
146

ON  COUNTING CERTAIN PRINCIPALLY POLARIZED 

SUPERSPECIAL ABELIAN SURFACES OVER lFP 

JIANGWEI XUE AND CHIA-FU YU 

ABSTRACT. This is the survey paper [25] of the joint work in progress. We 
study the principally polarized superspecial abelian surfaces over the prime 
finite field lFp with Frobenius endomorphism 7r satisfying召=p. The set of 
isomorphism classes of such objects is described by a disjoint union of double 
coset spaces, and the cardinality of each such space is calculated using the 
Selberg trace formula. 

1. INTRODUCTION 

Throughout this paper, p EN denotes a prime number, and q EN a power of p. 

An algebraic integer 1r E (Q c (C is called a Weil q-number if I0"(1r)I =汎 forevery 
embeddingび： (Q(1r)'---t C. By the Honda-Tate Theorem [18, Theorem 1], there 

is a bijection between the isogeny classes of simple abelian varieties over lF q and 

the Gal((Q/(Q)-conjugacy classes of Weil q-numbers. Letふ bea simple abelian 
variety over lFq in the isogeny class corresponding to (the conjugacy class of) a Weil 

q-number 1r. Both the dimension g(1r) := dim(ふ） and the endomorphism algebra 

End凡（ふ）：= EndlFq (ふ）翫 (Qare invariants of the isogeny class and can be 

determined explicitly from 7r (ibid.). Recall that End仇(X砂isa finite-dimensional 

central division (Q(7r)-algebra. 
It is well known [31, 4.1] that for each fixed g 2'. 1, there are only finitely many 

g-dimensional abelian varieties over lFq up to lFq-isomorphism. Let Isog(1r) be the 

finite set of isomorphism classes of simple abelian varieties X /氏 inthe isogeny 
class corresponding to 1r. Similarly, let PPAV(1r) be the set of isomorphism classes 

of principally polarized abelian varieties (X, 入）／阻'qwith the 恥—isomorphism class 
[X] E Isog(1r), which is again finite since it corresponds to a subset of lFq-points in 

the Siegel moduli scheme dg(1r) [3, Theorem 1.4] (see also [9, Part III] and [12]). 
Therefore, it is natural to ask: 

Question. How to compute the cardinalities IIsog(1r) and IPPAV(1r)I? 

In this note, we provide the explicit formulas for I PP AV (1r) I in the case 7r =士.jp.

The computation relies on that of IIsog(.jp) I, which was previously calculated in 

[23]. For simplicity, h(d) denotes the class number of the quadratic field (Q(v1d) for 
every square-free integer d E Z. 

Theorem 1.1. (1) I PPAV(y'P) = 1, 1, 2 for p = 2, 3, 5, respectively. 
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{2) For p 2:'. 13 and p三 1(mod 4), we have 

(1.1) I PPAV(vP)I = (9 -2ビ））麗;1)+ 3h~-p) + (い(~)) h(~3p) 

{3) For p 2:'. 7 and p三 3(mod 4), we have 

(1.2) I PPAV(vP)I = (パー1)+ (11 -3G)) h(;p) 十 h(~3p).

Here (戸） denotes the Legendre symbol, and the special valu心 (-1)of the Dedekind 

zeta function (p(s) can be calculated by the Siegel's formula /30, Table 2, p. 70}. 

The Weil p-numbers士vPare exceptional in several ways. Given a Weil q-

number 1r, the number field (Q(1r) is a CM-field (i.e. a totally imaginary quadratic 

extension of a totally real field) unless 1r =士汲.First, suppose that 1rヂ士,.jq.
From [26, Proposition 2.2], one has 

(1.3) IIsog(1r)I = N1r• h((Q(1r)), 

where N1r is a positive integer, and h((Q(1r)) is the class number of (Q(1r). It should 
be mentioned that N1r is highly dependent on 1r and can be challenging to calculate 
explicitly in general. See the discussions in [12, §3.2] and [24, §2.4]. The proof of 

(1.3) relies on a strong approximation argument, which fails for the Weil q-numbers 
士yCJ.The distinction is further amplified in the case q = p. If 7r is a Weil p-number 

distinct from土fa,then by [22, Theorem 6.1], 

(1.4) End凡（ふ） = (Ql(1r) 

for every abelian varietyふ inthe isogeny class corresponding to 1r, while (1.4) 
does not hold for the Weil p-numbers的の.Consequently, many theories for abelian 

varieties over恥 haveto make an exception for the isogeny class corresponding to 

士vP・See[2, §1.3] and [12, Theorem 0.3]. 
Next, suppose that 1r =土y'q. Write q = pa with a E N. There are two 

cases to consider. If a is even, thenふ isa supersingular elliptic curve with 

End ゜lF (X1r) ,::,,, Dp,oo, the unique quaternion ({]-algebra ramified exactly at p and oo. 

It is known [22, Theorem 4.2] that the endomorphism ring EndlFv (ふ） is a maximal 

order in Endt (ふ） for everyふ inthis case. Fix a maximal order 0。inDp,oo 

and write a = 2m. It is a classical result of Deuring and later re-interpreted by 

Waterhouse [22, Theorem 4.5] that 

IPPAV(士炉）I = IIsog(士炉）I= h(O。)

(1.5) 

=p~~/+i(1 ー(~))+~い（三）），
where h(O。)is the class number of 0。;see [20, p. 26]. 

If a is odd, thenふ isa supersingular abelian surface, and it is even super-

special [10, §1.7] if a = 1 (i.e. q = p). Similar to the previous case, we have 

En悲(X1r)c:::-D00→ 2, the unique quaternion (Q)(.jp)-algebra ramified exactly at 
the two infinite places of (Q)(.Jp) and splits at all finite places. Therefore, Theo-

rem 1.1 may be regarded as a generalization of (1.5) in the prime field case. Com-

pared with the elliptic curve case, EndIF0 (ふ） is no longer necessarily a maximal 

order in Endt (ふ） even in the case a = l [22, Theorem 6.2], which causes new 
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difficulties. The formula for IIsog(y'p") I with a odd is given in [23, Theorem 1.2] 
for a= l and in [26, Theorem 4.4] for a general odd a. 

2. METHOD OF CALCULATION 

Given an arbitrary Weil q-nurnber 1r, there are several ways to calculate IIsog(1r)I 

and IPPAV(1r)I-Kottwitz expresses IPPAV(1r)I in terms of orbital integrals in [9, 
§12]. The method for calculating IIsog(1r)I is covered by Lipnowski and Tsirnerrnan 
in [12, §3], where they also give nice bounds for the size of Isog(1r). For the purpose 
of this note, we follow the method in [26], which is previously developed by the 

second named author in [29]. While the idea is similar to that of [12, §3], the 
present method treats both the unpolarized case and the principally polaried case 

uniformly and expresses the cardinalities as sums of class numbers of linear algebraic 
groups over (Ql. The key part of this method works not only over finite fields, but 

also over any finitely generated ground field k (that is, finitely generated over its 
prime subfield). 

Given an abelian variety X over k and a prime number£(not necessarily distinct 

from the char(k)), we write X(£) for the£-divisible group回X記]associated to 
X. A (Q)-isogeny cp : 凡→ ふ betweentwo abelian varieties over k is an element 

cp E Hom以Xi,ふ） @ (Ql such that N cp is an isogeny for some N E N. Similarly, 
one defines the notion of (Qlp-isogenies between£-divisible groups. It is clear that cp 

induces a (Qlp-isogeny四：ふ(£)→ X紅） for each£, and四 isan isomorphism for 
almost all£. 

Fix an abelian variety X。overk. Two (Ql-isogenies cp1 : X1→ X。and四：ふ→
X。aresaid to be equivalent if there exists an isomorphism 0 : ふ → ふ suchthat 

四 o0 = cp1. Let Qisog(X0) be the set of equivalence classes of (Ql-isogenies (X, cp) 
toX。.By an abuse of notation, we still write (X, cp) for its equivalence class. Note 
that Qisog(X。)contains a distinguished element (X。,id0), where id。isthe identity 

map of X。.For any member (X 1土） E Qisog(Xo), we have a bijection 

(2.1) Qisog(Xo)→ Qisog(ふ）， (X,cp) i---+ (X, cp占）．

Therefore, we may change the base abelian variety X。tosuit our purpose. Similarly, 

one defines Qisog(X。化）） for every prime£. 
Let G be the algebraic group over (Ql that represents the functor 

R→ G(R) := (End以Xo)匹 Rf

for every commutative (Qi-algebra R. It is clear that G depends only on the isogeny 

class of X。.We have G⑫) = (Endk(X。化））露 ≪Jlc)xby Tate's theorem (due to 

Tate, Zarhin, Faltings and de Jong). Let的：= Z翫 (Qlbe the ring of finite adeles. 

There is an action of G(At) on Qisog(Xo) given by the following lemma. 

Lemma 2.1 ([26, Lemma 5.2]). For any (X, cp) E Qisog(X。)and any a= (ac) E 

G(的）， thereis a unique member (X', cp') E Qisog(Xo) such that 

(X'(£)砂） = (X(£), accpc) 

in Qisog(X0(£)) for every prime£. 

We equip Qisog(X。)with the discrete topology. Then the action of G(的）
on Qisog(Xo) is continuous and proper. Indeed, the stabilizer of any (X, cp) E 

Qisog(X0) is an open compact subgroup of G(的）．
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Definition 2.2. Let H~G be an algebraic subgroup of G over (Q. Two members 

(X心） E Qisog(X。)for i = 1, 2 are said to be in the same H-genus if there exists 
a EH(的） such that (X2, 四） = a(X1,t.p1). They are said to be H-isomoryhic if 
there exists a E H((Q) such that (X2, 四） = (X1, a叫

p ropos1t10n 2.3. Let <§H(X。)~Qisog(X0) be the H-genus containing (X。,ido), 
and知 (X0)be the set of H-isomo叫 ismclasses within <§H(X0). Put U瓜Xo):= 

StabH(的)(X。,id0), the stabilizer of (X。,ido) in H(的） • Then there is a bijection 

A瓜Xo) ←→ H((Q)¥H(的）／仰(Xo),

sending the H-isomoryhic class [(X。,id0)] to the identity class on the right. 

From [16, Theorem 8.1], A爪X0)is a finite set. Proposition 2.3 turns out to be 
quite versatile. By varying H, it can be used to count abelian varieties with various 

additional structures. We give two examples below. 

First, let us look at the case H = G. Two members (X心 i)E Qisog(X。)for 
i = 1, 2 are said to be in the same genus if X心） is isomorphic to X2化） for every 
prime C. It is clear that (Xぃ叫 fori = 1, 2 are in the same genus if and only if 

there exists a E G(的） such that (X2心a2)= a(X1, t.p1)-Similarly, X1 andふ are
isomorphic if and only if there exists a E G((Q) such that (X2心） = (Xi, at.pi)-
Therefore, Proposition 2.3 recovers [26, Proposition 5.4] in the case H = G. 

Next, we study polarized abelian varieties. Let xv be the dual abelian variety of 

X. A (Q-isogeny入： X→ xv is said to be a (()!-polarization if N入isa polarization 

for some N E N. For each C, the (()!-polarization入inducesa≪:l!c-quasipolarization 
of X(C) (see [14, §1] and [10, §5.9]). An isomorphism (resp. (Q-isogeny) from a (Q-

polarized abelian variety (X凸） to another (X2人） is an isomorphism (resp. (Q-

isogeny) t.p : 凡→ X2 such that 

(2.2) ふ=t.p*入2:='P 。入20'P・

Fix a (()!-polarized abelian variety (X。,>-o)-Once again two (Q-isogenies'Pi : (Xi, >.i)→ 
(X。，柚） for i = 1, 2 are said to be equivalent if there exists an isomorphism 

0: (X凸）→ (X凸） such that'Pl = t.p2 o 0. We define Qisog(X。，入。） to be 
the set of equivalence classes of all (Q-isogenies (X, 入，t.p)to (X。,>.0). The forgetful 

map (X, 入，ゃ）→ (X, t.p) induces a bijection: 

(2.3) F(入0):Qisog(X。'>-o)→Qisog(X。)，

whose inverse is given by (X, t.p)→ (X,t.p*入。平）. Let ci~G be the algebraic 
subgroup over (Q that represents the functor 

(2.4) R→ Gi(R) := {g E (Endk(X。)図 R)xI gv。入。 og=入。｝

for every commutative (()!-algebra R. 

Two members (Xi入ふ） E Qisog(X。,>.0) for i = 1, 2 are said to be in the 

same genus if (Xi(C), ふ，£)is isomorphic to (X紅），入2,c)for every prime C. As 
before, one shows that (Xi, 入ぃ叫 arein the same genus if and only if (ぶり
are in the same Gi-genus, and (Xi, 入i)are isomorphic if and only if (Xぃ叫 are
訊 isomorphic.Therefore, when H = ci, Proposition 2.3 recovers a partial case 

of [26, Theorem 5.8]. 

Lemma 2.4 ([26, Remark 5.7]). Let飢X。，入。）こ Qisog(X。,>.0) be the genus con-

taining (X。，入。，id0). Assume that入。 isan integral polarization on X。,i.e. not 
just a (()!-polarization. Then入isa integral polarization on X for every member 

(X, 豆） E飢X。，柚）. If moreover入。 isprincipal, then so is入．
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Let us return to the finite field case. Assume that k = lFq, and 1r is a Weil 
q-number. It is possible that PPAV(1r) = 0 (see [8, Theorem 1]). Suppose that this 
is not the case so that there is something to count. Combining Lemma 2.4 and 
Proposition 2.3, we may compute IPPAV(1r)I in the following steps: 

(1) Separate PPAV(1r) into (Ql-isogeny classes. 
(2) For each (Ql-isogeny class in PPAV(1r), separate it further into genera (Note 

that the notation of genus need not depend on the (Ql-isogeny cp). This 
amounts to classifying principal quasi-polarized£-divisible groups of certain 
kind for each prime C. 

(3) By the above discussion, the cardinality of genus in PPAV(1r) represented 
by a member (X。，入。） is equal to the class number 

(2.5) IG1((Ql)¥G1(A1)/Ua1 (Xo)I-

(4) Varying (X。,.Xo) genus by genus, we obtain IPPAV(1r)I by summing up all 
such class numbers. 

In subsequent sections, we apply these steps to the Weil p-number 1r = v'P. 

3. CLASSIFICATION OF {Ql-ISOGENY CLASSES AND GENERA 

From now on, we fix the Weil p-number 1r = v'P and work over the prime finite 
field lFp. In particular, all isogenies, polarizations ect. are defined over lFp. As 
mentioned in the Introduction, every X/恥 inthe isogeny class corresponding to 
1r = v'P is a superspecial abelian surface with 

(3.1) Endi (X) = D 001 ,002 l 

the unique quaternion (Ql(y'P)—algebra ramified exactly at the two infinite places of 
(Ql(y'P) and unramified at all finite places. For simplicity, we set 

(3.2) F = (Ql(vlfJ) and D = Doo1,002・

The ring of integers of F is denoted by Op. 

3.1. The uniqueness of (Ql-isogeny class and nonemptiness of PPAV(vifJ). 
Since D is totally definite over F, there is a unique positive involution on D, 
namely, the canonical involution x→ 元：= Tr(x) -x (see [13, Theorem 2, §21]). 
It follows that the Rosati involution induced by any polarization入onX coincides 
with the canonical involution. Let (X。,>.0) be a member in PPAV(vlfJ), whose 

nonemptiness is guaranteed by Lemma 3.2 below. The groupび in(2.4) is just the 
group of reduced norm one, that is, for any commutative (Ql-algebra R, 

(3.3) G1(R) = {g E (D図 R)xI Nr(g) = gg = 1}. 

In particular, we have 

(3.4) Ua, (Xo) =び：= {x E 8 := OQ<;lzZ I Nr(x) = 1}, where O = EndlFp(Xo). 

Lemma 3.1. Fo'f'any two Q-pola'f'ized abelian su'f'faces (X凸）／恥 withXi in the 
isogeny class corresponding to 1r = _jp, the'f'e exists a Q-isogeny <p: X1→ X2 such 
that r_p* >.2 =ふ．

This lemma can be reduced to [28, Corollary 10.3]. It shows that there is a unique 
Q-isogeny class of Q-polarized abelian varieties for the Weil number 7r = _jp. 

Lemma 3.2. PPAV(_jp)ヂ0.
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Proof. Let E/lF炉 bea supersingular elliptic curve with Frobenius endomorphism 
7rE = p, and入E be the canonical principal polarization on E. We define 

(3.5) (Yふ,):=ResJFv2/JFv(E, 知）．

Then [(Yふ）] E PPAV(,jp). Alternatively, one may apply [8, Theorem 5]. ロ

In fact, more can be said about (Yふ） in (3.5). By functoriality, we have 

(3.6) EndJFP2 (E)翫 Z障］こ EndlFp(Y). 

These two rings differ only at the prime p by [7, Remark 4, §2.1]: 

(3.7) EndJFP2 (E) 露 Z[✓'fJl[l/p]'.:::C'EndlFp(Y) 露 Z[l/p].

Recall that EndJFP2 (E) is always a maximal Z-order in En叫(E)'.:::C'Dp,oo,the 

unique quaternion Q-algebra ramified exactly at {p, oo}. On the other hand, if p季1

(mod 4), then OF= Z[,Jp], and EndlFp (Y) is a maximal OF-order in Endt (Y)'.:::C'D 

by [22, Theorem 6.2]. It follows that (3.6) is a strict inclusion in this case. Nev-

ertheless, EndlFp (Y) is uniquely determined by EndJFP2 (E) thanks to the following 

lemma (see [11, Lemma 2.11]): 

Lemma 3.3. Let p E N be an arbitrary prime number. For every maximal Z-order 

O。inDp,oo, there exists a unique maximal OF-order M(Vo) in D = Dp,oo図 F
containing V。露 OF・

In general, given a quaternion algebra B over a number field L, we write Tp(B) 
for the finite set of Bx-conjugacy classes of maximal OL-orders in B. The Bx-

conjugacy class of a maximal OL-order VこBisdenoted by [V]. From Lemma 3.3, 
there is a well-defined map: 

(3.8) M : Tp(Dp,oo)→ Tp(D), [00] t-+ [M(V。)］．

On the other hand, if p辛1(mod 4), we have a canonical map 

(3.9) w: PPAV(✓-fJ) → Tp(D), (X, 入）→ [EndlFp (X)] . 

From [22, Theorem 3.14], every maximal Z-order in Dp,oo is realizable as EndlF 2 (E) 

for some elliptic curve E /和 with咋=p. It follows that 

(3.10) img(M)こimg(w) if p羊1 (mod 4). 

Example 3.4. For p = 3, we have ITp(D)I = 2 by [11, Theorem 1.6], so 

Tp(D) = {[(())』,[(())叶}, with (()){ /0芦'.:::C'D12, (())訂o;,'.:::,:'S4.
On the other hand, ITp(D3,00)I = 1, and we can show that img(M) = {[(())』}.It 
will be shown in Lemma 4.1 that img(w) is a proper subset of Tp(D), so we have 

img(w) = {[叫｝．

3.2. The genera. For simplicity, let A=  Z[,Jp]. Note that 

(3.11) [OF : A] = { 2 if p三 1 (mod 4); 
1 otherwise. 

For each prime£, we use a subscript£to indicate£-adic completion. For example, 

Ac denotes the£-adic completion of A, i.e. Ac = A翫勾

In general, let k be a perfect field of characteristic p > 0, and X be an abelian 

variety over k. For each prime£=/= p, the Tate module Tc(X) =加直[『]is a 
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free Zrmodule of rank 2dim(X) with a continuous action by Gal(k8/k), where k8 
is a separable closure of k. The£-divisible group X(C) is uniquely determined by 
T,(X), and vice versa. Similarly, the p-divisible group X(p) is uniquely determined 
by its (covariant) Dieudonne module M(X). A polarization入onX induces a Weil 
pairing at each prime: 

(3.12) 

(3.13) 

e;.,g : Tg(X) x Tg(X)→勾(1),

e入，P : M(X) x M(X)→ w, 
W=Jp, 

where勾(1)=皿匹(ks),and W = W(k) denotes the ring of Witt vectors over 
k. The Weil pairings are alternating, nondegenerate, and satisfy the following 
conditions: 

(i) e入，eis Gal(k8/k)-equivariant; 
(ii) e入，p(Fx,y)= e入，p(x,Vy t for all x, y E M(X). 

Here F and V denote respectively the Frobenious and Verschiebung rnap on M(X), 
and r, the Frobenious automorphism of W. The polarization入isprincipal if and 
only if the Weil pairings are perfect at every prime. 

Now we return to the case that k = lFp, and X is an abelian surface in the 
isogeny class corresponding to 7r = y'P . At every prime£cJ p, the Galois action 
equips乃(X)with an Ac :=勾Jp]-modulestructure. Similarly, at the prime p, 
we have W(lFp) = Zp, and the Dieudonne module M(X) is nothing but a torsion-
free Zp訊 ]-modulewith ran屈 M(X)= 4. Without lose of generality, we set 
叩X)= M(X) and£is no longer necessarily distinct from p. 

Recall that two members Xi for i = 1, 2 in Isog(y'P) are in the same genus if 

ふ(£)~X紅） for every prime£, or equivalently, Te(X1)~Te(ふ） as Ac-modules 
for every prime£. From (3.11), Ac = 0凡 holdsin all cases except when p三 1
(mod 4) and£= 2. When£c/ 2, we have 

(3.14) Te(X)~0危£

for every member X E Isog(y'P). 
First suppose that p羊1(mod 4). Then (3.14) holds for£= 2 as well. It follows 

that Isog(y'P) forms a single genus in this case, which we denote1 by A岬.Since 
EndIFp (X) @z Ze~End叫刀(X))~Mat2(0F£) for every£, we see that End(X) is 

a maximal order in End0(X)~D. 
Next, suppose that p三 1(mod 4). By the above discussion, two members of 

Isog(y'P) belong to the same genus if and only if their Tate modules at£= 2 

are isomorphic as A2-modules. Since [O凡： A吋=2, we have three different 
isomorphism classes of花(X)as listed in Table 3.1, and hence three different genera 
A器，A翌 andA岬. Here the subscript i in A岬 fori > 1 measures the index of 
EndIFp(X)⑳ Z2 in a maximal Op2-order containing it. 

Next, we classify the genera in PPAV(y'P), consider the forgetful map 

(3.15) PPAV(y'P)→ Isog(y'P), (X, 入）→ X. 

Recall that two members (Xi, Ai)i=l,2 of PPAV(y'P) are in the same genus if 
(X1(£), ふ，c)is isomorphic to (X2化），入2,e)for every prime£. Clearly, if (Xい入』i=l,2
lie in the same genus in PPAV(y'P), then the Xi's lie in the same genus in Isog(y'P). 

If p 三 1(mod 4), we define2 A匹こ PPAV(y'P)to be the pre-image of A'!-n 

1 Here the superscript "un" means "unpolarized". 
2 Here the superscript "pp" means "principally polarized". 



153

JIANGWEI XUE AND CHIA-FU YU 

TABLE 3.1. Three genera in the case p三 1(mod 4) 

花(X) A2 2 A2 EB〇凡 (0凡戸

genera Aun 
16 

Aun 
8 

Aun 
1 

EndlFp (X) @ Z2 Mat2(A2) (A2 

°凡

20p2) 

°凡

Mat2(0p2) 

under (3.15) for i E {1, 8, 16}. As before, if pヲ1(mod 4), then we define 

A秤=PPAV(..jp). 

Lemma 3.5. Suppose that p三 1(mod 4). Then A炉=0, while neither A『tnor 
A秤isempty. 

Proof. If入： X→ 炉 isa principal polarization, then EndIFp (X) is stable under 

the Rosati involution a→ a':=入―1o av。入. Recall that the Rosati involution 
coincides with the canonical involution. Meanwhile, it is clear from Table 3.1 that 
EndIFp (X) 181 Z2 is not stable under the canonical involution for any X E A翌 It

follows that A炉=0. 
To show that A『t-I 0, note that (Y, 入り definedin (3.5) lies in A『tbecause of 

(3.7). Then one shows that there is an isogeny Y→ XEA押 alongwhich 2入Y
descends to a principal polarization on X. Thus A岬ヂ 0as well. ロ

Lemma 3.6. For eve内 primep, A秤formsa single genus. The same holds for 
燿 ifp三 1(mod 4). 

Proof. For every member X E A岬 andevery prime£, T£(X) is a free Opt-module 
of rank 2. Set T£:=び Oneshows that up to isomorphism, there is a unique Fg・ 

alternating 勾—linear perfect pairing 

(3.16) e£: T£x T£ → Z£such that 

(3.17) e£(ax, y) = e£(x, ay) ¥/a E Op£, x, y ET£. 

It follows that A秤formsa single genus. The proof for A『tcan be carried out 
similarly, except that one replaces OF,£by A£, and makes use of the fact that A is 
a Gorenstein order [6, Section 37]. ロ

In summary, we have 

(3.18) PPAV(..Jp) = {悶:uA『[
if p三 1 (mod 4); 

otherwise, 

where each A匹formsa single genus. 

4. THE CALCULATIONS 

We keep the notation and assumptions of the previous section. Our goal is to 
work out an explicit formula for IPPAV(vJJ)I- Combining Proposition 2.3 with 
(3.18), one sees that IPPAV(vJJ)I is either a class number or the sum of two class 

numbers of the form IG尺Q)¥G1(A1)/Ua1(Xo)I,where G1 is given in (3.3) and 
U叫 X0)in (3.4)). One standard method of calculating such class numbers is the 
Selberg trace formula [15, §5], and indeed we take this approach in the case p三 3
(mod 4) and p~7. Meanwhile, some analysis on the endomorphism rings reduces 
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the calculation in the case p季3(mod 4) to that of type numbers. It also sheds 
light on the p三 3(mod 4) case from another perspective. 

4.1. The group action on A秤 andGauss genera. Let匹 bethe group of 

totally positive elements of F又and0和：=Ftn。；；. We write Pic+(oりforthe 

narrow class group of F, which is naturally identifiable with Fツ(FtO訂.By [4, 

Definition 14.29], the Gauss genus group 9F is the quotient group Pi臼(0り/Pic+(o臼，
where Pic+(oF戸denotesthe subgroup of Pic + (0 F) consisting of square ideal 
classes. It is well known [4, Theorem 14.34] that l9F = 2t-l, where tis the number 
of primes that are ramified in F /Q, so in our case 

(4.1) l9FI = IPiい(0りIPic+(oF)21 = {1 if p争3 (mod 4); 
2 if p三 3 (mod 4). 

Fix a member (X。，入o)E A秤andlet⑪。=EndlFp (X~. Since D = Doo1,oo2 

splits at all finite places of F, the normalizer N◎) of◎ inか coincideswith 

＾ px([])~. It follows that there is a natural identification Tp(D) c:,, か ¥Dツ（戸釘）．
This leads to a commutative diagram as follows. 

APP 
1 

i[, 

~-〉

Tp(D) 8 》 Pic+(oり/Pi古(OF)2

le:= 
D1 ¥D1 /65 ---+ n八bツ(FX◎~)~Fツ(FtOJ;ftx2)

Here the leftmost vertical arrow is given by Proposition 2.3, and ¥JI is defined in 
(3.9). We define the map 8 : Tp(D)→ 9F as follows. Recall that any two 
maximal orders ((])1 and ((])2 in D are linked [20, §I.4], i.e. there exists an Op-lattice 

I c D such that ((])1 = {x E DlxIこI},and ((])2 = {x E DIIx~I}. Given an 
element [((])] E Tp(D), we choose an Op-lattice I via which ((]) and ((])。 arelinked. 
Then 8([((])]) is defined as the element of 9F represented by the fractional Op-ideal 
Nr(J). It is easy to check by definition that 8([((])]) does not depend on the choice 
of((]) nor I. Since the reduced norm map Nr is surjective, so is 8. 

Note that the rows of the commutative diagram are exact, in the sense that 
the first horizontal arrow maps surjectively onto the neutral fiber of the second 
arrow. The elements of the neutral fiber Tp。(D):= img(w) of e will be called 
the conjugacy classes of maximal orders belonging to the principal Gauss genus. 
If p季3(mod 4), then Tp。(D)= Tp(D) by (4.1) so this notion 1s more or less 
vacuous in this case. If p三 3(mod 4), then Tp。(D)is a proper subset of Tp(D). 
We obtain the following result: 

Lemma 4.1. Ifp挙3(mod 4), then every maximal order is realizable as the endo-
morphism ring End!Fv (X) for some (X, >.) E A『P~PPAV(jp). If p三 3(mod 4), 
then a maximal order is realizable as EndIFv(X) for some (X, >.) E PPAV(jp) if 
and only if it belongs to the principal Gauss genus. 

Ifp三 3(mod 4), then Tp。(D)always contains the image of M : Tp(Dp,oo)→ 
Tp(D) as shown in (3.10). 

There is a natural action of 0和 onA秤asfollows: 

U・(X, 入） = (X, 畑） Vu E 0和， (X,入） EA秤．
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Since u is invariant under the canonical involution and totally positive, 入uis another 
principal polarization on X. Let ((]) = EndlFv (X) and identify it with a maximal 

order in D. For any a E ((])又 wehave a*入=av入a=入面a.Taking a=  VE o;, we 

see that v*入＝入v汽sothe subgroup OJ;2こ0凡 actstrivially on A秤.It follows 

that the action of ox APP F+ on descends to an act10n of u := 0和/0戸， andiIF 

factors through u¥A秤.Moreover, (X, 入） is fixed by u if and only if the reduced 
norm map Nr : 〇→ 〇X • 

F, 十 1s surJect1ve. 

Let c E OJ; be the fundamental unit of F. By [1, §11.5] or [5, Corollary 18.4bis], c 

is totally positive (i.e. NF/<Qiに） = 1) if and only if p三 3(mod 4). Hence 0和＝〈C〉

if p三 3(mod 4), 皿 dO和＝〈ぎ〉 otherwise.On the other hand, 0戸＝〈星〉 for
all p, so we have 

(4.2) lul = {! if p季3 (mod 4); 

if p三 3 (mod 4). 

The action of u can be realized adelically on D八か直 asfollows. Consider the 
group 

△ : = {(a,μ) E Dx x勾 Nr(a)= Nr(μ)}, 

which containsふ：＝叩(D1X ⑳) as a normal subgroup. Here 0芦embeds
diagonally into△ • The reduced norm map (a,μ) t---+ Nr(a) induces an epimorphism 
Nr: △ → OX 

F, 十’ and hence an ISomorphism 

(4.3) △／△ 1 c:,, u. 

The group△ acts onか asfollows: 

(a,μ)・g = agμ ―1, V(a,μ) E△, gEか．

Clearly, we haveふ¥f5l':::'Dl¥f5lI祝， so△＼か maybe identified with the orbit 

space of the induced action of u on D1 ¥詞燒 Onthe other hand, △＼か isjust 
the image of the canonical map 

Dl¥f5l I祝→ か＼か／（戸匂）．

Lastly, one checks that the action of u on D八恥祝 iscompatible with that of u 
on A秤definedearlier. Summarizing, we obtain the following lemma. 

Lemma 4.2. The map ¥JI induces a bijection (u¥A秤）→ Tp0 (D) for every prime 
p. More precisely, 

(1) if p争3(mod 4), then ¥JI: A秤→ Tp(D) is bijective; 
(2) if p三 3(mod 4), then A秤→ (u¥A『P)':::'Tp。(D)is a 2:1 cover ramified 

over the subset {[((])] E Tp。(D) Nr(((])汀=0和｝．

Indeed, if p羊3(mod 4), then u is trivial, and Tp。(D)= Tp(D). In particular, 

(4.4) IPPAV(v'2)1 = IA秤I=ITp(D)I = 1 when p = 2. 

If p三 3(mod 4), then lul = 2, and a member (X, 入） EA秤isfixed by u if and 

only if Nr : AutJFP (X)→ 0和 issurjective. Suppose that p = 3 and let ((])1 be as 

in Example 3.4. Since Nr(((])i) = 0和， wehave 

(4.5) IPPAV(vl3)1 = IA秤I=ITp。(D)l=l when p=3. 
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According to Lemma 4.2, we have IA匹I= ITp(D)I when p三 1(mod 4). Note 
that D = D001,002 splits at all finite places of F, and h(F) is odd [5, Corollary 18.4]. 
From [27, Corollary 3.5], we have 

IA匹I=ITp(D)I = 
h(Oo) 

h(O汀
A similar argument as above also shows that when p三 1(mod 4), 

IA『ti=
h(015) 

h(A)' 

where 015 = EndlFp (X) for some (X, 入） EA『ふ andA=  Z[,jp]. In particular, 

IA秤I=IA『ti= 1 if p = 5. 

Applying the results of [27, §4], we obtain the following proposition. 

p ropos1t10n 4.3. Suppose that p三 1(mod 4) and p~13. Then 

叩
麗 1) h(-p) h(-3p)_ 
＝＋  

2 8 
＋ 

6'  

鴎=(4-且））□-1) + h(~p) +いG))h(~3p) 

The ref ore, we have 

IPPAV(,/iJ)I = IA秤l+IA『ti

=(9-2(~)) 句—1) + 3h~-p) + (い(~)) h(~3p) 

4.2. The Selberg trace formula. Assume that p三 3(mod 4) and p~7. In this 
case, Tp。(D)is a proper subset of Tp(D). Pick [O] E Tp。(D)so that there exists 
(X, 入） EA秤withO ,::,,-EndlFp (X). For example, we may take⑪ in the image of 
M: Tp(Dp, 叫→ Tp(D) as in (3.8). Combining Proposition 2.3 with (3.18), we 
see that 

(4.6) IPPAV(yfp)I = IA秤l=ID八か／酬．
Proposition 4.4. Suppose that p三 3(mod 4) and p ;=:: 7. Let⑪ be a maximal 

order in D = D001,002. Then we have 

ID噸／訊＝｛□：: + (11 -3~)) h:~:~) +h:~::~) 

2 +(3-30)) 8 + 6 

if [((])] E Tp0(D); 

otherwise. 

The main tool for such calculations is the Selberg trace formula (of co-compact 
type). See [15, §5] for a brief introduction. 

For simplicity, write g = D1, U = 61 and r = D1. Then g is a locally compact 

unimodular group, and U is an open compact subgroup of Q. We normalize the 
Haar measure dx on g such that Vol(U) = fu dx = 1. Let 1i be a closed subgroup 

of g and dh a Haar measure on社.There is a unique right Q-invariant measure血
dh 

on 1i¥Q characterized by the following integration formula: 

J f dx = J J f(hg)dh竺 ¥IfEC戸（切
g 1i¥Q 11 dh' 
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Here C戸(Q)denotes the space of locally constant C-valued functions on Q with 
compact support. 

By [20, §111.1], r is discrete cocompact in Q. Given, E r, we write {,} for 
the conjugacy class of, in r, and r /~ for the set of all conjugacy classes of r. 
Let Ru EC戸(Q)be the characteristic function of U. Applying the Selberg trace 
formula to Ru, we obtain 

(4.7) I虚 /UI= L Vol(い四jIlu(x―i,x) 
dx 

{"!}Er/~ 9-,¥Q dx 

where几 (resp.Qサdenotesthe centralizer of, in r (resp. Q), and dx-y is a Haar 
measure on Y-y-

Note that I is central if and only if,=士1,in which case the summand in (4.7) 
corresponding to {,} reduces to Vol(r¥Q). By a result of Vigneras [19, Proposi-
tion 2], we have 

(4.8) 
1 

Vol(r¥g) = Vol(D1¥か）＝ー(p(-1).
4 

There are two central elements, which explains the term½(パー 1) in the formulas 
of Proposition 4.4. 

Assume that I is non-central for the rest of this section. The centralizer of I in 
D coincides with K := F(,). Since D is totally definite, K is a CM-extension of 
F. Using Weil restriction of scalars, we define two algebraic tori over (Q: 

TK := ResK;<QGm,K, 戸：= ResF/<QI釦，F・

The norm map NK/F induces a homomorphism TK→ T互whosekernel is denoted 

by T1. The centralizer of'Y in the algebraic groupび in(3.3) is isomorphic to T1, 
so we have 

Q, =応：= Tl(的） and r, = K1 := T1(Q). 

Normalize the Haar measure on応 sothat the maximal open compact subgroup 
~1 
OK has volume 1. By [17, Theorem 3], which is attributed to Takashi Ono, we have 

(4.9) Vol(几¥G,)= Vol(K1¥K1) = 
h(K) 

2t-l lμ(K) IQK/ Fh(F) 

where t, μ(K) and QK/F are as follows: 

• t is the number of finite primes ramified in K / F; 
• μ(K) is the group of roots of unity in K; 
• QK/F is the Hasse unit index [01 : 0紐(K)],which takes value either 1 
or 2 by [21, Theorem 4.12]. 

Lastly, note that the integral Jg悶 丘 (x―1立）皇=0 unless'Y is a root of unity. 

Since p 2 7 and [K : (Q] = 4, the multiplicative order of'Y E D1 is 3, 4 or 6. To 
apply (4.9), we assemble the relevant data in the following table (see [11, §7]): 
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ord('Y) 4 3 or 6 

K = F(,) F(口） F(N)  

h(K)/h(F) h(-p) h(-3p)/2 

t 

゜
~+渭）2 2 

lμ(K)I 4 6 

QK/F 2 1 

This somewhat explains the h(-p) and h(-3p) terms in the fomulas of Proposi-

tion 4.4. However, there is a key subtlety that cannot be ignored. Indeed, for any 

two maximal orders ((]) and ((])'belonging to distinct Guass genus (i.e. [((])] E Tp。(D)
and [((])'] r/. Tp。(D)),the groups 61 and和 areisomorphic. So there is certain 

global obstruction that causes the class numbers to be distinct as in Proposition 4.4. 

Alas, such arithmetic intricacy goes beyond this simple note, and we refer to our 

upcoming paper [25] for details. 
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