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Numerical analysis of a tag model in circle

Makoto ITMA(f&H 18)* and Keita SUZUKI(# KR #XK)
Nonlinear Studies and Computation,
Research Institute for Electronic Science,
Hokkaido University,
Sapporo 060-0812, Japan
(Ab¥EE K FE T BEW SRR
Department of Mathematics,
Hokkaeido University,
Sapporo 060-0810, Japan
(AL¥E R FERFBRBEHER)

We analyzed a simplest tag model on a circle. This problem consists of one person
to chase and one to elude, and the output force to move is a function of the rels-
tive position. The effect of time delay from collecting the information to output is
considered. This model shows various motion including chaotic one, which can not
be observed without the time delay. When replacing the delay term to a distributed

one, some chaotic motion is stabilized.

I. INTRODUCTION

Chasing is ubiquitous around us. Tag is
a typical children’s game in which one chases
the rest. In a ball game such as soccer of bas-
ketball, a person possessing ball are chased
by the defense. The dynamics of the per-
son to chase(“chaser”) and the person to
elude( “eluder”) is not trivial: the chaser col-
lects the information of the eluder (position,
velocity, etc.), process the information, and
determine the amount and the direction of
the output force, and vice versa. In general,
processing information costs a finite time. In
this study, we focus on the effect of the time
delay to process the information.

Time delay in a dynamical system is com-
mon in nature. A typical example is the mat-
uration time of man to reproduce the next
generation. It takes a finite time that a dis-
turbance of birth rate is reflected in a next
generation. When this effect is taken in a
population model, it contains delay term(1].
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Time delay appears in many kinds of dy-
namical system such as demography (mat-
uration time), epidemic (incubation time),
control systems (transmission of feedback sig-
nal), economy (time lag from the measure-
ment to the announce of the economic in-
dicators ), optics (feedback signal of light)
(1, 3, 4]. It is known that time delay desta-
bilize a fixed point and invokes complex phe-
nomena such as chaos.

In this paper, we make a simplest tag
model to understand the chasing dynamics.
Our aim here is to know how the time de-
lay changes the result of chasing without de-
lay. In particular, we assume that the chaser
and the eluder have similar moving principle.
Furthermore, we choose the maximum of the
output function as a parameter of the abil-
ity to move. The difference of the parameter
between the chaser and the eluder is an indi-
cator to predict the result of the chase. An

‘naive expectation is that the sign of the in-

dicator is a unique factor to determine the
result. On the other hand, time delay causes
to destabilize the fixed point. These two ele-
ments may be in conflict, so the behavior of
the tag problem is not trivial.



In sec.Il, we show the detail of the model.
Sec. III is devoted to show the numerical
result of the model. Linear stability theory is
applied to this model in sec. IV.

II. MODEL

We consider tag model in a unit circle with
one chaser(.X ) and one eluder(Y). Each posi-
tion of X and Y, z and v, is measured by the
arc length from an origin. The dynamics of
X and Y is given by the following equations:

I

z(t)+ AF(z(t—71))+ Ki'(t)
Y (t)+ B F(z(t — 7)) + Ky(t) = 0, (2)
z(t) = y(t) — z(t) 3)

where & means time derivative of z, A, B, K
are positive constants. The output force is
determined by F'(z) as a function of the rela-
tive position of X and Y, z = 2(¢). To realize
the situation in tag, F'(z) should be positive
when 0 < z < 7, negative when 7 < z < 27.
The output-force function F(z) is assumed
odd by the requirement of the symmetry un-
der space inversion, and it is also assumed
2m—periodic function because of the period-
icity of space. Here we assume finite process-
ing time 7 from the input of the information
to output the force. In this model, the in-
formation is the relative position of X and
Y.

0, (1)

Y

FIG. 1: Schematic picture of the tag model. X
and Y move in the unit circle. X chases Y, while
Y eludes from X.

This equation can be rewritten in terms of
z(t) only as follows:

z(t)+CF(z(t—1))+ Kz(t) =0, (4)
where C = A— B is the parameter to measure
the maximum of the output force (C > 0
means X (chaser) has larger output force than
Y (eluder)).

The definition of the capture is as follows:
in this simple situation, a naive definition of
the catch, such as the state |2(t)| < Je, for 3t
can not lead us to interesting results. Thus
we define the catch as the state z(¢) — O(also
2(t) — 0) as t — oo. This definition means
that catching Y requires not only the rela-
tive position but the relative velocity should
be zero. A simplest example to satisfy this
condition is tag among two agile persons. An
instant time of coincidence is insufficient to
catch the eluder: he can slip through from
the chaser’s arms.

In this paper, we report the case F(z) =
sin(z), while the case of the other function
such as bilinear function( F(z) = z(|z| <
7/2);m — z(m/2 < x < 37/2)) and rectangu-
lar function(F'(z) = 1(0 < z < 'm); —-1(7 <
z < 2m)) is also studied in ref. [5].

When 7 = 0, the equation (4) corresponds
to a dumped simple pendulum. In this case,
the behavior is simple. Equilibrium points
are z(t) = 0O and 2(t) = 7. HC > 0
2(t) = 0 is stable and 2(t) = = is unsta-
ble, and if C < 0, vice versa. In terms of
the tag model, these result is trivial. The
case C > 0(A > B) means the chaser’s abil-
ity to acceleration is larger that the eluder.
Thus it is reasonable that the stable equilib-
rium point is z(t) = 2(¢) = 0, which means
the state of the catch. On the other hand, the
case C' < 0(A < B) means the eluder’s ability
to acceleration is larger that the chaser. Thus
the eluder will not be caught by the chaser.
Stable equilibrium point, 2(t) = m, 2(t) = 0,
means that the relative position is not zero.

In the next section, we study this model
nunerically in the case of 7 > 0. DBecause
7 # 0, we change the variable of time as t —
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7t, so that time delay 7 is unit time. Under
this transformation, we have

z({t)+cF(2(t—=1)) +ks(t) = 0, (5)
c=Cr* , (6)
k=Kr (7)

We analyze this equation hereafter.

III. NUMERICAL RESULT

Eq.(5) is integrated numerically by the
first-order Euler method with time step At =
0.005. The initial condition is chosen ran-
domly. Because eq.(5) is invariant under the
transformation ¢ — —c,z — 7 — z, we only
calculate the case ¢ > 0. Parameters ¢ and
k is changed in the range 0 < ¢ < 20 and
0<k<8.

A. Phase Diagram

We analyzed the time variation of the rela-
tive position, z(t), after transition time. The
data is classified into the following four cate-
gories (fig.2): (I) convergence (2(t) = const.),
(IT) simple periodic (z(t) is a periodic func-
tion, and it has just one maximum in a pe-
riod like sine function), (III) complex peri-
odic (z(t) is a periodic function, and it has
more than one maximum in a period), (IV)
non-periodic (which will be referred to as
“chaotic” hereafter).
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- FIG. 2: Phase diagram of the tag model. For any

set of (c, k), phase is automatically analyzed us-
ing z(t), and is characterized by phase number.
In the cases of (I) and (IV), phase number is 0.
and in the cases of (II) and (III), phase number
is period number if it is smaller than 3. When
period number is larger than 3, phase number
is 3. Boundary between the region where phase
number is zero and nonzero is shown.

We have one stable steady solution 2(t) =
0 in the region Co. This area is described
by k > 0.8c approximately, In this region,
the dump term kz(t) surpasses the output-
force term cF(z(t — 1)). Egs. (6) and (7)
shows that another interpretation for this
phase diagram. For example, the behavior
of eq. (4) with a set of (C, K, 7) is equiva-
lent to the behavior of eq. (5) with a set of
(¢,k) = (C7?, K7). Therefore, if one want to
consider how the behavior of eq. (4) varies
under the delay time 7 with fixed C and K,

‘the change of the behavior is shown along the

.

parabola k = JeVein fig. 2.

We have a region of periodic solutions, P,
indicated by roughly 0.8¢ > k<0.25c. The
gray color shows “the period number of peri-
odic solution”, which is the number of max-
ima in one period (note that this is half of
the definition in ref. [2]). In the most of
the region, the period number is 1: simple
oscillation like a sine function. We have nar-



row region of complex periodic solution. This
region is tangled, but one of the region is
around k >~ 0.1¢,e¢ > 7.

The period of the periodic solution is
shown in fig.3. Roughly speaking, the pe-
riod is determined mainly by k except near
the boundary of this region. The region can
be separated into two regions by the line
k = k., =~ 2.5. In the area where k < k,
the period is a rapid decreasing function of
k, while when k > k., the rate of decreasing
becomes small.

The period seems to converge to a certain
value as a limit £ — 0o. This can be under-
stood as follows. Periodic solution is achieved
when ¢ ~ k. So in the limit & — oo, the sec-
ond term and the third term in the eq.(5)
balance each other. It means that the phase
of two terms should be coincides. Thus phase
shift for z(t) in the term cF(z(t — 1)) is 2(T
is the period of the solution), and in the term
kz(t) is 5. The balance of the two terms an
asymptotic value of the period: T' = 4. The
detail of the analysis can not be written in
this paper because of the page limitation, but
we report it elsewhere.

In the region roughly k£ < 0.25¢, we have
three “chaotic” regions (Ch) which is sepa-
rated narrow periodic regions (k ~ 0.15¢ and
k ~0.1c,c > 7). This region shows aperiodic
solution. We discuss the behavior in this re-
gion in the following subsections mainly.

B. Orbit in Phase Space

Typical orbits in the space spanned by
(z(t), 2(t — 1)) are shown in fig.4. (we fixed
k = 2, and c is changed).

Parameters for fig. 4(a) and fig.4(b) are
in the region P in fig.2, 4(c) and 4(e) in the
region Ch. Parameters in fig. 4(d) and fig.
4(f) are in a narrow bands in Ch region in
fig.2.

A simple oscillation is shown in fig. 4(a),
which is symmetric with respect to the unsta-
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FIG. 3: Period of the periodic solution. The
non-period region (convergence, chaotic) is
shown by white. Period is shown by gray scale,
and three contours (period= 5,6,7) are drawn
for convenience.

ble equilibrium point z(t) = 7 (correspond-
ing to (z(t),2(t — 1)) = (=, 7)). A complex
periodic solution is shown in fig. 4(b). This
solution is a result of symmetry-breaking,
and the shape is not symmetric with respect
to itself. In this region, we have two solu-
tions symmetric with each other, which is
bifurcated from a symmetric periodic solu-
tion. Fig.4(c) shows a chaotic solution. The
chaotic solution seems to twist around an un-
stable periodic solution. When this solution
is shown in ¢t — 2 space (not shown in this
paper), it shows mostly an oscillation around
2(t) = 0, but sometimes it shows a rotary
motion. It should be noted that the this or-
bit passes near the origin, which is an unsta-
ble equilibrium point. The aperiodic motion
seems to originate from the unstableness of
the origin. However, there is a hole where
the path of the orbit never passes. It indi-
cates that the cross section of the orbit has a
narrow width (see also fig.5 and fig. 6).

Another periodic orbit is shown in fig.
4(d). This solution shows a rotation in
S, which is different from the oscillation in
fig.4(a) and 4(b). This rotary periodic solu-
tion is sandwiched between two chaotic re-
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gions characterized by fig.4(c) and fig.4(e). that the orbit is always rotary. The orbit
Chaotic solution shown in fig.4(e) differs from covers most of the space, although the cover
the chaotic solution in fig.4(c) in the sense ratio is dependent on c.

(@) Periodic I-1 (c=3, k=2) (b)Periodic 1-2 (¢=7, k=2)

2(t-1)
2(t-1)

z()
(d)periodic It (c=10.5, k=2)

z(t-1)
z(t-1)

2(t-1)
O P Lo =N w

-3 -2 -1 0 1 2 3

FIG. 4: Orbit in the phase space (2(t), 2(t — 1)). To display the orbit clearly, we draw two periods
for each axis.

C. Cross Section fig. 5, and fig. 6(magnification of fig.5). The
value of k is fixed to 2, which is the same as

We show a Poincare section (plot of z(¢ — ﬁg.4.‘ In leg. 6, a b.ifurcation from & sym-
1) when 2(t) = 0 and 2(t) > 0 ) of the or- metric periodic solution to asymmetric ones

bit in the space spanned by ((t), 2(t — 1)) in is shown around ¢ ~ 6.8. The transition to



chaos is observed by ¢ >~ 7.3. In the region
7.3 < ¢ < 10, Poincare section has a width
about 0.5 ~ 1.0(depending on ¢), which cor-
responds to the situation typically shown by
fig.4(c), although many window-like struc-
ture is observed in the region. In the region
¢ > 11, the width increasing with ¢, and when
¢ > 15, the section covers whole the domain
of z(t)( except the window 16 < ¢ < 17).

2(t-1)-Pi when zit)=Pi and 2{1-1)>Pi

FIG. 5: Cross section of orbit.
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|zit-1)Pi| when z(t)=Pi
N

FIG. 6: The same as fig.5, but enlarged to show
the transition to chaos.

D. Stabilization of Chaotic Behavior by

Distributed Delay

In this subsection, we analyze the effect
of the suppression of chaotic behavior by
the distributed delay. Recently, Thiel et.

al.[2] reported that delay-differential equa-
tion shows a kind of simplification of complex
behavior when delay term is replaced by the
distributed delay. In their paper, simplifica-
tion means reduction of oscillation amplitude
or period. In particular, their result shows
chaotic behavior recovers periodicity as the
width of the delay distribution increases.

We study a distributed delay version of
eq.(D).

3(t)+cF(E(t— 1))+ ks(t) =0,  (8)

2(t — 1 =) P(t')dt,

(t
(t

(9)

oal- g
VIA

wiania

(10)

r
{

)
) )

where o is the width of the distribu-
tion, and distribution function P(t) is a
normalized uniform distribution in [-£, %],

[ P(tydt = 1.

A detailed analysis shows ([5]) the chaotic
region which is adjoint to P,( 7.3 < ¢ < 10
when k = 2) vanishes as p increases, while
other chaotic region remains chaotic. A typ-
ical stabilizing process for a parameter set
(c, k) = (14,3.36) is shown in fig.7. Roughly
speaking, stabilization seems to start when
o > 1. A branch which survives to a periodic
solution when ¢ > 1.2 stems when o = 1, and
chaotic region starts inverse period-doubling
cascading until it vanishes at ¢ ~ 1.2.
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Z(t-1)-Pi when 2it}«Pi and z{t-1 )>-Pj
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FIG. 7: Poincare section of the orbit (¢ = 14,k =
3.36), as a function of the width of the distribu-
tion o.

IV. THEORETICAL RESULT

A. linear stability
In this section, we check the agreement of
linear stability theory with numerical results.
We start with a linearized equation:

Y () +cy(t — 1) + ky(t) = 0. (11)

It is easily known that the characteristic
equation for eq.(11) is

02 +ce®+ko=0 (12)

by putting y(t) « e’
To obtain stability boundary, we set o =
iw(w € R), and we get the equation for w,

w? = ccos(w) (13)
kw = csin(w) (14)
(15)

We can get the equation for w by calculat-
ing (13)% + (14)%
Wk -2 =0 (16)

It is easily shown that the solution of eqgs.(14)
w exists. The explicit form of w is: '

(17)
“_% 14 (2)2_1 , o (18)

x
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FIG. 8: The stability boundary of linear theory.

where 7 = k?/c.
Getting the equation of 7. is as follows:
Calculating k2(13) + (14)? is

s24ns—1=0, (19)

where s = cos(w). The solution of eq.(19) is

8 = cos(w) = nu. (20)

We denote cos™!(z)(= 6) by the smallest
non-negative value which satisfies cos(§) =
to obtain

w = cos™* (np). (21)

Equa,ﬁing eq. (18) to eq. (21), we get the
equation to determine the stability boundary:

kv = cos™ (nu) (22)

Fig. 8 shows the superposed picture of
fig.2 and stability boundary of eq. (22). Eq.
(22) agrees well with the numerical result.

V. SUMMARY

Chasing problem among two object is
analyzed on a circle using simple delay-
differential equation. In the case without de-
lay, this equation only shows the capture or
the flee depending on the parameter deter-
mining the maximum output force. Unlike
such trivial result above, this equation shows



various motions when time delay of process-
ing information is considered. If the time de-
lay is considered, the tag does not reach to an
end in a wide range of parameters. In such
parameter, the eluder eludes from the chaser
even if the ability of the chaser is larger than
the eluder.

We analyzed the behavior numerically,
and classified it into convergent state, peri-
odic state, and chaotic state. Linear stability
theory reproduces the boundary between the
convergent state and the periodic state well.
The effect of replacing delay term with dis-
tributed delay one is also studied, and it is
shown that a part of chaotic region is stabi-
lized. The reason is unknown, but in such
stabilized region, Poincare map of the non-
distributed equation has a confined region.

In the phase space spanned by C(the max-
imum of the output force) and K(dump coef-

ficient), the boundary of these state are char-
acterized roughly by the line K « C. A
simple phenomenological theory is being con-
structed, and it seems to account for the rea-
son, but we will report the detail for another
opportunity.
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