
102

On the dynamics of loss functions 

Le Bich Phuong and Nguyen Tien Zung 

Abstract 

In differential machine learning, one uses a stochastic gradient flow 
with respect to a loss function on the parameter space to find an "almost 
minimal'point of the loss function, which would correspond to an "almost 
optimal" predictor. Somehow, a proper theory of loss functions is still 
missing, despite their importance. Our paper is a contribution towards 
the construction of such a theory. 

1 Introduction 

This paper is a brief report on our ongoing research on the properties and 

designs of loss functions in differential machine learning. We refer to [4, 5, 6, 

15] for an introduction to machine learning. For simplicity of exposition, in 

this paper we will only consider binary decision problems, though most other 
problems can be treated similarly. 

Loss functions play an extremely important role in differential learning. 

However, up until 2000, people didn't really care about them, thinking that 

they were just a computational issue, without much impact on the final re— 

sults of machine learning models. (See, e.g., [3, 15]). Recently, people start 
paying more attention to properties of the loss functions which would help the 

stochastic gradient flows to converge to desired values of the parameters, see, 

e.g., [1, 8, 9, 10, 11, 12, 13, 16, 17]. Nevertheless, a full-fledged theory of loss 

functions is still missing. 

The purpose of our work is to contribute to the development of such a theory 

of loss functions. In particular, after recalling a general setting of differential 
learning in Section 2, we show the following facts, based on both theoretical 

reasoning about stochastic flows and experiments: 

1) The noise (stochasticity) prevents the gradient flows from converging to 
the minimal points (Section 3). 

2) Asymmetric loss functions are better than symmetric loss functions, es-

pecially for problems with significant data imbalances (Section 4). 

3) Nonlinear polynomial loss functions are more focal and thus can give 

better results than the usual cross entropy function (Section 5). 
4) Even though most people (until now) automatically compose their loss 

functions with last-layer activation functions like sigmoid, one will get better 

results by not using such activation functions (Section 6). 

5) Loss functions with a derivative jump at the threshold value creates a 

stochastic trap at this value for the gradient flow (Section 7). 



103

2 A general differential learning setting 

Let us recall here a general setting of differential machine learning for a 

binary classification problem, and fix some notations: 
● n denotes the input space, consisting of all possible situations which may 

appear in the problem, together with a probability measure P (which depends 

on the context). For example, n is a set of images of skin lesions. 

• Ytrue : D→ {O, 1} is the ground truth binary class function. For example, 
Ytrue (x) = 1 if and only the image is a melanoma (a dangerous skin cancer). 

• A machine learning model is a map M : n x 8→ {O, 1 }, where 8 denotes 
its corresponding learnable parameter space. For each choice of parameters 

0 E 8 the model M gives an output prediction function 

珈 edict=Me: n→ {O, 1}. 

• In differential learning, one usually replaces the discrete-valued function 
Ypredict by a continuous almost everywhere smooth function 

y=DM0 :n→ [O, 1] 

which may be interpreted as "probability", "likelyhood" or "level of confidence" 

in a binary prediction: one puts Ypredict = 1 when y > 0.5 (or some other 
threshold), and the closer y is to 1 the more confident one is in this prediction. 

When people talk about deep learning, it means that D M is constructed by 

composing together many layers of simple functions/operators. The theoretical 
basis for the possibility of approximating any function by composing simple 

functions is provided by the Kolmogorov superposition theorem (see, e.g., [2]). 
In deep learning, the number of independent numerical parameters is usually 

very high (tens of millions), so the parameter space 8 is very high-dimensional. 

• The learning process with a given model M is a (stochastic, discretized, 
finite-time) dynamical system on the parameter space 8: 

O。→仇→恥→．．．→佐→．．．

such that, hopefully, for some n, M,。n is a good approximation of Ytrue• 
• The binary accuracy function 

S(M0, Ytrue) = P{x E f2 I M0(x) = Ytrue(x)} 

and similar functions, including sensitivity (true positive rate) and specificity 
(true negative rate), are used to measure the accuracy of the model. In practice, 

S(Me, Ytrue) is calculated empirically by a random set of N instances Xi E n, i = 
1, ... , N which are not used in the learning process, called the validation set or 
the test set (depending on who tests it, the user or the developer): 

S(M, い!true)= 
l{k = 1, ... , N; Me(叫=Ytrue(Xk)}I 

N 

• In differential learning, one replaces the error rate 1 -S(M0, Ytrue) by a 
proxy almost-everywhere differentiable loss function 

L:8→股



104

chosen in such a way that, intuitively, low values of L correspond to high accu-
racy rates. The loss Le is computed not directly from the binary model M but 

from the proxy differentiable model DM  by some kind of summation (integral) 
formula, e.g., 

L(0) = J£(DM0(x), Ytrue(x))dPo 
xEO 

for some almost everywhere smooth point-wise loss function£. Then one uses 
the method of gradient descent to find a parameter value 0n which "almost 
minimizes" L. 

• Roughly speaking, the differential learning process is defined as follows. 
Start with some 0。E8 (either a random value, or a "pre-trained" one). At 

step i in the learning process, put 

0i→ 0i+l = 0i -0: ▽ L(0i) + m(0i -0i-1) 

where a > 0 is a chosen small positive number, called the learning rate, ▽ 

denotes the gradient, and m(0i -0i_1) is a small momemtum term. "Just close 
your eyes and roll down, and hopefully you will reach the bottom". 

• It is impossible to compute the exact gradient▽ L(0). One computes it 
empirically, using a small sample of data called a batch at each step, and so the 

flow is called a stochastic gradient flow. 
• A true gradient flow can often get trapped at bad local minima (where the 

value is very high compared to the global minima) and saddle points. That's why 

a momentum term m(0i -0i-l) is added to the flow in order to get out of such 
situations, so in practice one uses a stochastic gradient flow with momentum. 

3 S ome issues aげectingaccuracy 

A multitude of very accurate binary predictors could be constructed by using 
the above general differential learning method, despite many issues. In this 
section, we will just mention some of these issues. 

•Boundary cases. It may happen that the space n is a kind of continuous 
space in which there is no clear-cut boundary between the two classes, and 
there are many "boundary points" which could belong to both classes at the 

same time. For example, the evolution of an actinic keratosis (AK) lesion into a 
squamous cell carcinoma (SCC) is a continuous process, at at some point in this 

process the lesion could be called AK and could also be called early-stage SCC. 
Likewise, one can write a number which looks like a 3 and a 5 at the same time, 
so just by looking at the image no one can tell with certainly which number is 

it. Due to such boundary cases, there is a hard limit on the level of accuracy 
that a binary predictor can achieve (which depends on the problem but does not 
depend on how the predictor is constructed). If one forces the model to make 

correct predictions on all boundary cases with known ground truth, it simply 
means overfitting, which does not help predictions in new cases. 

•Data imbalance. It often happens that one class is much smaller (has much 
fewer data) than the other. Data imbalance makes the learning difficult: the 
stochastic gradient flow does not converge to the desired values of the param-
eters, because the parameters which give most accurate predictions are not at 
the minimum of the loss function. In Section 4 we will study this phenomenon 

in a very simple toy model. 



105

•Noise-induced uncertainty. We remark that a stochastic gradient flow with 
momentum used in differential learning can also be viewed as a damped stochas-

tic Hamiltonian flow: The momentum term makes it a Hamiltonian system, 
while the negative gradient term is the damping term. It is known (see, e.g., 
[14]) that a stochastic damped harmonic oscillator does not converge to the 
minimum energy point, but rather "converges stochastically" to an energy level 

higher than the minimum. For differential learning, it means that the stochas-
tic gradient flow cannot be expected to reach the minimum of the loss function. 
Rather, it will hover around a certain loss level above the minimum. This is a 

phenomenon of noise-induced uncertainty, due to stochasticity. 

• Choice of the loss function, which is the main topic of this paper. One can 
improve the accuracy results a lot by simply choosing a better loss function, 

more adapted to the problem. 

4 Data imbalance in a simple toy model 

In this model, the input space S1 is just an interval: S1 = [a, b[. The ground 
truth binary function is piece-wise constant, i.e., there is a partition of S1 into a 

finite number of intervals, 

n = u『:,,0[ai,aH1[ 
with a=  a。<a1 <・ ・ ・< an+l = b, and the ground truth is: Ytrue = l on 

St+= U[a加知H [ and Ytrue = 0 on n_ = U[a2i+1, a2Hd-The point-wise gain 
function g (g = l -£where is the loss function) has n learnable parameters 

外..., Bn and is of the type 

g(01, ...'仇，x)= IT (一q;(x-Bi)) 

where¢(x) is a increasing monotonous function on股 suchthat¢(0) = 0, 
2 

and limx→士OOの(x)=士1. For example, we can take¢(x) = -arctan(x), or 
X 1f 

¢(x) = for some positive number E. (We will not worry much about 
ご

the exact formula of¢). Notice that the function g(a1, ... ,an,x) (with fixed 

01 = a1, ... , Bn = an) is positive on n+ and negative on n_. The prediction 
function of the model is: 

Me(w) = 1 if g(0,w) 2'. 0 

and 

Me(w) = 0 if g(0,w) < 0, 

where 0 = (01, ... , 0n)-So if (and only if) 0 = (0い・..,0n) = (a1, ... ,an) then 
the prediction Me coincides with the ground truth, and we get 100% accuracy. 

We do not know the value of (a1, ... , a砂， andwant to find them by using 
the stochastic gradient flow of the gain function 

b 

G(0) = j g(0,w)dw. 
a 

Unfortunately, in general the the maximal value of G(0) is not at the point 
0 = (a1, ... ,an) in the parameter space, but at some nearby point at best. 



106

In other words, in general, the differential learning method with this gain/loss 
function (or with any other differentiable loss function for that matter) will not 

give us a prediction model with 100% accuracy even if such a model exists. This 
fact is already clear in the case with just one learnable parameter (n = 1): 

p ropos1tion 4.1. With the above notations, in the case when n = l, g(0,w) = 
-cp(w -0), we have: 

i} Balanced case. If b -a1 = a1 -a, i.e., a1 = (a+ b)/2 then a1 is the 
maximal point for G(0) 

ii} Biased case. When b-a1 > a1 -a but lb+ a -2a1 I is small enough, then 
the maximal point of G is not at 0 = a1, but at a nearby point in the interval 

[a, a1[-
iii} Rare event case. If b -a1 > > a1 -a so that g(b -a)ミ2g(a1-a), then 

the argmax of G on [a, b] is a. 

The proof of the above proposition follows directly from the following deriva-

tion formula for G, 

dG(0) 

d0 
= g(0, b) + g(a) -2g(a1) =一<J>(b-0) -</>(a -0) + 2</>(a1 -0), 

and the fact that in the third case this derivative is always negative, while in 
dG(0) 

the first two cases the vanishes at the maximal point of G on the interval 
d0 

[a, b]. A similar proposition holds for the case with many parameters (n 2 2). 
The interpretation of the above proposition is as follows: 
In case i), when the two classes are balanced, i.e. they have equal weights in 

the total space, then the gradient flow of G (if it is not stochastic) will converge 
to the absolutely correct prediction function. 

In case ii) there is a bias against the minority class in the differential learning 

method: if class 1 is minority then even less inputs will be predicted as of class 
1 than should be. 

In case iii) when one of the two classes is too small, then the machine cannot 

learning anything by the differential method. 
The above very simple toy example already shows the impact of data imbal-

ance on the results of differential learning. To remedy this situation, one has 

the following methods: 
• Data (re}balancing: One artificially amplifies the minority class (e.g., 

change the probability measure on n by artificially adding points to the mi-
nority class, especially during the so-called "data augmentation" process), so 
that the two classes will have equal volume in n. 

• Asymmetric loss functions: Most off-the-shelfloss functions are symmetric, 
i.e., they treat different classes in the same manner. But one may give different 
weights to different classes in the loss function. In the following sections, we 

will show some asymmetric loss functions, with an asymmetry parameter which 
can be tuned for each problem. 

In practice, one may use both of the above methods together: depending on 

what one wants, some asymmetry in the loss function may help, even when the 
data are already balanced. 

• Sharp loss functions: One may be tempted to increase the sharpness of 
the loss function in order to fight data imbalance problems. For example, if in 
the definition of the gain/loss function g mentioned earlier in this section we 



107

X 
use the formula cp(x) = , then the Eis the sharpness coefficient: smaller 

こ
E corresponds to sharper loss functions, and when E tends to O then the bias in 

case ii) of Proposition 4.1 also tends to 0. 
However, there is a price to pay for the sharpness of the loss function. 

Namely, if the loss function is too sharp, then the noise-induced uncertainty 

discussed in Section 3 becomes too high, and so the end results will not be very 
good either. And of course, in the limit case, when E = 0 then the loss function 
becomes piece-wise constant and useless for differential learning. So, in each 

problem there is an optimal sharpness for the loss function. 

5 Focality and poly nom1al loss functions 

The idea of focality of loss functions (see, e.g., [1, 10]) for classification prob-
lems is as follows: If something is already correctly classified (its corresponding 
loss is already below a certain threshold) then we don't need to improve much 
its loss, while things which are wrongly classified must be given much higher 

attention. In differential learning, it means that the contribution to the deriva— 
tive of the loss function from wrongly classified elements should be much higher 
than the contribution from correctly classified elements. Intuitively, this focality 
helps improve the convergence of the gradient flow to optimal accuracy results, 

and this also holds true in practice. One may call it a kind of fast convergence 
method in the spirit of Newton. 

Popular loss functions like binary cross entropy (BCE) are not very focal, 

and so we can propose more focal loss functions which often work better in 
practice. 

Recall that the formula for BCE is: 

BCE(y) = -(Ytrue lny + (1-Ytrue) ln(l -y)), 

where y E]O, 1[ is the output which is interpreted as the "probability" that the 
class is 1 (Yes), 1 -y is the "probability" that the class is O (No), and Ytrue 
is the ground truth (which is O or 1). When y > 0.5 (or another chosen cutoff 
number) then the predicted class is 1, otherwise it is 0. 

In differential learning, it's not the loss function itself, but rather its deriva-
tive which counts. For BCE, the derivative of the loss function is: 

1 -1 
F(y) = or ―' 

1-y y 

depending on whether Ytrue = 0 or Ytrue = 1. The non-focality of BCE lies 
in the fact that the absolute value of its derivative is always above 1, which 
means that correctly predicted elements still play too important a role in the 

loss function. A simple way to improve this situation is to replace BCE by 
simple nonlinear polynomial loss functions. 

As an example, we created the following two new loss functions: 

伍 (y)= CYtrue((l -Y戸+(1 -y)り+(1 -Ytrue)(炉＋炉）

and 

瓜Y)= CYtrue(l -Y)6 + (1-Ytrue)Y6 



108

(where c is the asymmetry coefficient). 
When applied to Melanoma detection models, both of the above loss func-

tions gave better results than BCE: while with BCE a team at Torus Actions 
SAS (a startup founded by the second author) could not make the average 
validation balanced accuracy to go above 82% after days of training, with the 
polynomial loss functions the team could get to 85% (before cross validation). 

(See the next section for more details). 

6 The demerit of sigmoid 

In most machine learning models, one finds a sigmoid type "activation func-

tion" in the last layer: y = sigmoid(r) := 1/(1 + e→) • The loss function is then 
applied to the output y. The sigmoid function (or similar functions) has its 
values in the interval ]O, 1[, so that the output y can be conveniently interpreted 
as the "probability" or "confidence level" of the answer "Yes" to the binary 

question. 
Despite the convenience and popularity of the sigmoid activation function, 

we detected a serious demerit of this function in differential learning. Namely, 
the learning process tends to pushy to 1 in the cases where the class is 1 (Yes) 
in the training set. It means that it is pushing x in those cases to infinity, by 
definition of sigmoid. But x is usually constructed using semi-algebraic formulas 

with parameters, so in order to push x to infinity, at least some of the parameters 

must be pushed to infinity too. In practice, it means that, after a certain number 
of epochs of learning, some of the parameters will become very high, making the 
model unstable (hyperbolic: a very small change in the input can too often lead 
to a large change in the output) and reducing its capability of generalization. 

Our proposal is to avoid using sigmoid (and similar functions, e.g. softmax 
in n-ary classification problems) in the last layer of the model. In other words, 

it's better to construct the loss function as a function of r (the result of the last 
layer before sigmoid) rather than of y where y = sigmoid(r). (Sigmoid/softmax 
can still be used for showing "probabilities", but not for composing with a loss 
function). 

For example, we tested the following lost function: 

l(r) = c(l + Ytrue)li(r) + (1-Ytrue)ら(r),

where 
li (r) = 0.5 x max(-r, 0) + (max(min(0.5 -r, 0.5), 0))4, 

l2(r) = 0.5 x max(r, 0) + (max(min(0.5 + r, 0.5), 0))4, 

c > 0 is the asymmetry coefficient (if c = 1 then the loss function is symmetric), 

and the values of Ytrue are 1 (yes) and -1 (no). 
A team at Torus Actions applied the above new function (without sigmoid) 

to the problem of Melanoma detection (among dermoscopic skin lesion images). 
The results are quite striking: after just 6 training epochs the validation binary 

accuracy got above 88% already (on a random validation set of more than 
1000 images, half of which are Melanoma), better than what could be obtained 

with all the other loss functions with sigmoid activation, even after hundreds of 
epochs. (Each epoch runs through 10,000 images, half of which are Melanoma). 
After some fine tuning and more training, the validation accuracy (and both 



109

0.88 +- train_categorical_accuracy 

0.84 

0.82 

0.80 

0.78 

0.76 

0.74 

O.BB 

0.86 

0.84 

0.82 

0.80 

0.78 

0.76 

0.74 

Figure 1: Training results on Melanoma detection with a new loss function 
without sigmoid activation, after 6 epochs. 

sensitivity and specificity together) could get above 90%. Data are mainly from 
the ISIC 2019 challenge [7]. The model used is a pretrained Inception Resnet 
CNN with an additional last layer. 

0.90 1 

O.BO 

0.7S 

0.70 

0.65 

0.60 

O.S5 

X〕 15 20 巧 30 

0.90 

085 

0.80 

0.75 

0.70 

065 

060 

0.55 

Figure 2: Training results on Melanoma detection, with the same model and 

same environment as in the previous picture, but with sigmoid activation, and 
a power six loss function. 

7 How broken is a broken loss function? 

In our study of focal loss functions, we also designed broken loss functions, 
i.e. continuous functions which are piece-wise smooth but with jumps in the 

derivative at a certain point. More concretely, we looked at the following loss 

function£(y) = c(l -y)£1(Y) + y£2(Y) where c is the asymmetry coefficient and 

釘(y)= {炉 foryさ1/2
y -3/16 for y 2> 1/2 

(and similarly for£2(y)). The above continuous loss function has a jump in 
derivative, from 0.5 to 1, at y = 0.5 

Surprisingly, contrary to our initial naive expectations, in our experiments 

the gradient flow of the above loss function does not converge well and gives 
erratic results. 

It turns out that the jump in derivative at the threshold value y = 0.5 creates 
a stochastic trap: the stochastic flow cannot get out from a region where y is 

near 0.5 and where the prediction is very erratic. 



110

To understand this phenomenon, imagine an input point x whose true class 

is O and whose y value Yn(x) at some step n of the learning process is just a bit 

smaller 0.5. The class of x is correctly predicted at this step n, but near the 

threshold y = 0.5 the prediction is very erratic: there are many input points 

very near x whose class is still O but whose y-values at step n are just a bit 

more than 0.5, so that they are wrongly predicted. Let's say that, in a small 

neighborhood of x, the probability of being correctly predicted (true class is 

0) at step n is p, where p > 0.5 but not by much. The contribution from the 
correctly predicted points in the loss function pushes they-value of x in the right 

direction (the direction which diminishes y) and is approximately proportional 

to 0.5p (p is the density of correct predictions at x, and 0.5 is the derivative of 

the loss function for correctly predicted situations). The contribution from the 

wrongly predicted points in the loss function pushes x in the wrong direction 

(the direction which increases y) and is approximately proportional to 1 -p. So 

when 1-p > 0.5p (which is the case near the boundary erratic region) then the 
y-value of x is pushed in the wrong direction by the gradient flow. That's why 

we have a trap at y = 0.5: right things (which are correctly predicted) tend to 
become wrong by the flow (while wrong things tend to become right, and that's 

how the trap works: things are repeatedly changing their status from right to 

wrong to right to wrong again). 

Our conclusion is that loss functions which are broken at threshold output 

values are really broken and should not be used. 

References 

[1] Nabila Abraham, Naimul Mefraz Khan, A Novel Focal Tversky loss function with 
improved Attention U-Net for lesion segmentation, arXiv:1810.07842 (2018) 

[2] Jurgen Braun, On Kolmogorov's Superposition Theorem and Its Applications, 
SVH Verlag, 2010, 192 pp. 

[3] Cristianini, N. and Shawe Taylor, J. (2000). An Introduction to Support Vector 
Machines. Cambridge University Press, Cambridge, UK. 

[4] F. Cucker, S. Smale, On the mathematical foundation of learning, Bulletin A.M.S., 
39 (2002), 1-49. 

[5] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 
2016. 

[6] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning. 
Springer, New York, 2001. 

[7] ISIC 2019 Challenge (Skin cancer classification): https://challenge2019.isic-
archive.com/ 

[8] Gareth M. James, Variance and Bias for General Loss Functions, Machine Learn-
ing, May 2003, Volume 51, Issue 2, pp 115-135. 

[9] Hoel Kervadec, Jihene Bouchtiba, Christian Desrosiers, Eric Granger Jose Dolz, 
Ismail Ben Ayed, Boundary loss for highly unbalanced segmentation Proceedings 
of Machine Learning Research, 2019. 

[10] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar, Focal Loss 
for Dense Object Detection, arXiv:1708.02002 (2017). 

[11] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana and 
Alessandro Verri, Are Loss Functions All the Same? Neural Computation, Vol-
ume 16, Issue 5, May 2004, p.1063-1076 



111

[12] Chen Shen, Roiger R. Roth, Hirohisa Oda, Masahiro Oda, Yuichiro Hayashi, 
Kazunari Misawa, Kensaku Mori, On the influence of Dice loss function in multi-
class organ segmentation of abdominal CT using 3D fully convolutional networks, 
preprint arXiv:1801.05912vl, 2018. 

[13] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, M. Jorge Car-

doso, Generalised Dice overlap as a deep learning loss function for highly unbal-
anced segmentations, arXiv:1707.03237v3 (2017) 

[14] Nguyen Thanh Thien, Nguyen Tien Zung, Reduction and Integrability of Stochas-
tic Dynamical Systems, Journal of Mathematical Sciences, 2017, 225 (4), pp.681-

706. 

[15] V. Vapnik, Statistical Learning Theory. Wiley, New York (1998). 

[16] Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Jianhuang Lai, Tie-Yan 
Liu, Leaming to Teach with Dynamic Loss Functions, 32nd Conference on Neural 
Information Processing Systems (NeurIPS 2018), Montreal, Canada. 

[17] Hang Zhao, Orazio Gallo, Iuri Frosio, Jan Kautz, Loss Functions for Image 
Restoration With Neural Networks, IEEE Transactions on Computational Imag-
ing, Volume 3 , Issue 1, March 2017, pages 47 -57. 

L.B.P.: Department of Mathematics, Hanoi University of Mining and Geol-

ogy, Hanoi, Vietnam. Email: lbphuong@sputnik.vn 

N.T.Z.: Institut de Mathematiques, Universite de Toulouse 3, Toulouse, 

France. E-mail: tienzung@math.univ-toulouse.fr 




