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Ahstract.

This is an expositary note on our papers |6] and [7] joint with R. Kurinczuk, on which I gave a
talk at the RIMS conference "Automorphic forms, automorphic representations and related
topics" in January 2019. Let F be a non-archimedean local field of residual characteristic p
and W g its Weil group. For £ a prime number different from p, we classify equivalence classes
of Weg-semi-simple Deligne (-modular representations in terms of isomorphismn classes of
irreducible /-modular representations of Wg. After extending to the f-modular setting the
constructions of local constants by Jacquet, Piatetski-Shapiro and Shalika on the reductive
group side, and by Artin and Deligne on the Weil group side, we define a variant of the (-
modular local Langlands correspondence of Vignéras which satisfies a preservation of local
constants property for pairs of generic representations.

1 Introduction

Let F' be a non-archimedean local field of residual cardinality ¢ and ¢ a prime number which
does not divide g. We consider smooth representations of locally profinite groups, and call them
l-adic when they act on Qg-vector spaces, and f~-modular when they act on Fy-vector spaces.

We denote by Wr the Weil group of F. The local Langlands correspondence LLC (]2], [4])
for GL,,(F') is a bijection between the set of isomorphism classes of ¢-adic irreducible represen-
tations of GL,(F') and the set of isomorphism classes of ¢-adic n-dimensional W p-semi-simple
Deligne representations, characterized by the fact that the Rankin-Selberg local constants of a
pair of irreducible ¢-adic representations of GL,,(F) and GL,,(F) and the Artin-Deligne local
constants of the corresponding tensor product of Deligne representations of Wyr are equal.

After having developed the theory of ~-modular representations of reductive p-adic groups (see
[11]), Vignéras proved the f-modular local Langlands correspondence in [12] and character-
ized it by compatibility with LLC via congruences modulo ¢ in a non naive manner. The
V-correspondence as we shall call it is a bijection between the set of isomorphism classes of /-
modular irreducible representations of GL,, (F) and the set of isomorphism classes of £-modular n
dimensional W p-semi-simple Deligne representations with nilpotent Deligne operator.

In 6], we extend the theory of Rankin—Selberg local constants of Jacquet, Piatetski-Shapiro and
Shalika ([5]) to pairs f-modular generic representations, but the local constants defined there do
not match the Artin-Deligne constants via the V-correspondence. This non matching issue also
oceurs when one considers the -modular Godement-Jacquet local constants defined by Minguez
in [8].

In [7], we classify the equivalence classes of f-modular indecomposable W p-semi-simple Deligne
representations in terms of isomorphism classes of irreducible representations of Wr. We then



extend the definitions of Artin-Deligne factors to this setting, and define a modified version of
the ¢-modular local Langlands correspondence of Vignéras which we call the C-correspondence,
which makes the Rankin Selberg factors of pairs of generic representations on one side match
the Artin—Deligne factors of the corresponding representations on the other.

In what follows, we describe the main results of [6] and [7]. We end the paper by some explicit
computations of C-parameters for GL2(F) and show that under our modified correspondence,
the Godement-Jacquet local constants and the Artin-Deligne standard constants of their C
parameter coincide for GLa(F).

Acknowledgements. [ thank the organizers of the conference Prof. Satoshi Wakatsuki and
Prof. Shunsuke Yamana, and I also thank Prof. Taku Ishii for giving me the opportunity to
give a talk at the RIMS. This note has benefited from useful comments of R. Kurinczuk and 1
thank him too.

2 Rankin-Selberg /-modular local constants

2.1 Definition and basic properties

We refer the reader to [6] for this section, which is the adaptation of [5] to the f-modular setting,
We denote by R one of the fields F or Qf, and consider a nontrivial (smooth) R-valued additive
character ¢ of F. Once and for all we fix a square root ¢'/2 of ¢ in R which we use to normalize
parabolic induction, but require that its choice in Q and Fy is compatible with reduction modulo
£. We denote by val the Z-valued valuation on F. Let m be an R-representation of Whittaker
type of GL,(F) (see |6, Proposition 2.17]). We denote by 7 the representation g — w(tg™!) of
GL,(F), which is again of Whittaker type and isomorphic to the (smooth) contragredient 7 of
7 when 7 is irreducible. Setting wy, for the usual long Weyl element of GL,, (F), for W € W (m, )
we set W :g— W(wntg_l) s0 that the map W — W is a vector-space isomorphism between
W (rm, ) and W(7,¢~1). We denote by N,,(F) the subgroup of upper triangular matrices with
ones on the diagonal in GL,,(F) and by 7, the element (0,...,0,1) € F™. For k € Z, setting

GL,(F)*) = {g € GL,(F), val(det(g)) = k},

a Whittaker function W € W(mr, ) has compact support modulo N, (F) when restricted to
GL,(F)®) . For m and 7’ representations of GL,(F) and GL,,(F) respectively, W € W (m,1))
and W' € W(n',4~!) and ® € C°(F™) a Schwartz-Bruhat function, we set

(W, W') = W (diag(g, Ln—m))W'(9)dg

/Nm(F)\ GLm (F)(*)
if m<n and

(W, W, o) = W(g)W'(9)(1mg)dg

/Nn(F)\ GLy (1))
if m = n. These coefficients vanish for ¥ << 0 and we define the Rankin-Selberg integral

I(X, VVv W/) _ Z Ck(m Wl)qk:(n—m)/ka
k€eZ

when m < n and
I(X, W, W, @) =" cp (W, W, ¢) X*
kEZ
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when n = m. These Laurent series turn out to be elements of R(X), and in fact span R[X*!]-
fractional ideals of R(X) when W and W’ vary (and ® as well in the n = m case), generated
by a unique Euler factor. We denote by

L(X,m ")

this Euler factor and call it the L-factor attached to the pair (m,7), and declare it to be
symmetric in 7 and 7 as a convention, thus defining such a factor when n < m as well. The
Rankin-Selberg integrals satisfy functional equations (see [6, Section 3.2]) involving L(X, 7, 7’)
and a it of R[XF!] called the epsilon factor of the pair (7, ') and denoted by

6(X7 7T7 71—,7 w).
The last factor in R(X) of interest for ns is the gamma factor defined as

Lig ' X~ 7,7)

X 0) = e(Xom ' 9)

Let 74 : Zy — Fy be the reduction modulo £ map. Let ¥ he a nontrivial L-madular character of
F and denote by ¢ an f-adic character of F such that 7(¢) = ¥. We show in |7, Theorem 3.13]
that if 7 and 7/ are Fy-representations of Whittaker type of GL,(F), and if 7 and 7’ are f-adic
Whittaker lifts (see |7, Definition 2.21|) of # and 7/ respectively, then

’)/(Xa T, ?7 @) = Tl(’Y(Xv T, 7I'/, ¢))

L(X, 7, 7" )\re(L(X, 7, 7).

Note that the division of L-factors above can be strict, for example when ¢ = 1[¢], the L-factor
on the left is always equal to 1. When the representations are generic we obtain much more
precise results concerning the reduction modulo ¢ of L-factors of pairs.

2.2 Local constants of generic representations and reduction modulo ¢

We denote by v the character from GL,,(F) to R*, which is the normailzed absolute value of F
composed with the determinant. If p is a cuspidal representation of GL,,(F) with coefficients in
R, we denote its cuspidal line by

Z,={vfp, k€ Z}.

In [9], the authors introduce the notion of banal representation of GL,(F): an irreducible
representation is banal if its cuspidal support contains no cuspidal line (this is always the case
when R = Q, i.e. all irreducible f-adic representations of GL,,(F) are banal). Now in [6, Section
2.6], we show that a generic representation 7 of GL, (F) can be written uniquely as a product
Ty X Tnp (in the sense of normalized parabolic induction), where 7, is a banal representation of
GL,,(F) with m as large as possible for this property (and 7, consequently non banal, in fact
we say totally non banal). One of the main results of [6] (Theorem 4.19) asserts the following,

Theorem 2.1. Let m and 7' be two generic R-representations of GL,,(F) and GL,,(F) respec-
tively, then L(X,m, 7") = L(X, mp, 7).

As we already saw that y-factors of pairs are compatible with reduction modulo ¢, one has a full
understanding of reduction modulo ¢ of local factors thanks to the next statement, which is |6,
4.18].
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Theorem 2.2. Let 7@ and 7’ be two banal generic E—repﬁsentatioms of GL,,(F') and GL,,(F)
respectively, and 7 and 7’ be generic f-adic lifts of T and 7/ respectively, then

ro(L(X,m, 7)) = L(X,7, 7).

From these two statements, we obtain the inductivity relation of local constants of f-modular
generic representations, as well as an explicit expression of the cuspidal L-factors of pairs in terms
of type theory. We also show that the /-modular L-factors of pairs of generic representations are
the ged of the reduction modulo £ of the L-factors of their lifts in a certain sense (|6, Theorem
4.22]).

3 Deligne representations of the Weil group

3.1 Definition and first properties

Let v: Wp — R* be the unique character trivial on the inertia subgroup of Wr and sending a
geometric Frobenius element to ¢~'. It is alright to use this notation for v as it corresponds to
the normalized absolnte value of F* via local class field theory.

Definition 3.1. A Deligne R-representation of Wg is a pair (®,U) where ® is a finite dimen-
sional R-representation of Wp, and U € Homwy, (v®,®). Moreover, we say that (®,U) is a
W p-semi-simple Deligne R-representation if @ is semi-simple as a representation of We.

We say that two Deligne representations (of Wg) (®,U) and (®',U’) are isomorphic if there is
a Wp-isomorphism A from Vg to V§ such that AoU = U’o A. When (®,U) is a Deligne repre-
sentation, we typically write U = N + S for its Jordan decomposition. It is immediate to check
that (®,N) and (®,S) are also Deligne representations. We say that (®,U) is nilpotent when
U = N, which is always the case when R = Q. The basic operations on Deligne representations
are the following.

Definition 3.2. Let (?,U), (®',U’) be Deligne R-representations and let U =S + N.

(1) The direct sum of (®,U) and (', U’) is defined by

(@,0)e(?@,U)=(2ed . Usl).

(2! The dual of (P,U) is defined by

(@,U)Y = (&Y, 8Y — NY).

(3)

The tensor product of of (®,U) and (®',U’) is defined by

(2, U)® (P, U)=(dx d UxIdoIdxU’).

The first two operations preserve W p-semi-simplicity, but the third one does not in general (see
[7. Example 3.11]) though it does when ® or @' is a direct sum of characters, or when R = Q.
As we are really interested in Wp-semi-simple Deligne representations, we shall define in the
next section a "semi-simple" tensor product of Wp-semi-simple Deligne representations. First
we introduce a useful set of notations.
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Notation 3.3. e Repy (D, R) the set of isomorphism classes of W p-semi-simple Deligne R-
representations.

e Indecg(D, R) the isomorphism classes of indecomposable Deligne representations in Repy (D, R).

o Irrg (D, R) the isomorphism classes of irreducible Deligne R-representations in Repg (D, R).

e Nilpy(D, R) the isomorphism classes of Deligne representations (®,U) € Repy(D, R)
with U = N, In particular Repy (D, Q) = Nilpg (D, Qy).

The following relaxation of the ismomorphism relation on Repg(D, R) turns out to be at the
same time fundamental and natural when studying f-modular W p-semi-simple Deligne repre-
sentations.

Definition 3.4. The definition is in two steps:

(1! Deligne R-representations (®,U), (®',U’) € Indecss(D, R) are equivalent, denoted
(2,U) ~ (2, U"),
if there exists A € R* such that

(@, U") = (&, \U).

(2! In the general case, (®,U), (®',U’) € Repy (D, R) are equivalent, still denoted
(®,U) ~ (. U"),
if one can decompose (', U’) = @._,(®;, U;) and (@, U) = @._, (P;, U;) such that (;,U;) ~
(P, U;) in Indecgs(D, R).

Definition 3.4 delines an equivalence relation because the decomposition of a W p-semi-simple
Deligne R-representation into indecomposable Deligne R-representations is unique (see [7, Re-
mark 4.9]). In fact it coincides with the isomorphism relation on Nilpg (D, R) by |7, Proposition
4.11]. The sets Repg(D, R), Irrgs(D, R), Indecss(D, R), and Nilpy (D, R) are nminns of ~-classes.

Notation 3.5. o Far (©,U) € Repy (D, R), we let [®, U] denote its equivalence class.

o [Repy(D, R)] = Repy (D, R)/ ~.

o [Irres(D, R)] = Irrss(D, R)/ ~.

e [Indecg(D, R)] = Indecgs(D, R)/ ~.

e [Nilp (D, R)] = Nilpg(D, R)/ ~= Nilp(D, R).

As already said when R = Q; one has [Repy, (D, Q)] = Nilpy (D, Q). Note that the operations
@ and (,U) — (®,U)Y on Repy(D, R) descend to [Repg (D, R)] whereas ® does not when
R =Ty (see |7, Example 4.13|). We shall also take care of this problem in the next section. We
however already notice that [®,U] @ [®', U] is well defined in [Repg(D,Fy)] as soon as @ is a
direct sum of characters and U = N (see [7, Lemma 4.14]).



3.2 Classification

In this section we describe the set [Repg(D, R)], note that when R = Q, the result we discuss
here have been known for a long time. The problem is in fact immediately reduced to the
description of [Indecs(D, R)], we first deal with [Irrs(D, R)]. Let’s give a typical example of
an element in Irrgg(D, R). We start with U € Irr(Wpg, R) the set of isomorphism classes of
irreducible Wr representations. We denote by

o(¥)
the cardinality of the "irreducible line"
Zy = {V*0, k€ Z},

which is equal to +-00 when R = Q¢ and divides £—1 (in fact it divides the order of ¢ in (Z/¢Z)*)
when R = Fy.

Example 3.6, Take ¥ € Irr(Wp, R)

o Then W := (V,0) € Irrgs(D, Q) N Nilpy (D, Q) and [¥] = 0.
o If R =Ty, let I be an isomorphism from 1°) tq . Define a Deligne Fy-representation

C(\I’a I) = ((I)(lll)’ CI)

o(¥)—1
o) = P v
k=0
Cr(zo, -, Towy—1) = (I(To(w)-1), 0, - - -, To(w)—2)-

Then C(¥, I) € Trrg(D, Fy) and one checks (|7, Lemmas 4.20 to 4.23]) that its isomorphism
class only depends on Zy, and its equivalence class is independent of I, so we set

C(Zy) = [C(¥,1)] € [Irrs(D, Fy)).

In fact we prove in [7, Section 4.2] that there are no other type of irreducible Deligne represen-
tations.

Theorem 3.7. Take ® € Irry(D, R). If R = Qy there is a unique ¥ € Trr(Wg, R) such that
® = W, whereas if R = F; there is either a unique ¥ € Irr(Wp, R) such that ® = W, or a unique
irreducible line Zy such that [®] = C(Zy) (both cases being disjoint even when Zg = {V}).

Now we give a famous example of an element in Indecy (D, R) N Nilp (D, R).

Example 3.8. Forr > 1

0,7 — 1] = (®(r), N(r))

D(r) I
k=0
N(r)(xo, ... ,zr—1) = (0,20, ..., Tr_2).

Note that becanse [0,7 — 1] is a divect sum of characters as a W p-representation and N(r) i
nilpotent, the class [0,7—1]®[®, U] is well defined in [Rep,,(D, R)] for any (®, U) in Rep,,(D, R)
The classification theorem of [Indecss(D, R)] (|7, Section 4.3]) is now easy to state.

IS
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Theorem 3.9. Let [®, U] belong to [Indecss(D, R)], then there is a unique r > 1 and a unique
© in [Irrgs(D, R)] such that [®,U] =[0,r — 1] ® O.

With this theorem at hand one can define an operation ®ss on Rep,,(D,Fy) and its descent still
denoted ®g to [Repgs(D,Fy)], we refer the reader to |7, Section 4.4].

3.3 Local factors of Deligne representations

Again we fix a nontrivial R-character ¢» of F. We first define the Artin L-factor. For V an
R-representation of Wg, we denote by VIF the space of vectors in V fixed by the elements of
the inertia subgroup Ir of Wr. We denote by Frob a geometric Frobenius element in Wp.

Definition 3.10. Let (®,U) € Repg(D, R), we set

L(X, (®,U)) = det((Id =X @(Frob))|gerrye) -

Note that when R =, the Deligne operator U can be hijective and in this case L(X, (®,U)) =
1. It is also easy to see that this definition only depends on [®,U]. Deligne defined in [1] the
e-factors of representations in Irr(Wpg, R) (and more generally of semi-simple R-representations
of Wg). Hence with the definition of L-factors above, the usual formula allows one to define
y-factars for Irr(W g, R). We can now define the following more general y-factors.

Definition 3.11. Take (®,U) in Rep, (D, R), and write ® = ¥; & --- & ¥, a decomposition of
® into elements of Irr(Wg, R), then by definition

r

AX, (@,0),¢) = [[+(X, T, ).

i=1
Again this factor depends only on [®, U]. Finally one sets

L(X,[®,U])
(XL [(e,U)V])
It is not immediate from the definition, but one checks that this epsilon factor is indeed a unit
of RIX*!] (see |7, Proposition 5.6]). Of course all the definitions above agree with the usual
ones when R = Q.

e(X, [@,U],¢) = (X, [<I)7 U]J/))L

4 An /(-modular correspondence which preserves local constants

We begin with some notations.

Notation 4.1. o Irr(GL,(F), R) the set of isomorphism classes of irreducible R-representations
of GL,(F).

o Tir(G, R) = [],,50 Irr(GL,(F), R).
o Irrye, (GL,(F), R): the set of isomorphism classes of generic representations in Irr(GL,, (F'), R).

o Tirgen (G, R) = [ 1,50 Itrgen(GLn (F), R).



4.1 The /-modular correspondence of Vignéras

We say that an £-adic irreducible representation of GL,(F) is integral if it contains a Z-lattice
L which is GL,(F)-stable. We denote by an index e the subset of integral representations in
the classes above (for instance Irre(GLy, (F), Qp). Irrgen.e (G, Qr)). For 7 as above, the £-madnlar
representation L®EF_4 has finite length, and Vignéras shows in her work that it contains a unique
subquotient Jy(7) with degenerate Whittaker model of the same type as that of 7. Moreover
she shows that the map

Jpome Jo(m)

is a surjection from Irre(G, Qp) to Irr (G, TFy).

We say that a semi-simple ¢-adic representation of Wr is integral if it contains a Wp-stahle
lattice. For & € Trro(Wpg, Q) (the subset of integral representation in Irr(Wg, Q) and M a
Wp-stable lattice in the space of ®, we denote by r,(®) the semi-simplification of the finite
length representation M ®z, Fy, which is a Wp-module independent of the choice of M. If
(®, N) belongs to Rep,, (D, Q) = Nilp,(D, Qy), we write it

@N)= > [0i—1]o
keK,i>1

for K a finite set and ¥y, € Irr(Wy), and we say that (&, N) is integral if all U;, are. We again
put an index e to denote the subset of integral representations in a given class (for instance
Repss o (D, Q), Trrgs (D, Qp)). We then set

T[(@,N) = Z [O,ik — 1] ®7‘[(\I/k).
keK,i>1

The rednetion modulo £ map from Nﬂpss,e(D,@) to Nilp,, (D, Fy) is surjective ([12]).

We denote by LLC (local Langlands correspondence) the well-known bijection from Rep,, (D, Qy)
to Trr(G, Q) established in [2] and [4]. We recall that denoting by W (r, 1)) the Whittaker model
of the standard module lying over 7 € Irr(G, Q) for ¥ a non-trivial f-adie character of F, and
setting L(X, m,7") = L(X, W (m,¢), W(n', ), v(X, 7, 7",9) = y(X, W (7, 2), W(7', 1)), ) and
e(X,m 7 ) = e(X, W(m ), W(r',4),), the bijection LLC satisfies and is characterized (|3])
by the properties, for (®, N) and (&', N') in Rep,,(D, Q;):

L(X,(®.N) @ (&, N)) = L(X,LLC(®, N),LLC(®', N"))

and

(X, (2, N) ® (9, N'),¢) = (X, LLC(®, N), LLC(®', N'), ¢))
(which in particular imply the same equality for v-factors).
We denote by m — 77, the Aubert-Zelevinsky involution on Irr(G, R) (see [12] for the subtleties of
the case R =), In [12], Vignéras shows that LLC restricts to a bijection from Repg; (D, Q¢) to

Irre (G, Q¢), and proves the existence of a bijection V : Irr(G, Fy) — Nilp,(D, Fy) characterized
by the relation for all (®, N) € Repg, (D, Qp):

re((®,N)) = V(Jo(LLC(D, N)i)5).
This bijection commutes with taking duals, twisting by characters and takes central character

to determinant, however it does not satisfy the preservation of local constants as LLC™! does
(see |7, Example 6.18]).
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4.2 A modified correspondence which preserves local constants

In [7, Section 6], thanks to our classification of [Repy;.(D,F,)], we define an injection
CV & Nilp,, (D, F7) —+ [Rep,, (D, F)].

It is by dc@ition compatible with direct sums, hence it is sufﬁcier& to describe it on element@f
Nilp,, (D, F,) supported on irreducible lines. So take ¥ € Irr(W g, Fy) and (®, N) € Nilp,, (D, Fy)

supported on Zy:
o(¥)—

@ @ a; ;0,1 — 1] ® V.

20 k=0

We say that (@, N) is acyclic if for each fixed 4, there is 0 < k < o(¥) — 1 such that a;; = 0.
We say that (®, N) is eyclic if for each fixed 4, the coefficient a; 4 is independent of k.

For (@, N) as above, we set

b; = minga; 1, and ¢; = a; 1 — b;.

Then
(q)v N) = (q)v N)acyc D ((I): N)cym
with
o(V)—
(D, Nacye = @ @ ¢ k(0,7 —1] @ VR
=1 =
o(¥)—-1
q)Ncyc @b[oj ®®Vklp
j=1 k=0

Then by definition

CV((®, Neye) = D bj[0.5 — 1] ® C(Zy) € Repy(D, Fo)],
j>1

and
CV(@,N) = (@, Nacye ® CV((®, N)eye) € [Reps(D, Fy).
We then obtain an injection

C:=CVoV:Iir(G,Fy) — [Repy(D,Fy)].

The main result of [7] is [7, Theorem 6.15]. It is a consequence of the results of Section 2.2
together with an explicit computation of both sides in the banal cuspidal case.

Theorem 4.2. For 7, 7’ € Irrgen(G,E) and ¢ F — 117‘7X a non trivial character, we have
L(X,C(r) ®ss C(n')) = L(X, m,7"),

’Y(ch(ﬂ-) ®SS ( /),?/’) ’V(X,ﬂ',ﬂ'/,ﬂ})’
€(X, C(m) @y C(m /)7‘/}) (Xvﬂvﬁlv/‘/))-



4.3 The case of Godement-Jacquet L-factors

In [8] which is the first detailed study of local factors modulo ¢, Minguez defines and studies
the Godement-Jacquet local constants of elements in Irr(G, R) (the paper is more generally
concerned with inner forms of GL,(F)). In particular he obtains ([8, Corollaire 4.2]) that
the Godement-Jacquet ~-factors are compatible with reduction modulo ¢ whereas L-factors of
elements in Irr(G,Fy) divide those of their lifts in Irr(G, Q). He also proves the inductivity
relation of L-factors, but only in the banal case ([8, Théoréme 5.7]).

One can extract from [8], and especially [8, Section 6], the computation of all local constants
of GLa(F). We end this survey with a final exercise which is mentioned but not done at the
end of |7], and which is to check that the C-correspondence above preserves standard local
constants for all irreducible representations of GLo(F). First we recall the classification of (-
modular irreducible representations of GLa(F) due to Vignéras ([10]), and we give for each case
the corresponding C-parameter. We refer to [7, Section 6| for the notations that we will use
hereunder.

The ¢-modular irreducible representations of GLa(F) are:

1) The supercuspidal representations.

2) The cuspidal non-supercuspidal representations (this happens only if ¢ = —1[¢]), in which
case they are of the form St(Zy) for x a character of F* if £ = 2 (in which case Z, = {x}).
or of the form Sta(Zy) for x a character of F* if £ # 2 (in which case Zy = {x,vx}).

3) Irreducible principal series x1 X x2 with x1x5 " # v*%,

4) The non cuspidal Steinberg representations St(2, x) for x a character of F* (this happens
only if ¢ # —1[]).

5) v'/2x odet for x a character of F*.

Now in each case we give the corresponding C-parameter, they are all computed in |7, Example
6.12] except in the last case.

1) If 7 is banal supercuspidal, then C(nr) = ¥ for a unique ¥ € Irr(Wp,Fy) ~ Irrgs (D, Fp) N
Nilp(D, F,), whereas if it is non-banal supercuspidal, then C(r) = C(Zy) where Zy = {¥}
for a unique ¥ € Irr(W g, Fy). Tn hoth cases ¥ has dimension 2.

2) Here ¢ = —1[¢]. When ¢ = 2 then C(St1(Zy)) = C(Zy) & C(Zy) where Zy = {x}, whereas
when ¢ # 2 then C(St2(Zy)) = C(Zy) where Zy = {x, vx}.

3) C(Xl X XQ) = X1 D x2 with Xi € II'I‘(WF7]F_2) = IrrsS(Dv]F_é) N Nllp(D7E)

4) Here ¢ # —1[¢]. C(St(2,x)) = [0,1] ® x if ¢ # 1[¢], and C(St(2,x)) = [0,1] ® C(Zy) where
Zy ={x} it ¢=1[{].

5) C(v'/2x odet) = x © vy if ¢ Z £1[f], C(v'/2x odet) = [0,1] @ v~y if ¢ = —1[¢] and £ # 2.
and C(v/2x o det) = [0,1] ® C(Zy) where Z, = {x} if ¢ = 1[{].

Because v-factors are compatible with reduction modulo ¢ and only see the supercuspidal support
of a representation, it follows from the properties of the LLC and the definition of C that the
~-factors are preserved by the C-correspondence. Hence it is sufficient to compare L-factors on
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both sides of the correspondence. One checks from the definitions on the Galois side, and the
computations in [8]:

1) Tf 7 is supercuspidal. then L(X,C(7)) = L(X,w) = 1.
2) Tf 7 is cuspidal, then L(X, C(m)) = L(X,7) = 1 again.

3) L(X,C(x1 X x2)) = L(X, x1 X x2) = L(X, x1)L(X, x2), where L(X, x;) = 1 if ; is ramified
or ¢ = 1[¢] and L(X, x;) = (1 — xi(w)X) ™! otherwise (where @ is a uniformizer of F).

4) Here ¢ Z —1[¢]. L(X,C(St(2,x))) = L(X,St(2,x)), and it is equal to 1 if ¢ = 1[{] or if x is
ramified, and to (1 — x(w)q~'X) if ¢ # 1[(] otherwise.

5) L(X,C(v'/?x odet)) = L(X,v'/?x o det). It is equal to 1 if y is ramified or if ¢ = 1[4].
Otherwise it is equal to (1 — x(@)X) ™ if g = —1[/] and £ # 2, and to (1 — ¢ x(w)X) 11—
X(@)X)~if g # £1[4).

We expect this preservation property to hold for all irreducible representations of GLy(F) for
all n.
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