, F. Rochon, Exponential growth of torsion in the cohomology of arithmetic hyperbolic 
manifolds, arXiv:1903.06207. 

[38] W. Miiller, F. Rochon, Analytic torsion and Reidemeister torsion of hyperbolic manifolds with 
cusps, arXiv:1903.06199. 

[39] Jean Raimbault, Asymptotics of analytic torsion for hyperbolic three-manifolds, 2012, 

arXiv:1212.3161. 
[40] D.B. Ray and I.M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Advances in 

Math. 7 (1971), 145-210. 
[41] P. Sarnak, On cusp forms, In: The Se/berg trace formula and related topics (Brunswick, Maine, 

1984), 393-407, Contemp. Math., 53, Amer. Math. Soc., Providence, RI, 1986. 
[42] P. Sarnak, S.-W. Shin, N. Templier, Families of L-functions and their Symmetry, 2014, 

arXiv:1401.5507. 

UNIVERSIT入TBONN, MATHEMATISCHES lNSTITUT, ENDENICHER ALLEE 60, D -53115 BONN, GER-
MANY 

E-mail address: muellercmath. uni -bonn. de 




