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1 Introduction

The classical Poisson summation formula on the torus I'\R™

S R Mzg%, t>0 (1.1)

n/2
Xel* (47Tt) / zel

can be interpreted as an equation that relates the spectrum of the Laplacian and the
length spectrum of this manifold.

Hubert Pesce [10] has shown that this formula can be generalized to the case of the
Heisenberg manifold. Colin de Verdiere [4] used the heat kernel to show that generically,
the Laplace spectrum determines the length spectrum. Duistermaat and Guillemin [5]
have shown that the singularities of the wave trace tr(e*t‘/x) are contained in the length
spectrum.

In this paper we study the relation between these spectra for a class of equiregular
Subriemannian manifolds, on which there is a geometrically defined operator, the so-called
Sublaplacian. More precisely, we deal with Subriemannian manifolds of the form I'\G,
where G is a 2-step Carnot group and I' is a lattice in this group. First we present ex-
amples of isospectral (with respect to the Sublaplacian) but non-diffeomorphic manifolds
and then study the relation between the Sublaplacian spectrum and lengths of closed
Subriemannian geodesics.

In the Subriemannian setting, there are two kinds of geodesics: normal and abnormal.
It is interesting to study the effect of the presence of abnormal geodesics. We aim to de-
termine the lengths of such closed geodesics and ask whenever they occur in a summation
formula such as (1.1).



Based on an explicit calculation of the Sublaplacian spectrum on I'\G, we prove a
formula similar to (1.1) in the Subriemannian setting for H-type Lie groups with arbitrary
lattice and more specifically for generalized H-type groups with a standard lattice. In the
latter case abnormal geodesics are present.

Furthermore, based on a heat trace formula and the classification of pseudo H-type
groups, we construct pairs of isospectral but non-diffeomorphic nilmanifolds with respect
to the Sublaplacian. This is a joint work with W. Bauer, K. Furutani and C. Iwasaki.

2 Preliminaries

Definition 2.1. A Subriemannian manifold is a triple (M, H,g), where M is a smooth,
connected manifold, H is a smooth vector distribution of rank k < n = dim(M) and g is
a smooth metric on H.

Given a smooth measure p on M, the Sublaplacian (corresponding to p) is defined as
Agyp = —div, o grad,, on C*(M).

Here grady denotes the horizontal gradient. Recall that under additional assumptions,
there are natural choince for ;1 which leads to the notion of an intrinsic Sublaplacian.
Based on the end-point map and the Subriemannian Hamiltonian there are different kinds
of Subriemannian geodesics: regular, singular and normal geodesics. If the distribution
‘H is bracket generating, then by a theorem of Hérmander the Sublaplacian is hypoelliptic
and if the manifold is compact, the unique self-adjoint extension of the Sublaplacian has
discrete spectrum [6].

2-step Carnot groups: We write R™* for the Euclidean space R™™* equipped with
the non-degenerate scalar product

S

<.’L‘, y>r,s = z TilYi — Z LrtjYr+j-
i=1

Jj=1

Let CY¢, 5 denote the Clifford algebra induced by this scalar product (see [9]). We call a
CY, s-module V' admissible, if there is a non-degenerate bilinear form (= scalar product)
(e, @)y on V satisfying the following conditions:

(a) There is a Clifford module action J : Cl.s x V =V : (2, X) = J. X, ie.

Jodo + Jud, = =2(2,2"), o] forall z,z € R,

(b) For all z € R™* the map J, is skew-symmetric on V' with respect to (e, e)y .

The pseudo H-type group G, 5(V) is defined as the simply connected 2-step nilpotent Lie
group associated to the nilpotent Lie algebra N, (V) =V &, R™ with center R™* and
Lie brackets given by:

(LX), V), = (z[X,Y]) , z€R” and X,Y € V.

14 7,8
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We denote by G, , the pseudo H-type groups constructed from a minimal admissible
module.
In the same way we define generalized H-type groups by the condition

JoJo + Jud, = —=2(z, 2 VaS* for all z,2 € R%.

where S is a symmetric, non-negative linear map on R?¥** and (-, -)ga denotes the Eu-
clidean inner product in R

If S = Idyy s, where Iday s is the diagonal matrix of order 2N + s with the first 2V entries
equals 1 and the remaining s entries equals 0, we denote the associated generalized H-type
group with G, ,.

Every 2-step Carnot group G can be endowed with a natural left invariant Subriemannian
structure.

3 Results

3.1 Pairs of isospectral, but non-diffeomorphic nilmanifolds

From an integral basis {X;, Zy} of N, s(V) =V @ R™ we define a lattice in the pseudo
H-type group G, (V) by

Lro(V)i=expq Y miXi + % > ki

m;EL kj€Z

We call T',. (V) (vesp. I'.;) a standard integral lattice in G, (V') (resp. G, ).
If we denote with A the center of the group G, ,(V), then an element n in the dual lattice
[Fm N A] * can be expressed as

n=2 <Z mZ; + anZHj) =2(u+v) where (m,n) € Z™.

i=1 j=1

The heat trace of the Sublaplacian Agiﬁ(v)\(}"“‘(v) on the nilmanifolds T, s(V)\G, s(V)
is given by decomposing the Sublaplacian into an infinite sum of elliptic operators D™
acting on some line bundles £ :

Theorem 3.1 (W. Bauer, K. Furutani, C. Iwasaki, A. Laaroussi, [3],[2]).

We have .
_ATRs (VG (V) _p()
tr (e Tsub ) = Z tr (e .

ne[NAJ*

Where
(1) Ifn =0, then the trace of the operator et s given by

tr(efm(oj - (27T1t)N > 5 (3.1)

£ez2N




(2)  Assume that n €[T,, N A]" with

> mi =) n
i=1 j=1
and let dy > 0 be the greatest common dwisor of (1, v) = (my, -+ ,mp,n1,--+ ,ng). Define

integers m} and nl through the equations m; = m;'dy and n; = n;'dy. It holds

¢ —tD(n>> 1 *7”“?122““‘2 2|\l A
= — 0“t - .
(e FOvE 2 © sinh (87 ¢}

Lez2N

(3) Forn=2(u+v) with ||u|| # ||v| i holds

[l® = IvIP?

N/2.
—tDP™\ _ HN
tr(e™") =2 <sinh{4m<||u|| T |w[)} sinh{dr (][l - ||u||>}> '

(3.2)

(3.3)

From the above heat trace formula we see that the manifolds T', ;\G, s and T's,\Gs;
are isospectral with respect to the Sublaplacian if the dimension of their admissible mod-

ules coincide.

If there is a diffeomorphism between nilmanifolds I'\G and I"\G’, then their fundamental
groups 7 (I'\G) ~ T" and 7 (I"\G') ~ I'" are isomorphic and we can extend an isomor-
phism from the lattices to the whole groups. Using the classification of pseudo H-type

algebras [7] :

R} 1R

R 112| 1] 11
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1R} MR IR T[RRI 11

0
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pol| (RIHR[ [R[R[ 1R IIR]MR] 11
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AR R R

SYHR| IR TR [HR| 11
S| MR| 1] N [HR| 11

ool 11| MR| 1R

o
= IR

Classification of pseudo H-type Lie algebras defined via minimal admissible modules.

Here 2 and 2 mean that the associated Lie algebras are isomorphic or not.
We can detect pairs of isospectral, but non-diffeomorphic nilmanifolds.

Theorem 3.2 (W. Bauer, K. Furutani, C. Twasaki, A. Laaroussi [3]).

Denote by N, 5 the nilmanifold T, \G, s constructed from a minimal admissible module.

Then the following pairs of nilmanifolds are isospectral and non-diffeomorphic:
1. (Nys, Ns,) forr =3mod8 and s = 1,2,7mod 8.

2. (Nr+4k,s+4k7 Ns+4k,r+4k) fO?" (7"7 S) S {(3, 1), (3, 2)7 (3, 7)} and k € Ny.
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3.2 Poisson summation formula for the Sublaplacian

Let G% , be a generalized H-type group and let I' be a uniform lattice in G%, =: G%
or the standard lattice for s > 0. The set of lengths of closed normal Subriemannian
geodesics L(I\GY,) in I'\G§, is given by

Theorem 3.3 (A. Laaroussi [8]).

1. If s =0, then
LINGS) = (X[l : X € T} U{VARRIV] : ke N,V e Ty}
2. If s >0, then
LINGR) = {IX]l - X € PpyU{VIXIP +4kx V] - k €N, X € To,V € D\ {0}

Here Ty, Ty and Ty denote the induced horizontal, vertical and degenerate lattices (see
18])-

From the explicit spectral data of the Sublaplacian we obtain the following Poisson
summation formula:

Theorem 3.4. Let G be an H-type group with uniform lattice T'. We assume that d is
odd. Then for the heat trace of the Sublaplacian on T\G% it holds:

1 'U)2
O <¥) e

weL(T\G4 )u{o}

where for all w € L (F\G‘fv), Y @5 a polynomial and

1\ 2%0lI\G%) lel_\*
©o <¥>_ Gn)y ./Rd (Sinh”f”) "

Similarly, if s > 0 we have:

Theorem 3.5 (A. Laaroussi [8]).
Let G‘Ji\/,s be a generalized H-type group with standard lattice I'. We assume that d is odd.
Then for the heat trace of the Sublaplacian on P\GdN’S it holds:

1 w?
tr(e”tAsw) = Z Puw (;) e i,
weL(I\GY , )u{0}

where for all w € L (F\Gf\fﬂs), Yw 1S a polynomial and

1\ 2%0l\GY,) / el \",
20\7) = amyeniad Jo \Gon gy )
Here N + s/2 + d is half the Hausdroff-dimension of the manifold considered as a metric
space with the Carnot Caratheodory distance.




From the Poisson summation formula above we also obtain short-time asymptotic of

the heat trace:

1
tr(e ") = @ <¥> +O0(t®)ast — 0"

i.e. only the first term contributes to the short-time asymptotic and all length of closed
geodesics contribute to the remainder-term. Furthermore, knowing the spectrum of the
Sublaplacian we can entirely recover the lengths of closed Subriemannian geodesics.
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