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The 2D Kramers-Dirac oscillator and 
a corresponding semi-quantum system 

Toshihiro I wai and Boris Zhilinskii 

Abstract 

The 2D Kramers-Dirac oscillator and its corresponding semi-quantum Hamilto-
nian are introduced. The bulk-edge correspondence is shown to hold in terms of 
spectral flow and Chern number. 

1 Introduction 

Though the Dirac equation was originally introduced by P.M. Dirac in order to describe 

electron motions in a relativistic manner, the Dirac equation can be interpreted in a 
wider sense as describing a quantum system with two energy bands, without reference to 

relativity, and as giving an element of band rearrangement against a control parameter, 
where mass is viewed as a control parameter, so that it may take negative values. 

In order to explain the band rearrangement against the control parameter, we take up 

a Hamiltonian which is a modification of the spin-orbital coupling S⑧ L=区Sk0L知
where sk and仏 arethe spin and the angular momentum operators, respectively. The 

Hamiltonian we are interested in is an extended Hamiltonian given by 

几 =S心(μ+ら） + S_RL+ + S+RL_, 

ふ＝ふ土iS2, L土＝ム土iL2,

whereμis a real-valued control parameter [1]. 

(1) 

(2) 

The Hμ, acts on <C28+1R1i(Sり， whereSis the spin parameter and 1-i(Sりdenotesthe 
space of square integrable functions on the two-sphere S2. For S = 1, the Hμ, takes the 

form 
μ+L3 ⑫ L_ 0 凡＝（喜 0 ,/'if,) 
0 ⑫ L+ ー(μ+ら）

(3) 

We quote a figure from [1] (see Fig. 1), in which eigenvalues of the above Hamiltonian 

are shown as functions of the control parameter A in place ofμ. The eigenvalues are 

broken up into two classes. The eigenvalues belonging to one class have nothing to do 

with band rearrangement, but those belonging to the other class are responsible for the 

band rearrangement. Furthermore, we observe that an elementary band rearrangement 

or energy level redistribution with/without crossing takes place between two adjacent 

bands and any band rearrangement may be composed of successive elementary band 

rearrangements. 

We assume that an elementary band rearrangement can be detected through lineariza— 

tion of the H皿 iltonianat a "singular" point. As the operator Hμadmit a rotational 
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Figure 1: (a) A general view of the quantum energy level pattern for S = 1 and L = 5. (b) 
Correlation diagram showing the redistribution of the energy levels between the A→ -00 
and the A→ oo limits, where A denotes a control parameter. In each limit, the bands 
can be labeled by increasing energy with an integer b = 0, 1, 2, or by the average value of 
〈sz〉.Only the levels which change bands under the variation in A are shown. 

symmetry about the axis e3, the north and the south poles are singular from the view-

point of group orbits. The linearization of凡 withS =½at the north pole provides a 
Dirac operator on the tangent plane to S2 at the north pole; 

~(t:~L~ 土―~i~:) → ~c-£; ロ心—晶）， (4) 

where use has been made of the standard expression of the angular momentum operators, 

a a a a a a 
L1 = -i(四ー X3

釦 3 8: 乃
），ら＝ーi(x3 ーX1

釦 l 8x3' 
) L3 = i(x1 -

釦 2
X2 
釦 1
) . (5) 

However, to get eigenvalues for the Dirac operator on the plane, we have to restrict the 
plane賊2to a bounded domain, say, a disk with radius R and to consider an eigenvalue 

problem under a boundary condition. 

2 A review of free Dirac equations with boundary 

condition 

The free Dirac operator on配 isgiven by 

Hμ,=-i立凸+μ"fo, ak = a/ax如 (6) 
k=l 
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whereμis a mass, which may serve as a control parameter taking all real values, and 

where'Yk are the gamma matrices satisfying 

lklj + ljlk = 2Djkl, j, k = l, ... , d, 
1凸 +,o咋 =o, bo戸=I,
(,,,)t = ,,,, v = 0, l, ... , d, 

(7) 

with I denoting the identity matrix of suitable size. The gamma matrices are realized, 
depending on d = 1, 2, 3, 4, as follows: 

•9.
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,1=CJ1, ,o=CJふ
,1 = CJ1, ,2 =び2, ,o = CJふ
筏=CJ2RCTk, k = l, 2, 3, ,o = CJ3⑧ 11, 

咋＝び2Rびk,k = l, 2, 3, /4 =び1R11, 而＝び3R11,

(8) 

where ll denotes the 2 x 2 identity and whereびkare the Pauli matrices, 

び1= (i 1)'び2=し―i)' 四 =(1 ー1)
We now touch on boundary conditions without detail. Let V and B denote a bounded 
domain in配 andits boundary, respectively. A key to finding a boundary condition is 

Green's formula 

⑲,H謹〉v-〈Hμ屯W〉V= -i〈¢,テ・什心〉凡 (9) 

where¢= <"PIE,'I/; ='111B andテ・ n=区1刃jand where n is the outward unit normal 
to B. Any boundary conditions for the Dirac equation Hμ<"I> = E<"I> should require the 
vanishing of the right-hand side of the above equation. If such a boundary condition is 
found, the operator凡 becomesa symmetric operator. Furthermore, with some Sobolev 
conditions, it becomes self-adjoint. The Atiyah-Patodi-Singer (APS) boundary condition 

is a well-known one. 

In what follows, we give a few examples of eigenvalues as functions of the control 

parameter, which are picked up from [2, 3]. An eigenvalue is called an edge-state or a 

bulk-state eigenvalue, according as it is responsible for or has nothing to do with the band 
rearrangement. The edge-state and the bulk-state eigenvalues of the 2D Dirac equation 

on a disk under the APS boundary condition are given in Fig.2 and Fig.3, respectively. 
These examples support our observation that the Dirac equation describes a two-band 

quantum system and gives an element of band rearrangement against a control parameter. 

3 A review of Dirac oscillators 

The band rearrangements so far observed is for free Dirac equations with boundary con-

dition. A question arises as to whether a band rearrangement can be observed also for 

a Dirac equation in an electro-magnetic field. From the linearization point of view, the 

Dirac equation in question is required to be linear in momentum operators and position 



84

Figure 2: Edge eigenvalues as functions of a control parameter t for the 2D Dirac equation 

with the APS boundary condition. Left panels are for j = 11/2, j = 5/2, and right 
graphs for j = -11/2 and j = -5/2, where j denotes the eigenvalue of the spin-angular 
momentum operator. 

Figure 3: Bulk-state eigenvalues as functions of the control parameter t under the APS 
boundary condition. 

variables. The Dirac oscillator was initially introduced as a Dirac operator linear in mo-
mentum and position variables in [4] and later studied in [5, 6], for example, as solvable 
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problems. Let ak and al be the annihilation and the creation operators given by 

1 a 1 a 
ak= -(  
y'2 8xk 
＋叫， al=-(一

y'2 8xk 
＋叫，

respectively, which satisfy the commutation relations 

[ak, a}] = 6kj, [ak, aj] = [al, a}] = 0. 

A normalized basis ofび（配） is given by 

1 
Inぃ．．．，叫= (a!rl ... (a~rdlQ>,

vn1! ・ ・ ・ 四！

叩=(~ り~µ)'
四 = Ct : iat ai 一了）， 
H(3) = μ11 <r• a µ(u• at —µ11)' 

(10) 

(11) 

(12) 

where nk are non-negative integers, and IO〉=10, ... ,0〉isthe ground state satisfying 

aklO〉=0, k = l, ... , d. 

The n-dirnensional Dirac oscillators, n = l, 2, 3, are defined to be 
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respectively, where 11 denotes the 2 x 2 identity and where u•a= 区!=l (J叫・
In particular, the 2D Dirac oscillator is rewritten as a Dirac operator for the Landau 

electron 

v:2~ 戸＝ーia1▽1 -ia2'v2 + v:2μfJ, 

where CY1 = -u2, a2 = u1, fJ =叩 andwhere 

(16) 

f) 
▽ 1 = - -iq2, 
aq1 

▽ 2=立
8q2 
+ iq1・ (17) 

The commutation relation between▽ 1 and▽ 2 is [▽ 1, ▽叶=2i. The 2D Dirac oscillator 

of the form (16) is used in [7] as a model Hamiltonian for quantum Hall effect. 

The 2D Dirac oscillator admits the S0(2) or the rotational symmetry, 

w臼，J]=0, 1 
J=L+ 

2 
＿び3, (18) 

a a 
L = -i(x1 一四 ） t t 

8x2 8x1 
= i(a1a2 -a叩），
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and further the U(l) symmetry, 

[Ht2)'N] = 0, 
- 1 
N=N+  

2 
-CJふ (19) 

t t N=a凸＋叩2・

In addition, the J and N commute 

［パ，J]= 0. (20) 

By the effective use of these symmetries, the eigenvalues of the 2D Dirac oscillator can 

be found; the bulk eigenstates are 

E;=士V屈+2(n + 1), n = 0, 1, 2, .... , 

and the edge eigenstate is 
Eedg =―μ. 
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Figure 4: The edge-state eigenvalue and the bulk-state eigenvalues with n = 0, l, 2 are 
given for the 2D Dirac oscillator. This figure gives an elementary band rearrangement. 

4 The 2D Kramers-Dirac oscillator 

4.1 The definition of the 2D Kramers-Dirac oscillator 

The 2D Dirac oscillator does not admit the time-reversal symmetry, 

加 H臼(-伍）cJ Ht2J_ (23) 

We wish to extend the 2D Dirac oscillator so that it may admit the time-reversal sym-

metry. Any complex number is expressed as a 2 x 2 real matrix, and so are the complex 

operators a1 -ia2 and a! + iat where aj and a} are real operators. Hence, we may 

represent the present complex operators in the matrix form, 

t t 

a1 -ia2 f-t (~~2 :~) , al+ iat •(>— ~12)' (24) 
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respectively. Then, we obtain the following Hamiltonian as a Dirac operator which is linear 
in the momentum and the position variables皿 dadmits the time reversal symmetry, 

凡=(μ11 v'2A) , A = (a1 a2) t ふ t―μll ―a2 釘,At= (>—~?), (25) 

((11R 加）K)Hμ((11R 加）K)―1 = Hμ, (26) 

where K denotes the complex conjugation and where the time-reversal operator (11⑧i叫K
satisfies 

((ll⑳ 加）K)2 = -idic玲<C2. (27) 

The Hμ, acts on C鸞び（配） • We call the Hμ, the 2D Kramers-Dirac oscillator. The adjec-
tive "Kramers" comes from the time-reversal symmetry. A reason for the nomenclature 

"oscillator" will be explained in the non-relativistic limit. If squared, Hμ, becomes 

虎=(μ2 + 2(1十加ーCJ20 L) 
μ2+2(-1十加ーCJ2⑧L)), (28) 

armomc oscillator Hamiltoman m the sense of where加=N + l denotes the 2D h・  
Schrodinger. This equation means that in the non-relativistic limit, Hμ, becomes a 2D 
harmonic oscillator with the spin-orbital coupling CJ2⑭ L. 
Like the 2D Dirac oscillator, the Kramers-Dirac oscillator admits S0(2) x U(l) sym-

metry. In fact, one can easily verify that 

and further 

[Hμ, J] = 0, J = CL L十びJ,
[~ バl= 0, iv= c(N +½) ll(N -½)), 

[J兄=0. 

4.2 Eigenvalue problem 

(29) 

(30) 

(31) 

On account of the symmetry, the eigenvalue prob2em for H,,, is decomposed into subprob-

lems on the simultaneous eigenspaces of J and N. Because of the S0(2) symmetry, the 
initial eigenvalue problem is broken up into subproblems on the eigenspaces for J = m. 
Introducing the polar coordinates (r, 0), one can easily find eigenvalues and eigenstates of 
J. Then, on the eigenspace of J, eigenstates for H,,, proves to take the form 

where 

<I>= (f (叫(0))
g(r)xい(0) , 

屯=(f(r)x;;;(0)) 
g(r)x;;; ー 1(0) , 

x嘉(0)= G)戸 0, x;;;(0) = G) eim0, 

(32) 

(33) 
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and 

xぷ+1(0)= G) ei(m+1)0, い (0)= G) ei(m-1)0_ (34) 

On expressing the Hamiltonian Hμin the polar coordinates, the initial eigenvalue equa— 
tions Hμ,<[> = E<[> and HμW = Ew with<[> and ¥jJ given in (32) reduce into radial equations 

and 

respectively. 

dg m+  l 
μf +— +rg+ g = Ef, 
dr r 
df m 

dr 
——+ rf + -f -μg = Eg, 

r 

dg m-1 
μf +— +rg- g = Ef, 
dr r 
df m 

dr 
——+ rf --f-μg = Eg, 

r 

(35a) 

(35b) 

(36a) 

(36b) 

We now take advantage of the U (1) symmetry to restrict the functional form of f and 
g to radial wave functions for the 2D Schrodinger harmonic oscillator. As is well known, 
the radial wave functions in question and the associated eigenvalues are given by 

凡，lml(r)= 
2n! 

r(n+ 1ml + 1) 
rlmle―r2;2 L炉(r2), E = 2n + 1ml + 1, (37) 

respectively, where n is the radial quantum number and where L~(z) are the Laguerre 
polynomials defined to be 

1 dn 
ば(z)= -ezz―"'(e―zza+n), a> -1. 
n! dzn 

A straightforward calculation with the U(l) symmetry provides us with 

and 

呪，m=(ぶ：二塁塁~~lB)) for m 2:: 0, 
幻=(C1い (r)x嘉(0))

C2厖 1,1m+1I(r)Xt+i (0) 
for m::::: 一1,

呪，m= (c~ 凡，lml(r)心 (0))
c切如1,lm-11(r)x五-1(0) 

for m 2:: 1, 

虹，m=(怜えだ；~~霊｝迂：~~い） for m::::: 〇

(38) 

(39a) 

(39b) 

(40a) 

(40b) 
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Our last task is to determine the constants cj and cj (or the ratio of them). If c1 or 
c2 (rep. c~or 叫） vanishes, Eqs. (35) and (36) are solved to give the eigenvalue and the 
associated eigenstates of the form 

<Pedg = (r-(m+l)e―rり;2Xt+1(eJ, Eedg = -μfor m + l::; 0, (41) 

屯edg= (rm-le―r2り~xい(eJ , Eedg = -μfor m -l~0. (42) 

We turn to the case where neither c1 nor c2 (resp. c~nor c;) vanishes. In respective 
cases, the coefficients ck, 咋， k= l, 2, in (39) and (40) are determined by using (35) and 
(36) together with the recurrence formulae [8, 9], 

（ 
d 1ml 

dr 
—+ r + -)Rn,lml(r) = 2vn+扁]凡,lml-1 (r), 

r 

d 1ml 

dr 
(--r--)R叫ml(r)= -2✓n + 1ml + 1凡，lml+i(r),

r 

（ 
d 1ml 

dr 
- -r + -)Rn,lml(r) = 2¥ln+l凡+1,lml-1(r), 

r 

d 1ml 

dr 
(-+r--)R叫ml(r)= -2J五Rn-1,lml+i(r).

r 

(43a) 

(43b) 

(43c) 

(43d) 

In fact, (35) and (36) together with these recurrence formulae give rise to algebraic eigen-

value problems for unknown constants ck, c~, k = 1, 2, which are easily solved. Thus, we 
obtain the following eigenvalues and associated eigenstates, 

E!m::::o =土Jμ2+4(n+lml+l), mミ0, (44) 

炉n;m:2'.0 = (2Jn+Tmj+l凡，lm1(r)x訊(0)（土亨+4(n+lml+l)-μ)凡，lm+11(r)xい(0J, m 2 0, (45) 

E;(m:<:-1) =土V厨十4(n+l), mさー1, (46) 

炉＝（ー2vn+1凡，lm1(r)x嘉(0)
n(m<::: ー1) (士W戸二伽丁汀— µ)Rn+1,lm+11(r)xt+1(0J'ms; ー 1, (4 7) 

庁 ＝土亨+4(n+l), m21, (48) n(m:2'.l) 

炉 ＝（ ー 2yr二凡，lml(r)に (0)
n(m:2'.l) (土｀戸□可□—µ)凡+1,lm-11(r)xい(e)), m 2 1, (49) 

E!m:<:O =土Jμ2+ 4(n + 1ml + 1), ms; 0, (50) 

炉n;m<:::O = (2Jn+Tmj+l凡，lm1(r)x五(0)（土亨+4(n + 1ml + 1) -μ)Rn,lm-11(r)x;;; ー 1(0)) 
, mさ0. (51) 
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4.3 K rarners pairs 

Under the time-reversal operator, the spin-orbital angular momentum operator J changes 
the sign, 

((11R 加）K)J((llR 四）K)-1 = -J, (52) 

which means that the eigenvalue m of J changes the sign, and accordingly, one has the 
inversion of m; m→ -m. The eigenstates so far obtained are shown to be related by 

(11 Q9 i叫K<!)edg='Yedg, 

(11⑧切）K<!)!;m:::。=w!; ―lml:SO' 
(]I Q9叩）K呪(m:S-1)=叱(m砂

(53) 

(54) 

(55) 

Those Kramers pairs related by (]⑧ i叫Kbelong to the eigenspaces associated, respec-
tively, with 

Eedg = -μ, {E!m>O> E!m:S。}, {E;(m:S-1)'E嘉m2'.1)}.
The bulk-state eigenvalues so far obtained are structured, as is shown in Fig. 5. The 

pairs (m, n) assigning the same eigenvalue determined by n + 1ml = k (see (44) and (50)) 
or n = k (see (46) and (48)) are sitting on the linen+ 1ml = k or the linen = k. The edge-
state eigenvalue may be assigned by n + l = 0, as is seen from (46) and (48). The figure 
is symmetric under the reflection m← -m, which is a consequence of the time-reversal 
symmetry of the Hamiltonian. The eigenvalues E土 =En(m:Sー 1) n(m2'.1) and Eedg =―μ 

are infinitely degenerate, but the eigenvalue E嘉応o= E嘉n>。isfinitely degenerate with 
multiplicity 2k + 1 if n + 1ml = k. Though the band rearrangement for the 2D Kramers-
Dirac oscillator looks similar to that of the 2D Dirac oscillator, the band structure is quite 
different from one another owing to the time-reversal symmetry. 

n 

E士
n(m<-l k

 

E士
n(m>l 

E土n;m:c;o E土
' 
n;m>O 

n+lml= 
m 

-1・・・・・・・・p;edg 

Figure 5: The eigenvalues of the 2D Kramers-Dirac oscillator are structured, depending 
on the radial and the angular quantum numbers, n and m. 
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5 A relativistic view of the 2D Kramers-Dirac oscil-

lator 

While we have defined the 2D Kramers-Dirac oscillator in (25), a question may arise as 
to dimensionality. The space-time for the 2D Kramers-Dirac oscillator is配+2,but the 

size of the gamma matrices we have used is 4 x 4. For the 2D Dirac oscillator, the gamma 
matrices are of size 2 x 2. The identity component of the Lorentz group acting on臣+2is 

SO。(1,2), and its covering group is SU(l, 1), the former of which is usually described in 
the form of real matrix of size 3 x 3 and the latter in the form of complex matrix of size 
2 x 2. For the 2D Kramers-Dirac oscillator, the group SU(l, 1) should be represented in 
the 4 x 4 matrix form. Another physical question is this: The 2D Dirac oscillator is put 
in the form (16) or in the form of minimal coupling with a gauge potential for a magnetic 
flux density. For a physical reason or on account of the time-reversal symmetry, the 2D 
Kramers-Dirac oscillator is not put in the form of minimal coupling. We then have to 
describe the 2D Kramers-Dirac oscillator in the form of non-minimal coupling. 
In order to put the Dirac equation for凡 inthe form of non-minimal coupling, we 
start with the time-dependent Dirac equation i璧=H沖， whichcan be shown to be 
rewritten as 

8 1 
(iや一＋ー曰Fa/3-μI)cI> = 0, a, (3 = 0, 1, 2, 
匈a 2 

where q0 = t and I denotes the 4 x 4 identity matrix, and 

翌＝四0:11, ,1 = iび10 :11, ,2 = -iび20び2,

(J 
afl i = -
2 
臼，召],

and where (Fafl) is the electro-magnetic field determined by 

(1,~,)~(二[〗~~), i;,~q, 尼 ~q,, B=O. 

(56) 

(57) 

(58) 

(59) 

Equation (56) shows that the 2D Kramers-Dirac oscillator is an operator for a charged 
particle in an electric field. 
We turn to a representation of SU(l, 1) in the 4 x 4 matrix form. In terms of 

ふ =~CCY2 -iびJ,6=~(-び2 ー U2)'6=~(-ili i:[)' 
the group SU(l, 1) proves to be realized as 

exp(0fo) exp(Tむ）exp(¢fo) = ( 
d(0+</>)<T2 cosh~ 
-ie―合(e-¢)<,asinh~ 

砂°―¢)u2sinh~) 
e—½(OH)u2 cosh~ ・ 

(60) 

(61) 
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This group is shown to be a covering group of S00(1, 2). Let 

M={X= I: 伽化 (qoc)E酎｝釘酎+2,
a 

for which the Lorentz structure is given by 

1 
-tr(XT X) = q~- qi -qr 
4 

(62) 

(63) 

Then, the adjoint action by g E SU(l, 1) of the form (61) gives rise to the Lorentz group, 

g凸戸=L召h閏， (h』） E SO。(1,2), (64) 

where SO。(1,2) denotes the identity component of S0(1, 2). The Lorenz covariance of 
(56) can be verified in a similar manner. 

In addition, we make a remark on SU(l, 1) of the form (61). The group S0*(2n) is 

defined to be 

S0*(2n) = {g E GL(2n, C)I gT l2n9 = l2n, g勺=I2n}, (65) 

where 

.I~, ~(J, . . . J .J, ~(-1 I) 
The Lie algebra .so* (2n) is then defined to be 

.so*(2n) ={XE g[(2n, (['.)I l2nX =兄12n,xr + X = O}. (66) 

The Lie algebra .so(l, 2)~.su(l, 1) concerning the 2D Kramers-Dirac oscillator, which is 
spanned by fo, 6, 6, is a subalgebra of .so*(4), where .so*(4) is decomposed into 

so*(4) =so(l,2)① so(3). (67) 

In the rest of this section, we touch upon a physical application. According to the 

reference [10], the quantum spin Hall phase is a time reversal invariant electronic state 
with a bulk electronic band gap that supports the transfer of charge and spin in gapless 

edge states. From this point of view, the 2D Kramers-Dirac oscillator is qualified as a 

model Hamiltonian for the quantum spin Hall effect, like the 2D Dirac oscillator which 

serves as a model for quantum Hall effect [7]. 

6 Corresponding semi-quantum systems 

For a quantum system of one-degree-of-freedom, a Bose coherent state is defined to be a 
normalized eigenstate of the annihilation operator, 

alz〉=zlz〉, alO〉=0, z E (C, 
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which are known as the most classical-like states (by Schrodinger). Taking the expectation 
values, one has 

〈zlalz〉=z, 〈zlatlz〉＝芝．

For a quantum system of two-degrees-of-freedom, the definition of coherent sates are easily 

extended. Taking expectation values, one obtains a semi-quantum system corresponding 
to the 2D Kramers-Dirac oscillator (within a multiplication⑫)， 

Kμ= (~~-~ll), C=  (~〗：2 二~)'び＝（二；―芝~2). (68) 

However, this does not admit the time-reversal symmetry. 

6.1 A semi-quantum Hamiltonian with time-reversal symmetry 

A relevant semi-quantum system admitting the time-reversal symmetry is given by 

kい（畠―::n),w = (~~2 ;:) , wt= G~ —~:2) . (69) 

In fact, one verifies that 
ー 1

(11⑧加）K (11⑧ (-i叫） =K' μ μ' 

On introducing new coordinates kj, j = 1, ... , 4, by 

引=k4 -ikぁ砂＝一柄— ikぃ

the K~is expressed as 

K'= (μ:Il k4:Il — ik· び
μk4:Il + ik・O" -μ:Il)' 

(70) 

(71) 

(72) 

where the gamma matrices given in the 1邸 tline of (8) are used. The eigenvalues of K~ 
are 

入土＝士V戸「二戸， 炉=I利， k = (kj), j = 1,2,3,4, (73) 

each of which is doubly degenerate because of the time-reversal symmetry. 
Forμ ヂ0,the eigen-vector bundles L±associated with心 aredefined over記 Our
interest centers on L + in what follows. The projection onto the eigenspace associated 

with入十 isgiven by 

P+ = 1 ((入＋十μ)11 k41l —ik·u) = 1 
2ふ k41l十ik・u (入＋一μ)11 2ふ

The structure group of the vector bundle L+ is found to be 

いl+K似 (74)

U=↓ (-k4 + ik3 ik1 + k2 ) =↓ (-k4ll十ik・グ）．
lkl ik1 -k2 -k4 -ik3 lkl 

(75) 
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The connection A and the curvature F are defined through the covariant derivation 

d▽ = P+d. Then, the formal second Chern number is defined to be 

1 
鱈） = J tr(F八F).

81r2 配
(76) 

We are interested in change in the Chern number against the parameter, which is defined 

and calculate as 

1 1 
81r2 l4 tr(F /¥ F)μ>O -81r21艮4tr(F /¥ F)μ<o 
1 
= 241r213 tr(U―1dU八u-1duA u-1du), (77) 

where U is the structure group given in (75). Eq. (77) means that the change in Chern 

number or a delta-Chern is equal to the mapping degree of 

U: 炉→ SU(2)~S叫 (78) 

which is evaluated as 1, so that one has the delta-Chern, c2(L+)lμ>D -c2(L+)lμ<D = 1. 

6.2 Bulk-edge correspondence 

The 2D Kramers-Dirac oscillator has infinitely degenerate edge-state eigenvalue Eedg = 
―μ, which is responsible for band rearrangement. We邸 sociatewith it the degenerate 
spectral flow -1, which is defined to be the net number of sets of degenerate eigenvalues 

passing through zero in the positive direction as the parameter runs. 

We note that the delta-Chern, c2(£+)lμ,>O一位(£+)1μ,<D,depends on the orientation of 

C2. Setting勾=q1 + ip1, 砂＝卯+ip2, one h邸

dq1八dq2I¥ dp1 I¥ dp2 = dk1 I¥ dk2 I¥ dk3 I¥ dk4. 

However, we may take the positive volume form as dq1/¥dp1/¥dq2八dp2,then the orientation 

is inverted, 

dq1八dp1I¥ dq2 I¥ dp2 = -dk1 I¥ dk2八dk3I¥ dk4. 

If this volume form is taken邸 positive,then the delta-Chern changes the sign to be 
expressed as 

c2(L+)lμ>O -c2(L+)lμ<O = -1. (79) 

The degenerate spectral flow and the delta-Chern are now in exact correspondence. Since 

the eigenvalues (73) of the semi-quantum Hamiltonian may be considered as correspond-
ing to the bulk-state eigenvalues of the 2D Kramers-Dirac oscillator, the correspondence 
between the degenerate spectral flow and the delta-Chern may be looked on as the bulk-

edge correspondence. 

In conclusion, we remark that the eigenvalues and the eigenstates of Hμhave already 

been given in [11] without reference to the spectral flow and the second Chern class. 
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