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ABSTRACT. I will report my joint work with Ming-Lun Hsieh on a (con-
jectural) description of cyclotomic derivatives of p-adic triple product 
£-functions in terms of Nekovar's p-adic height of diagonal cycles. 

1. THE TRIPLE PRODUCT£-SERIES OF THREE ELLIPTIC CURVES 

Let E1, 恥，恥 berational elliptic curves of conductor Ni, Fix an odd 
prime number p prime to N心 N3.The triple tensor product 

点：= Tp(E1)RTp(E2)RTp(E3)(-3) 
is a geometric p-adic Galois representation realized in the middle cohomology 

of the abelian variety E = E1 x恥 xE3, where Tp(Ei) = lim E国]is the 
←n 

Tate module of Ei, Let GQっGQeつI£bethe absolute Galois group, its 
decomposition group at£and its inertia subgroup at£. We consider the 
central critical twist 

ザ：= p:(2): GQ→ GLs(Z砂
Observe that (V/)*(1) c:::: V/. 

Fix an embedding伍： Q'-----+ C. Let Q00 be the Zp―extension of Q. 
Define a character〈・〉:GQ→ GQp→ 1 + pZp by〈x〉=x/w(x), where we 
identify GQp with z; and denote the p-adic Teichmiiller character by w. 
The twisted triple product£-series is defined by the Euler product 

L(ER 文，s+ 2) = II LR,(vpERX, s) 
£ 

for p-adic characters x of Gal(Q00/Q) of finite order, where父isthe Dirichlet 
character associated to i00 o X・If£-/-p, then 

L£(V/⑧ X, s) = det(ls -£ ―8 loo(x(£)―1Frob£l(Y'; かり）―1.
The complete triple product£-series 

A(E, s) = rc(s)恥 (s-1)3L(E,s)

proved to be an entire function which satisfies a simple functional equation 

A(E, s) = c:(E, s)A(E, 4 -s) 
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by the integral representation discovered by Garrett [Gar87] and studied 
extensively in the literatures [PSR87, Ike89, Ike92, GK92, RamOO]. The 
global sign is given by the product of local signs c = c(E, 2) = -IT臼 (E).
Let D be the unique quaternion algebra over Q such that De'f: 殴叫 if
and only if勾(E)= -1. Here we put De= DRQc and D = DRQ. 
If E1,E2,E3 are semistable, then N1,N2,N3 are square-free, 

3 

c:(E, s) = c:N戸 N!-4s, E = II II Ec(Eふ
£IN-i=l 

where N_ and N+ are the greatest common divisor and the least common 
multiple of N1, N2, N3. Note that訂(Ei)= -1 if and only if£divides Ni 
and Ei has split multiplicative reduction at£. 

2. !CHINO'S FORMULA 

The theorem of Wiles gives a primitive form 

00 

Ji= La(nふ）qn ES虹o(Ni))
n=l 

such that all the Fourier coefficients a(n, Ji) are rational integers and such 
that Ei is isogeneous to the elliptic curve obtained from Ji via the Eichler-

00 Shimura construction, i.e., the Dirichlet series L a(n, Ji)戸 coincidesn=l 
with the Hasse-Weil L-series L(s, Ei), Then cq(Ei) = -a(q, Ji) for each 
prime factor q of Ni. Let 7ri be the automorphic representation of PGL2(A) 
generated by Ji. The eigenform Ji determines an automorphic representa-
tion 1rf c:::: R 仇f.vof (DRA)x via the global correspondence of Jacquet, 

Langlands and Shimizu. Thoughザ isself-dual, we write 1rfv for its d叫
with future generalizations in view. Let X = { Xu }u denote the projec-
tive system of rational curves associated to D indexed by open compact 

subgroups U of D又
For every place v of Q we define the local trilinear form 

3 

Iv: Q9(鵡 R7r誓）→ C
i=l 

by 

(2.1) Iv(hv®h~) 

I1f=1 L(l, 1ri,v, ad) 
= (v(2)叱（ふ7rl,vX四，vX 7r3,v) 1饂 D;;凡（（び1,忍 2,亭 3,v)(g)h墨尻）dg. 
The global trilinear form I : ⑭ f=l (ザR叶）V)→ C is defined to be the tensor 
product of the local trilinear forms Iv. This definition depends on the choice 
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of the local invariant pairings Bv : R い迅R心）→ C. Normalize the 
local pairings by the compatibility 

碕~1 〈, 〉i=幻 Bv・
Here the Petersson pairing〈,〉i:1rfR 叶）V→C is defined by 

〈hi,h仏=! 州g)崖(g)dg. 
AXD八(DRA)X

Define the period integral四： Rf=l1rf→ C by 

砂 (h1Rh2R加） = J h1(g)加(g)加(g)dg. 
AXか ¥(D@A)X

D' For a local reason叩 'vanishesonRf=l 7f. unless D c:::: D'. !chino proved 
the following formula for the central critical value in [Ich08]: 

A(E, 2) 
少州h)f?lJ州h')= 2―冨(2)2 I(hRh'), 

I1f=1 A(l, 7ri, ad) 

where A(s, 7ri, ad) is the complete adjoint£-series of町・

3. THE COMPLEX DERIVATIVE 

Let E = -1. Then !chino's formula is trivial as L(E, 2) is automatically 
0 and少D vanishes. The main object of study in this case is the central 
derivative L'(E, 2) of L(E, s). Now Dis indefinite and Xu is the (compact-
ified) Shimura curve. We regard Xu as the codimensioin 2 cycle embedded 
diagonally in the threefold X合.One can modify it to obtain a homologically 
trivial cycle, following [GS95]. Gross and Kudla conjectured an analogous 
expression for L'(E, 2) in terms of a height pairing of the (!1, h, !3)-isotypic 
component of the modified diagonal cycle. 
Let lDl be the definite quaternion algebra over A whose finite part is iso-

morphic to D. Since lDl is not the base change of any quaternion algebra over 
Q, it is incoherent in the sense of Kudla. The projective limit X of {Xu} is 

endowed with the action ofか.The curve Xu has a Hodge class Lu, which 
is the line bundle whose global sections are holomorphic modular forms of 

weight two. Normalize the Hodge class by~u :=可厨I仄喝(U)I,where 

vol(Xu) := j dxdy 
Xu(C) 27fY2・

It is known that deg Lu = vol(Xu) and that the induced action ofか onthe 
set of geometrically connected components of Xu factors through the norm 

D map N・Dx→ QX Q ・ . Hence the restnct1on of~u to each geometrically 
connected component of Xu has degree 1. 
For any abelian variety A over Q the space Homt(Xu, A) consists of 

morphisms in HomQ(Xu, A)RQ which map the Hodge class~u to zero in 
A. Since any morphism from Xu to an abelian variety factors through the 
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Jacobian variety Ju of Xu, we also have Homgu(Xu,A) = Homt(Ju,A). 
We consider the Q-vector spaces 

゜び：= lim Hom 
i fo(Xu, Ei), 

V 0 
びi:= lim Hom (Xu, Eりfo →U →U 

The spaceびiadmits a natural action by Il))x. Actually, a虞 qCc::c®~ 鳴 from
which鳴 gainsthe structure of a Q-vector space. Here the archimedean 
part II))~acts trivially on匹
Let hi,U: Ju→ Ei and htu : Ju→ E'/ be Q-morphisms. The morphism 
h釣： Ei→ Ju represents the homomorphism h仰： Ei c::c Pic゚(Ei)→
Pic0 (Ju) composed with the canonical isomorphism Pic0 (Ju) c::c Ju given 
by the Abel-Jacobi theorem. By Lemma 3.11 of [YZZ13] 

尻(hiR爪） = vol(Xu)―lhi,U Oh釣EEndt(Ei) = Q 

is a perfect Il))x-invariant pairing a膚 av→Q. Let Bl:=娼濁 anddefine 
the trilinear form Iq E Homか xf>x(®~=1 (aiR 呼），Q)as in (2.1). 
For each U we let位 bethe diago叫 cycleof xi as an element in the 
Chow group CH2(XM of codimension 2 cycles. We obtain a homologically 

trivial cycle△ U,fo on xi by some modification with respect toむ ascon-
structed in [GS95]. The classesぶ ＝主年U,fo vol(Xu) form a proJect1ve system 

and define a class△ 1 E limCH召X合）o_ 
← 

Given hi Eびifor i = 1, 2, 3, we get a homologically trivial class 

h叫 ECH2(E)0, h = h1 X加 Xh3. 

One can consider the Beilinson-Bloch height pairing〈,〉BBbetween homo-
logically trivial cycles on E and Ev. 

The following formula was first conjectured by Gross-Kudla [GK92] and 
later refined by Yuan, S. W. Zhang and W. Zhang [YZZ]: 

Conjecture 3.1 (Gross-Kudla, Yuan-Zhang-Zhang). 

A'(E, 2) 
〈h吋，h:吋〉BB=2湿(2戸 Jl(hRh').

I1f=1 A(l, Ki, ad) 

This formula is a higher dimensional analogue of the Gross-Zagier for-
mula. A significant progress was given in [YZZ] . 

Remark 3.2. (1) Let CH2(E)o be the subgroup of elements with trivial 
projection onto Ei x E1. Lemma 5.1.2 of [ZhalOa] gives the decom-
position 

3 

CH2(E)゜パ CH2(E)o ①〶 2CH1(E』°
i=l 
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which is compatible with the Kiinneth decomposition 

3 

雇 (E/Q'Qp(2))~ ®r=11'よ (E匹， Qp)(2) ①〶 21'よ (E匹， Qp)(l).
i=l 

Since CH闊）0 is nothing but the Mardell-Weil group of Ei, the 
BSD conjecture gives rankCH闊）o = ords=l L(H, よ(EりQ•Q砂 s)
and the Beilinson-Bloch conjecture gives 

rankCH2(E)0 = ords=2 L(鳳(E心，Q砂s),

rankCH2(E)o = ords=2 L(E, s). 

If L'(E, 2) # 0, then h心 isnot zero in CH2(E)0 for some h E 
R 3 i=lびiby Conjecture 3.1. 
(2) Let E1 = E2 = E3 = E. Then L(E, s) = L(Sym切，s)L(E,s -1)2. 
If it has odd functional equation, then its order at s = 2 is greater 
than 1, which is compatible with Proposition 4.5 of [GS95]. 

(3) Let Ji= h # fs. Then L(E, s) = L(Sym2 Ji x h, s)L(h, s -1) and 
hence L'(E, 2) = L(Sym2 Ji x h, 2)L'(h, I) (see§5.3 of [ZhalOb]). 

4. CYCLOTOMIC p-ADIC TRIPLE PRODUCT£-SERIES 

Fix an odd prime number p which does not divide N+ and such that 

none of a(p, Ji) is divisible by p. Equivalently, E1, E2, 恥 havegood ordinary 
reduction at p. The Gqp-invariant subspace 

Filo⑭ (Ei) := Tp(E叶=Ker(Tp(Ei)→ Tp(Ei/lFp) 

fixed by Ip is one-dimensional, where E謬Pdenotes the mod p reduction of 
the Neron model of Eか
The Galois representation~E satisfies the Panchishkin condition in [Gre94, 
page 217], i.e., we define the rank four Gqp -invariant subspace of V/ by 

Fil+V/ :=Filo⑭ (E1)RFil団（局） RTp(E砂(-1)

＋孔(E1)RFil冗(E2)RFil冗(E3)(-l)
+ Filo⑭ (E1)R 芥(E2)RFil冗(E3)(-l).

The Hodge-Tate numbers of Fil+v/ are all positive, while none of the 

Hodge-Tate numbers of VPE /Fil+~E is positive. 
The author and Ming-Lun Hsieh have constructed a function Lp(E) on the 

space of continuous characters x : Gal(Q00/Q)→ Q; having the following 
interpolation property 

A(ER 文，2)
与(E,文） = (v'=I)閲(Fil+v/Rx)
Tif=l A(l, 叩，ad)
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for all finite-order characters x of Gal(Q00/Q) in Corollary 7.9 of [HY], 
where the modified p-Euler factor is defined by 

ら(Fil+½,E®X) = 
L(Fil+V/RX, 0) 1 

c(Fil'――て

It satisfies the functional equation 

ら(E,T)= c〈N_〉Tl〈N+〉7'4ら(E,(1 + T)―1 -1). 

5. THE p-ADIC DERIVATIVE 

Letting c: = -1 and T = 0, we get 

ら(E,.Il) = 0. 

We consider the cyclotomic derivative 

L~(E, .Il) := lim 
ら(E,〈•戸）

S→ 0 s 
The conjectural formula for this cyclotomic derivative has the same shape 
but the real valued height is replaced by a p-adic valued height. 
The theory of the p-adic height pairing was developed by Neron, Zarhin, 
Schneider, Mazur-Tate, Perrin-Riou, Nekovaf. The p-adic height pairing 
depends on a choice of the p-adic logarithm on the idele class group AツQX
and a choice of a splitting as Qp―vector spaces of the Hodge filtration of 
the de Rham cohomology of E over Qp, We take the lwasawa logarithm 

lQ: AツQX→Qp, Since VE satisfies the Panchishkin condition we have p 

a natural choice of the splitting obtained from Fi『VE.We may therefore p 

say that there is a canonical~adic height pairing〈,〉Nekon homologically 
trivial cycles on E. 

Conjecture 5.1. 

〈 h叫， h因〉Nek·2冨(2)2(J=I)図(Fil+½か=L~(E, .Il)Jl(hRh') 

for all h E (8)f=1侶R叩£),where匈s)= 2(2吋―sr(s)L~=l n-s_ 

Remark 5.2. The p-adic height factors through the Abel-Jacobi map 

CH2(E)0RQp→ H}(Q, II: 嘉(E心叫2))).

When L~(E, .Il) -/= 0, Conjecture 5.1 gives a nonzero element of the Bloch-
Kato Selmer group of the Galois representation V/. 
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