TOWARDS p-ADIC GROSS-ZAGIER FORMULA FOR TRIPLE PRODUCT L-SERIES

SHUNSUKE YAMANA

Advanced Mathematical Institute
Osaka City University

Abstract

I will report my joint work with Ming-Lun Hsieh on a (conjectural) description of cyclotomic derivatives of p-adic triple product L-functions in terms of Nekovar's p-adic height of diagonal cycles.

1. The triple product L-Series of three elliptic curves

Let E_{1}, E_{2}, E_{3} be rational elliptic curves of conductor N_{i}. Fix an odd prime number p prime to $N_{1} N_{2} N_{3}$. The triple tensor product

$$
\rho_{p}^{E}:=T_{p}\left(E_{1}\right) \otimes T_{p}\left(E_{2}\right) \otimes T_{p}\left(E_{3}\right)(-3)
$$

is a geometric p-adic Galois representation realized in the middle cohomology of the abelian variety $\boldsymbol{E}=E_{1} \times E_{2} \times E_{3}$, where $T_{p}\left(E_{i}\right)=\lim _{\overleftarrow{G}_{n}} E_{i}\left[p^{n}\right]$ is the Tate module of E_{i}. Let $G_{\mathbf{Q}} \supset G_{\mathbf{Q}_{\ell}} \supset I_{\ell}$ be the absolute Galois group, its decomposition group at ℓ and its inertia subgroup at ℓ. We consider the central critical twist

$$
V_{p}^{\boldsymbol{E}}:=\rho_{p}^{\boldsymbol{E}}(2): G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{8}\left(\mathbf{Z}_{p}\right)
$$

Observe that $\left(V_{p}^{\boldsymbol{E}}\right)^{*}(1) \simeq V_{p}^{\boldsymbol{E}}$.
Fix an embedding $\iota_{\infty}: \overline{\mathbf{Q}} \hookrightarrow \mathbf{C}$. Let \mathbf{Q}_{∞} be the \mathbf{Z}_{p}-extension of \mathbf{Q}. Define a character $\langle\cdot\rangle: G_{\mathbf{Q}} \rightarrow G_{\mathbf{Q}_{p}} \rightarrow 1+p \mathbf{Z}_{p}$ by $\langle x\rangle=x / \boldsymbol{\omega}(x)$, where we identify $G_{\mathbf{Q}_{p}}$ with \mathbf{Z}_{p}^{\times}and denote the p-adic Teichmüller character by $\boldsymbol{\omega}$. The twisted triple product L-series is defined by the Euler product

$$
L(\boldsymbol{E} \otimes \hat{\chi}, s+2)=\prod_{\ell} L_{\ell}\left(V_{p}^{\boldsymbol{E}} \otimes \chi, s\right)
$$

for p-adic characters χ of $\operatorname{Gal}\left(\mathbf{Q}_{\infty} / \mathbf{Q}\right)$ of finite order, where $\hat{\chi}$ is the Dirichlet character associated to $\iota_{\infty} \circ \chi$. If $\ell \neq p$, then

$$
L_{\ell}\left(V_{p}^{\boldsymbol{E}} \otimes \chi, s\right)=\operatorname{det}\left(\mathbf{1}_{8}-\ell^{-s} \iota_{\infty}\left(\chi(\ell)^{-1} \operatorname{Frob}_{\ell} \mid\left(V_{p}^{\boldsymbol{E}}\right)^{I_{\ell}}\right)\right)^{-1}
$$

The complete triple product L-series

$$
\Lambda(\boldsymbol{E}, s)=\Gamma_{\mathbf{C}}(s) \Gamma_{\mathbf{C}}(s-1)^{3} L(\boldsymbol{E}, s)
$$

proved to be an entire function which satisfies a simple functional equation

$$
\Lambda(\boldsymbol{E}, s)=\varepsilon(\boldsymbol{E}, s) \Lambda(\boldsymbol{E}, 4-s)
$$

by the integral representation discovered by Garrett [Gar87] and studied extensively in the literatures [PSR87, Ike89, Ike92, GK92, Ram00]. The global sign is given by the product of local signs $\varepsilon=\varepsilon(\boldsymbol{E}, 2)=-\prod_{\ell} \varepsilon_{\ell}(\boldsymbol{E})$. Let D be the unique quaternion algebra over \mathbf{Q} such that $D_{\ell} \nsim \mathrm{M}_{2}\left(\mathbf{Q}_{\ell}\right)$ if and only if $\varepsilon_{\ell}(\boldsymbol{E})=-1$. Here we put $D_{\ell}=D \otimes \mathbf{Q}_{\ell}$ and $\widehat{D}=D \otimes \widehat{\mathbf{Q}}$.

If E_{1}, E_{2}, E_{3} are semistable, then N_{1}, N_{2}, N_{3} are square-free,

$$
\varepsilon(\boldsymbol{E}, s)=\varepsilon N_{-}^{2-s} N_{+}^{8-4 s}, \quad \varepsilon=\prod_{\ell \mid N_{-}} \prod_{i=1}^{3} \varepsilon_{\ell}\left(E_{i}\right),
$$

where N_{-}and N_{+}are the greatest common divisor and the least common multiple of N_{1}, N_{2}, N_{3}. Note that $\varepsilon_{\ell}\left(E_{i}\right)=-1$ if and only if ℓ divides N_{i} and E_{i} has split multiplicative reduction at ℓ.

2. IChino's formula

The theorem of Wiles gives a primitive form

$$
f_{i}=\sum_{n=1}^{\infty} \mathbf{a}\left(n, f_{i}\right) q^{n} \in S_{2}\left(\Gamma_{0}\left(N_{i}\right)\right)
$$

such that all the Fourier coefficients $\mathbf{a}\left(n, f_{i}\right)$ are rational integers and such that E_{i} is isogeneous to the elliptic curve obtained from f_{i} via the EichlerShimura construction, i.e., the Dirichlet series $\sum_{n=1}^{\infty} \mathbf{a}\left(n, f_{i}\right) n^{-s}$ coincides with the Hasse-Weil L-series $L\left(s, E_{i}\right)$. Then $\varepsilon_{q}\left(E_{i}\right)=-\mathbf{a}\left(q, f_{i}\right)$ for each prime factor q of N_{i}. Let π_{i} be the automorphic representation of $\mathrm{PGL}_{2}(\mathbf{A})$ generated by f_{i}. The eigenform f_{i} determines an automorphic representation $\pi_{i}^{D} \simeq \otimes_{v}^{\prime} \pi_{i, v}^{D}$ of $(D \otimes \mathbf{A})^{\times}$via the global correspondence of Jacquet, Langlands and Shimizu. Though π_{i}^{D} is self-dual, we write $\pi_{i}^{D \vee}$ for its dual with future generalizations in view. Let $X=\left\{X_{U}\right\}_{U}$ denote the projective system of rational curves associated to D indexed by open compact subgroups U of \widehat{D}^{\times}.

For every place v of \mathbf{Q} we define the local trilinear form

$$
I_{v}: \bigotimes_{i=1}^{3}\left(\pi_{i, v}^{D} \otimes \pi_{i, v}^{D V}\right) \rightarrow \mathbf{C}
$$

by
(2.1) $\quad I_{v}\left(h_{v} \otimes h_{v}^{\prime}\right)$

$$
=\frac{\prod_{i=1}^{3} L\left(1, \pi_{i, v}, \mathrm{ad}\right)}{\zeta_{v}(2)^{2} L\left(\frac{1}{2}, \pi_{1, v} \times \pi_{2, v} \times \pi_{3, v}\right)} \int_{\mathbf{Q}_{v}^{\times} \backslash D_{v}^{\times}} B_{v}\left(\left(\sigma_{1, v} \otimes \sigma_{2, v} \otimes \sigma_{3, v}\right)(g) h_{v} \otimes h_{v}^{\prime}\right) \mathrm{d} g .
$$

The global trilinear form $I: \bigotimes_{i=1}^{3}\left(\pi_{i}^{D} \otimes \pi_{i}^{D \vee}\right) \rightarrow \mathbf{C}$ is defined to be the tensor product of the local trilinear forms I_{v}. This definition depends on the choice
of the local invariant pairings $B_{v}: \bigotimes_{i=1}^{3}\left(\pi_{i, v}^{D} \otimes \pi_{i, v}^{D V}\right) \rightarrow \mathbf{C}$. Normalize the local pairings by the compatibility

$$
\otimes_{i=1}^{3}\langle,\rangle_{i}=\otimes_{v} B_{v}
$$

Here the Petersson pairing $\langle,\rangle_{i}: \pi_{i}^{D} \otimes \pi_{i}^{D \vee} \rightarrow \mathbf{C}$ is defined by

$$
\left\langle h_{i}, h_{i}^{\prime}\right\rangle_{i}=\int_{\mathbf{A}^{\times} D^{\times} \backslash(D \otimes \mathbf{A})^{\times}} h_{i}(g) h_{i}^{\prime}(g) \mathrm{d} g .
$$

Define the period integral $\mathscr{P}^{D}: \otimes_{i=1}^{3} \pi_{i}^{D} \rightarrow \mathbf{C}$ by

$$
\mathscr{P}^{D}\left(h_{1} \otimes h_{2} \otimes h_{3}\right)=\int_{\mathbf{A}^{\times} D^{\times} \backslash(D \otimes \mathbf{A})^{\times}} h_{1}(g) h_{2}(g) h_{3}(g) \mathrm{d} g .
$$

For a local reason $\mathscr{P}^{D^{\prime}}$ vanishes on $\bigotimes_{i=1}^{3} \pi_{i}^{D^{\prime}}$ unless $D \simeq D^{\prime}$. Ichino proved the following formula for the central critical value in [Ich08]:

$$
\mathscr{P}^{D}(h) \mathscr{P}^{D}\left(h^{\prime}\right)=2^{-3} \zeta_{\mathbf{Q}}(2)^{2} \frac{\Lambda(\boldsymbol{E}, 2)}{\prod_{i=1}^{3} \Lambda\left(1, \pi_{i}, \mathrm{ad}\right)} I\left(h \otimes h^{\prime}\right),
$$

where $\Lambda\left(s, \pi_{i}\right.$, ad $)$ is the complete adjoint L-series of π_{i}.

3. The complex derivative

Let $\varepsilon=-1$. Then Ichino's formula is trivial as $L(\boldsymbol{E}, 2)$ is automatically 0 and \mathscr{P}^{D} vanishes. The main object of study in this case is the central derivative $L^{\prime}(\boldsymbol{E}, 2)$ of $L(\boldsymbol{E}, s)$. Now D is indefinite and X_{U} is the (compactified) Shimura curve. We regard X_{U} as the codimensioin 2 cycle embedded diagonally in the threefold X_{U}^{3}. One can modify it to obtain a homologically trivial cycle, following [GS95]. Gross and Kudla conjectured an analogous expression for $L^{\prime}(\boldsymbol{E}, 2)$ in terms of a height pairing of the $\left(f_{1}, f_{2}, f_{3}\right)$-isotypic component of the modified diagonal cycle.

Let \mathbb{D} be the definite quaternion algebra over \mathbf{A} whose finite part is isomorphic to \widehat{D}. Since \mathbb{D} is not the base change of any quaternion algebra over \mathbf{Q}, it is incoherent in the sense of Kudla. The projective limit X of $\left\{X_{U}\right\}$ is endowed with the action of \widehat{D}^{\times}. The curve X_{U} has a Hodge class L_{U}, which is the line bundle whose global sections are holomorphic modular forms of weight two. Normalize the Hodge class by $\xi_{U}:=\frac{L_{U}}{\operatorname{vol}\left(X_{U}\right)}\left|\widehat{\mathbf{Z}}^{\times} / \mathrm{N}_{\mathbf{Q}}^{D}(U)\right|$, where

$$
\operatorname{vol}\left(X_{U}\right):=\int_{X_{U}(\mathbf{C})} \frac{\mathrm{d} x \mathrm{~d} y}{2 \pi y^{2}} .
$$

It is known that deg $L_{U}=\operatorname{vol}\left(X_{U}\right)$ and that the induced action of \widehat{D}^{\times}on the set of geometrically connected components of X_{U} factors through the norm map $\mathrm{N}_{\mathbf{Q}}^{D}: \widehat{D}^{\times} \rightarrow \widehat{\mathbf{Q}}^{\times}$. Hence the restriction of ξ_{U} to each geometrically connected component of X_{U} has degree 1 .

For any abelian variety A over \mathbf{Q} the space $\operatorname{Hom}_{\xi_{U}}^{0}\left(X_{U}, A\right)$ consists of morphisms in $\operatorname{Hom}_{\mathbf{Q}}\left(X_{U}, A\right) \otimes \mathbf{Q}$ which map the Hodge class ξ_{U} to zero in A. Since any morphism from X_{U} to an abelian variety factors through the

Jacobian variety J_{U} of X_{U}, we also have $\operatorname{Hom}_{\xi_{U}}^{0}\left(X_{U}, A\right)=\operatorname{Hom}_{\mathbf{Q}}^{0}\left(J_{U}, A\right)$. We consider the \mathbf{Q}-vector spaces

$$
\sigma_{i}:=\lim _{\longrightarrow U} \operatorname{Hom}_{\xi_{U}}^{0}\left(X_{U}, E_{i}\right), \quad \sigma_{i}^{\vee}:=\lim _{\longrightarrow U} \operatorname{Hom}_{\xi_{U}}^{0}\left(X_{U}, E_{i}^{\vee}\right)
$$

The space σ_{i} admits a natural action by \mathbb{D}^{\times}. Actually, $\sigma_{i} \otimes_{\mathbf{Q}} \mathbf{C} \simeq \otimes_{q}^{\prime} \pi_{i, q}^{D}$ from which $\pi_{i, q}^{D}$ gains the structure of a \mathbf{Q}-vector space. Here the archimedean part $\mathbb{D}_{\infty}^{\times}$acts trivially on σ_{i}.

Let $h_{i, U}: J_{U} \rightarrow E_{i}$ and $h_{i, U}^{\prime}: J_{U} \rightarrow E_{i}^{\vee}$ be \mathbf{Q}-morphisms. The morphism $h_{i, U}^{\prime \vee}: E_{i} \rightarrow J_{U}$ represents the homomorphism $h_{i, U}^{\prime *}: E_{i} \simeq \operatorname{Pic}^{0}\left(E_{i}\right) \rightarrow$ $\operatorname{Pic}^{0}\left(J_{U}\right)$ composed with the canonical isomorphism $\operatorname{Pic}^{0}\left(J_{U}\right) \simeq J_{U}$ given by the Abel-Jacobi theorem. By Lemma 3.11 of [YZZ13]

$$
B_{i}^{\natural}\left(h_{i} \otimes h_{i}^{\prime}\right)=\operatorname{vol}\left(X_{U}\right)^{-1} h_{i, U} \circ h_{i, U}^{\prime} \in \operatorname{End}_{\mathbf{Q}}^{0}\left(E_{i}\right)=\mathbf{Q}
$$

is a perfect \mathbb{D}^{\times}-invariant pairing $\sigma_{i} \otimes \sigma_{i}^{\vee} \rightarrow \mathbf{Q}$. Let $B^{\natural}:=\otimes_{i=1}^{3} B_{i}^{\natural}$ and define the trilinear form $I^{\natural} \in \operatorname{Hom}_{\widehat{D}^{\times} \times \widehat{D}^{\times}}\left(\otimes_{i=1}^{3}\left(\sigma_{i} \otimes \sigma_{i}^{\vee}\right), \mathbf{Q}\right)$ as in (2.1).

For each U we let Δ_{U} be the diagonal cycle of X_{U}^{3} as an element in the Chow group $\mathrm{CH}^{2}\left(X_{U}^{3}\right)$ of codimension 2 cycles. We obtain a homologically trivial cycle $\Delta_{U, \xi_{U}}$ on X_{U}^{3} by some modification with respect to ξ_{U} as constructed in [GS95]. The classes $\Delta_{U, \xi_{U}}^{\dagger}=\frac{\Delta_{U, \xi_{U}}}{\operatorname{vol}\left(X_{U}\right)}$ form a projective system and define a class $\Delta_{\xi}^{\dagger} \in \lim _{\longleftarrow} \mathrm{CH}^{2}\left(X_{U}^{3}\right)^{0}$.

Given $h_{i} \in \sigma_{i}$ for $i=1,2,3$, we get a homologically trivial class

$$
h_{*} \Delta_{\xi}^{\dagger} \in \mathrm{CH}^{2}(\boldsymbol{E})^{0}, \quad h=h_{1} \times h_{2} \times h_{3} .
$$

One can consider the Beilinson-Bloch height pairing $\langle,\rangle_{\mathrm{BB}}$ between homologically trivial cycles on \boldsymbol{E} and \boldsymbol{E}^{\vee}.

The following formula was first conjectured by Gross-Kudla [GK92] and later refined by Yuan, S. W. Zhang and W. Zhang [YZZ]:

Conjecture 3.1 (Gross-Kudla, Yuan-Zhang-Zhang).

$$
\left\langle h_{*} \Delta_{\xi}^{\dagger}, h_{*}^{\prime} \Delta_{\xi}^{\dagger}\right\rangle_{\mathrm{BB}}=2^{3} \zeta_{\mathbf{Q}}(2)^{2} \frac{\Lambda^{\prime}(\boldsymbol{E}, 2)}{\prod_{i=1}^{3} \Lambda\left(1, \pi_{i}, \mathrm{ad}\right)} I^{\natural}\left(h \otimes h^{\prime}\right) .
$$

This formula is a higher dimensional analogue of the Gross-Zagier formula. A significant progress was given in [YZZ] .

Remark 3.2. (1) Let $\mathrm{CH}^{2}(\boldsymbol{E})_{0}$ be the subgroup of elements with trivial projection onto $E_{i} \times E_{j}$. Lemma 5.1.2 of [Zha10a] gives the decomposition

$$
\mathrm{CH}^{2}(\boldsymbol{E})^{0} \simeq \mathrm{CH}^{2}(\boldsymbol{E})_{0} \oplus \bigoplus_{i=1}^{3} 2 \mathrm{CH}^{1}\left(E_{i}\right)^{0}
$$

which is compatible with the Künneth decomposition

$$
H_{\text {ett }}^{3}\left(\boldsymbol{E}_{/ \overline{\mathbf{Q}}}, \mathbf{Q}_{p}(2)\right) \simeq \otimes_{i=1}^{3} H_{\text {êt }}^{1}\left(E_{i / \overline{\mathbf{Q}}}, \mathbf{Q}_{p}\right)(2) \oplus \bigoplus_{i=1}^{3} 2 H_{\text {êt }}^{1}\left(E_{i / \overline{\mathbf{Q}}}, \mathbf{Q}_{p}\right)(1)
$$

Since $\mathrm{CH}^{1}\left(E_{i}\right)^{0}$ is nothing but the Mordell-Weil group of E_{i}, the BSD conjecture gives $\operatorname{rankCH}{ }^{1}\left(E_{i}\right)^{0}=\operatorname{ord}_{s=1} L\left(H_{\text {ét }}^{1}\left(E_{i / \overline{\mathbf{Q}}}, \mathbf{Q}_{p}\right), s\right)$ and the Beilinson-Bloch conjecture gives

$$
\begin{aligned}
& \operatorname{rankCH}^{2}(\boldsymbol{E})^{0}=\operatorname{ord}_{s=2} L\left(H_{\mathrm{et}}^{3}\left(\boldsymbol{E} / \overline{\mathbf{Q}}, \mathbf{Q}_{p}\right), s\right), \\
& \operatorname{rankCH}
\end{aligned}
$$

If $L^{\prime}(\boldsymbol{E}, 2) \neq 0$, then $h_{*} \Delta_{\xi}^{\dagger}$ is not zero in $\mathrm{CH}^{2}(\boldsymbol{E})^{0}$ for some $h \in$ $\otimes_{i=1}^{3} \sigma_{i}$ by Conjecture 3.1.
(2) Let $E_{1}=E_{2}=E_{3}=E$. Then $L(\boldsymbol{E}, s)=L\left(\operatorname{Sym}^{3} E, s\right) L(E, s-1)^{2}$. If it has odd functional equation, then its order at $s=2$ is greater than 1, which is compatible with Proposition 4.5 of [GS95].
(3) Let $f_{1}=f_{2} \neq f_{3}$. Then $L(\boldsymbol{E}, s)=L\left(\operatorname{Sym}^{2} f_{1} \times f_{3}, s\right) L\left(f_{3}, s-1\right)$ and hence $L^{\prime}(\boldsymbol{E}, 2)=L\left(\mathrm{Sym}^{2} f_{1} \times f_{3}, 2\right) L^{\prime}\left(f_{3}, 1\right)$ (see $\S 5.3$ of [Zha10b]).

4. Cyclotomic p-Adic triple product L-Series

Fix an odd prime number p which does not divide N^{+}and such that none of $\mathbf{a}\left(p, f_{i}\right)$ is divisible by p. Equivalently, E_{1}, E_{2}, E_{3} have good ordinary reduction at p. The $G_{\mathbf{Q}_{p}}$-invariant subspace

$$
\operatorname{Fil}^{0} T_{p}\left(E_{i}\right):=T_{p}\left(E_{i}\right)^{I_{p}}=\operatorname{Ker}\left(T_{p}\left(E_{i}\right) \rightarrow T_{p}\left(E_{i} / \mathbb{F}_{p}\right)\right.
$$

fixed by I_{p} is one-dimensional, where E_{i} / \mathbb{F}_{p} denotes the $\bmod p$ reduction of the Neron model of E_{i}.

The Galois representation $V_{p}^{\boldsymbol{E}}$ satisfies the Panchishkin condition in [Gre94, page 217], i.e., we define the rank four $G_{\mathbf{Q}_{p}}$-invariant subspace of $V_{p}^{\boldsymbol{E}}$ by

$$
\begin{aligned}
\operatorname{Fil}^{+} V_{p}^{\boldsymbol{E}}:= & \operatorname{Fil}^{0} T_{p}\left(E_{1}\right) \otimes \operatorname{Fil}^{0} T_{p}\left(E_{2}\right) \otimes T_{p}\left(E_{3}\right)(-1) \\
& +T_{p}\left(E_{1}\right) \otimes \operatorname{Fil}^{0} T_{p}\left(E_{2}\right) \otimes \operatorname{Fil}^{0} T_{p}\left(E_{3}\right)(-1) \\
& +\operatorname{Fil}^{0} T_{p}\left(E_{1}\right) \otimes T_{p}\left(E_{2}\right) \otimes \operatorname{Fil}^{0} T_{p}\left(E_{3}\right)(-1)
\end{aligned}
$$

The Hodge-Tate numbers of $\mathrm{Fil}^{+} V_{p}^{\boldsymbol{E}}$ are all positive, while none of the Hodge-Tate numbers of $V_{p}^{\boldsymbol{E}} / \mathrm{Fil}^{+} V_{p}^{\boldsymbol{E}}$ is positive.

The author and Ming-Lun Hsieh have constructed a function $L_{p}(\boldsymbol{E})$ on the space of continuous characters $\chi: \operatorname{Gal}\left(\mathbf{Q}_{\infty} / \mathbf{Q}\right) \rightarrow \overline{\mathbf{Q}}_{p}^{\times}$having the following interpolation property

$$
L_{p}(\boldsymbol{E}, \hat{\chi})=\frac{\Lambda(\boldsymbol{E} \otimes \hat{\chi}, 2)}{\prod_{i=1}^{3} \Lambda\left(1, \pi_{i}, \mathrm{ad}\right)}(\sqrt{-1})^{3} \mathcal{E}_{p}\left(\mathrm{Fil}^{+} V_{p}^{\boldsymbol{E}} \otimes \chi\right)
$$

for all finite-order characters $\hat{\chi}$ of $\operatorname{Gal}\left(\mathbf{Q}_{\infty} / \mathbf{Q}\right)$ in Corollary 7.9 of $[\mathrm{HY}]$, where the modified p-Euler factor is defined by

$$
\mathcal{E}_{p}\left(\mathrm{Fil}^{+} V_{p}^{\boldsymbol{E}} \otimes \chi\right)=\frac{L\left(\mathrm{Fil}^{+} V_{p}^{\boldsymbol{E}} \otimes \chi, 0\right)}{\varepsilon\left(\mathrm{Fil}^{+} V_{p}^{\boldsymbol{E}} \otimes \chi\right) \cdot L\left(\left(\mathrm{Fil}^{+} V_{p}^{\boldsymbol{E}} \otimes \chi\right)^{\vee}, 1\right)} \cdot \frac{1}{L_{p}\left(V_{p}^{\boldsymbol{E}} \otimes \chi, 0\right)}
$$

It satisfies the functional equation

$$
L_{p}(\boldsymbol{E}, T)=\varepsilon\left\langle N_{-}\right\rangle_{T}^{-1}\left\langle N_{+}\right\rangle_{T}^{-4} L_{p}\left(\boldsymbol{E},(1+T)^{-1}-1\right) .
$$

5. The p-ADIC Derivative

Letting $\varepsilon=-1$ and $T=0$, we get

$$
L_{p}(\boldsymbol{E}, \mathbb{1})=0 .
$$

We consider the cyclotomic derivative

$$
L_{p}^{\prime}(\boldsymbol{E}, \mathbb{1}):=\lim _{s \rightarrow 0} \frac{L_{p}\left(\boldsymbol{E},\langle\cdot\rangle^{s}\right)}{s} .
$$

The conjectural formula for this cyclotomic derivative has the same shape but the real valued height is replaced by a p-adic valued height.

The theory of the p-adic height pairing was developed by Néron, Zarhin, Schneider, Mazur-Tate, Perrin-Riou, Nekovář. The p-adic height pairing depends on a choice of the p-adic logarithm on the idéle class group $\mathbf{A}^{\times} / \mathbf{Q}^{\times}$ and a choice of a splitting as \mathbf{Q}_{p}-vector spaces of the Hodge filtration of the de Rham cohomology of \boldsymbol{E} over \mathbf{Q}_{p}. We take the Iwasawa logarithm $l_{\mathbf{Q}}: \mathbf{A}^{\times} / \mathbf{Q}^{\times} \rightarrow \mathbf{Q}_{p}$. Since $V_{p}^{\boldsymbol{E}}$ satisfies the Panchishkin condition, we have a natural choice of the splitting obtained from $\mathrm{Fil}^{+} V_{p}^{\boldsymbol{E}}$. We may therefore say that there is a canonical p-adic height pairing $\langle,\rangle_{\text {Nek }}$ on homologically trivial cycles on \boldsymbol{E}.

Conjecture 5.1.

$$
\left\langle h_{*} \Delta_{\xi}^{\dagger}, h_{*}^{\prime} \Delta_{\xi}^{\dagger}\right\rangle_{\mathrm{Nek}} \cdot 2^{8} \tilde{\zeta}_{\mathbf{Q}}(2)^{2}(\sqrt{-1})^{3} \mathcal{E}_{p}\left(\mathrm{Fil}^{+} V_{p}^{\boldsymbol{E}}\right)=L_{p}^{\prime}(\boldsymbol{E}, \mathbb{1}) I^{\natural}\left(h \otimes h^{\prime}\right)
$$

for all $h \in \bigotimes_{i=1}^{3}\left(\sigma_{i} \otimes \sigma_{i}^{\vee}\right)$, where $\tilde{\zeta}_{\mathbf{Q}}(s)=2(2 \pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} n^{-s}$.
Remark 5.2. The p-adic height factors through the Abel-Jacobi map

$$
\mathrm{CH}^{2}(\boldsymbol{E})^{0} \otimes \mathbf{Q}_{p} \rightarrow H_{f}^{1}\left(\mathbf{Q}, H_{\text {êt }}^{3}\left(\boldsymbol{E} / \overline{\mathbf{Q}}, \mathbf{Q}_{p}(2)\right)\right) .
$$

When $L_{p}^{\prime}(\boldsymbol{E}, \mathbb{1}) \neq 0$, Conjecture 5.1 gives a nonzero element of the BlochKato Selmer group of the Galois representation V_{p}^{E}.

References

[Bei87] A. A. Beilinson, Height pairing between algebraic cycles, Automorphic forms and L-functions II. Local aspects, Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 1-24.
[BK90] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400.
[Dis17] Daniel Disegni, The p-adic Gross-Zagier formula on Shimura curves, Compos. Math. 153 (2017), no. 10, 1987-2074.
[Gar87] Paul B. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (1987), no. 2, 209-235.
[GD77] A. Grothendieck and P Deligne, La classe de cohomologie associée à un cycle, Cohomologie étale, Springer, Berlin, 1977, pp. 129-153, Lecture Notes in Math., Vol. 569.
[GK92] Benedict H. Gross and Stephen S. Kudla, Heights and the central critical values of triple product L-functions, Compositio Math. 81 (1992), no. 2, 143-209.
[GK93] Benedict H. Gross and Kevin Keating, On the intersection of modular correspondences, Invent. Math. 112 (1993), no. 2, 225-245.
[Gor02] Eyal Z Goren, Lectures on Hilbert modular varieties and modular forms. with the assistance of Marc-Hubert Nicole, english ed., CRM Monograph Series, vol. 14, American Mathematical Society, Providence, RI, 2002.
[Gre94] Ralph Greenberg, Iwasawa theory and p-adic deformations of motives, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 193-223. MR 1265554
[GS87] H. Gillet and C. Soulé, Intersection theory using adams operations, Invent. Math. 90 (1987), no. 2, 243-277.
[GS95] Benedict H. Gross and Chad Schoen, The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 3, 649679.
[HC70] Harish-Chandra, Harmonic Analysis on Reductive p-adic Groups, Lect. Notes in Math., vol. 162, Springer-Verlag, New York-Heidelberg-Berlin, 1970.
[Hsi17] Ming-Lun Hsieh, Hida families and p-adic triple product L-functions, arXiv:1705.02717.
[HY] Min-Lun Hsieh and Shunsuke Yamana, Four-variable triple product p-adic Lfunctions, Preprint.
[Ich08] Atsushi Ichino, Trilinear forms and the central values of triple product L functions, Duke Math. J. 145 (2008), no. 2, 281-307.
[Ike89] Tamotsu Ikeda, On the functional equations of the triple L-functions, J. Math. Kyoto Univ. 29 (1989), no. 2, 175-219.
[Ike92] , On the location of poles of the triple L-functions, Compositio Math. $\mathbf{8 3}$ (1992), no. 2, 187-237.
[Jan90] Uwe Jannsen, Mixed Motives and Algebraic K-Theory. With appendices by S. Bloch and C. Schoen, Lect. Notes in Math., vol. 1400, Springer-Verlag, Berlin, 1990.
[KR92] Stephen S. Kudla and Stephen Rallis, Ramified degenerate principal series representations for $S p(n)$, Israel J. Math. 78 (1992), 209-256.
[KR99] Stephen S. Kudla and Michael. Rapoport, Arithmetic Hirzebruch-Zagier cycles, J. Reine Angew. Math. 515 (1999), 155-244.
[Kud97] Stephen Kudla, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), no. 1, 39-78.
[Lie68] David I. Lieberman, Higher picard varieties, Amer. J. Math. 90 (1968), 11651199.
[Nek93] Jan Nekovář, On p-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990-91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, english ed., 1993, pp. 127-202.
[Nek95] , On the p-adic height of heegner cycles, Math. Ann. 302 (1995), no. 4, 609-686.
[Pra90] Dipendra Prasad, Trilinear forms for representations of GL(2) and local ϵ factors, Compositio Math. 75 (1990), no. 1, 1-46.
[PSR87] I. Piatetski-Shapiro and Stephen Rallis, Rankin triple L functions, Compositio Math. 64 (1987), no. 1, 31-115. MR 911357
[Ram00] Dinakar Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of Math. (2) 152 (2000), no. 1, 45-111. MR 1792292
[RZ96] M. Rapoport and Th. Zink, Period spaces for p-divisible groups, vol. 141, Princeton University Press, Princeton, N.J., 1996, Annals of Mathematics Studies.
[Sch94] A. J. Scholl, Height pairings and special values of L-functions, Motives (Seattle, WA, 1991), vol. 55, Proc. Sympos. Pure Math., no. 1, Amer. Math. Soc., Providence, RI, english ed., 1994, pp. 571-598.
[Ser00] Jean-Pierre Serre, Local algebra, english ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000, Translated from the French by CheeWhye Chin and revised by the author. MR 1771925
[Shi04] Goro Shimura, Arithmetic and Analytic Theories of Quadratic Forms and Clifford Groups, english ed., Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004.
[Ter11] Ulrich Terstiege, Intersections of arithmetic Hirzebruch-Zagier cycles, Math. Ann. 349 (2011), no. 1, 161-213. MR 2753800
[Wal10] J.-L. Waldspurger, Une formule intégrale reliée à la conjecture locale de GrossPrasad, Compositio Math. 146 (2010), no. 5, 1180-1290.
[Wal12] __, Une formule intégrale reliée à la conjecture locale de Gross-Prasad, 2è partie: extension aux représentations tempérées, Astérisque (2012), no. 346, ix, 171-312, Sur les conjectures de Gross et Prasad. I.
[Wed07] Torsten Wedhorn, Calculation of representation densities, Astérisque (2007), no. 312, 179-190, ARGOS Seminar on intersections of modular correspondences.
[YZZ] Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, Triple product L-series and Gross-Kudla-Schoen cycles, Preprint.
[YZZ09] , The Gross-Kohnen-Zagier theorem over totally real fields, Compos. Math. 145 (2009), no. 5, 1147-1162.
[YZZ13] , The Gross-Zagier formula on Shimura curves, english ed., Annals of Mathematics Studies, vol. 184, Princeton University Press, Princeton, N.J., 2013.
[Zha10a] Shou-Wu Zhang, Invent. Math. 179 (2010), no. 1, 1-73.
[Zha10b] , Arithmetic of shimura curves, Sci. Chi. Math. 53 (2010), no. 3, 573-592.
Email address: yamana@sci.osaka-cu.ac.jp
Department of Mathematics, Graduate School of Science, Osaka City UniVERSITY

