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Nonpersistence of periodic orbits, homoclinic orbits, 
first integrals and commutative vector fields in 

perturbed systems 
Shoya Motonaga 
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Abstract. Determination of whether periodic orbits, homoclinic orbits, first inte-

grals or commutative vector fields may persist under perturbations is one of the most 

important problems in the field of dynamical systems. In this paper, we give several 

theorems on necessary conditions for their persistence in general perturbed systems. 

Moreover, we consider periodic perturbations of one-degree-of-freedom Hamiltonian 

systems and describe some relationships between our results and the standard Mel-

nikov method for periodic orbits and homoclinic orbits. This is a joint work with 

Kazuyuki Yagasaki (Kyoto University). 

1 Introduction 

For continuous dynamical systems, periodic orbits, homoclinic orbits, first integrals and 

commutative vector fields (continuous symmetries) play important roles. Especially, first 

integrals and commutative vector fields are closely related to integrability in the meaning 

of Bogoyavlenskij (we see its definition in Section 2) which is a generalization of the 

complete integrability for Hamiltonian systems. In most case, their persistences are not 

trivial. 

So we consider continuous dynamical systems with perturbations of the form 

允＝ふ(x), XE  .4{ 

where .4t is a smooth manifold, X0 = X0 + cX1 + O(c2) is a smooth vector field on 

.4t depending on c smoothly and X。hasa periodic orbit or homoclinic orbit, and a 

first integral. In this paper, we give several theorems on necessary conditions for their 

persistence in general perturbed systems. Moreover, we apply our result to periodic 
perturbations of one-degree-of-freedom Hamiltonian systems under the assumption of the 

Melnikov method and give a connection of the Melnikov method and persistence of the 
first integral. 

2 Summary of the Known Results 

We briefly review the known results on persistence of periodic orbits, homoclinic orbits, 

first integrals and commutative vector fields in perturbed systems. 
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2.1 Periodic orbits and homoclinic orbits: Melnikov's method 

For brevity, we only present the standard Melnikov method for periodic perturbations of 
single-degree-of-freedom Hamiltonian systems. 

We consider systems of the form 

允=JDH(x) + Eg(x, t), XE記 (2.1) 

where f is a small parameter such that O < f≪1, H: 配→ 股andg: 配 x股→ 配 are
smooth, g(x, t) is T-periodic in t with T > 0 a constant, and J is the 2 x 2 symplectic 

matnx ， 

J = (~1~)-
When c = 0, Eq. (2.1) becomes the single-degree-of-freedom Hamiltonian system with the 
Hamiltonian H(x), 

允=JDH(x). (2.2) 

Let 0 = t mod T so that 0 E§, where§1 =罠/TZ.We rewrite (2.1) as an autonomous 
system, 

x = JDH(x) + Eg(x, 0), 0 = 1. (2.3) 

We make the following assumption: 

(M) The unperturbed system (2.2) possesses a one-parameter family of periodic orbits 

q°'(t) with period T°', a E (a1, a2), for some a1 < a2. 

Assume that a E (a1, a砂satisfieslT"'= mT for some relatively prime, positive integers 
m and n. Then we can regard that Eq. (2.3) has a one-parameter family of mT-periodic 

orbits x = q"'(t) and 0 = t + T, T E§1, when c = 0. Using the Melnikov method [6, 13], 
we see that if the subharmonic M elnikov function 

Mmfl(T) := JmT DH(q噴）） • g(炉(t),t + T)dt 

゜has a simple zero at T = To E§1, then for c > 0 sufficiently small Eq. (2.3) has a periodic 
orbit of period mT near x = q"'(t -To) and 0 = t mod T. In other words, the periodic 

orbit (x, 0) = (q°'(t -To), t), t E [O, T), persists under the perturbation Eg(x, 0) if the 
subharmonic Melnikov function Mmfl(T) has a simple zero at T = To E§1. 

We next assume the following instead of assumption (M). 

(M') The unperturbed system (2.2) possesses a hyperbolic saddle point p connected to 
itself by a homoclinic orbit qh(t). 

Under the assumption (M') we can regard that Eq. (2.3) has a hyperbolic periodic orbit 
(x, 0) = (p, t) connected to itself by a one-parameter family of homoclinic orbits x =伸(t)
and 0 = t + T mod T, T E§1, when c = 0. We easily show that there exists a hyperbolic 
periodic orbit near x = p and 0 = t mod T (see [6, 13] for the proof). Using the Melnikov 
method [6, 7, 13], we see that if the homoclinic Melnikov function 

00 

M(T) := J DH(qh(t)). g(qh(t), t + T)dt 
-oo 
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has a simple zero, then for E > 0 sufficiently small, there exists a transverse homoclinic 

orbit of (2.1). In other words, the homoclinic orbit x = q°'(t -To) and 0 = t mod T 

persists under the perturbation Eg(x, 0) if the homoclinic Melnikov function M(T) has 

a simple zero at T = To E§1. By the Smale-Birkhoff theorem [6, 13], the existence of 

transverse homoclinic orbits to hyperbolic periodic orbits implies that chaotic behavior 

occurs. 

2.2 First integrals and commutative vector fields 

Integrability for autonomous systems due to Bogoyavlenskij [4] means that the systems 
have an adequate amounts of first integrals and commutative vector fields. 

Definition 2.1 (Bogoyavlenskij). Let、(bea n-dimensional smooth manifold and X be 

a smooth vector field onヽ (.Consider an autonomous n-dimensional system 

出=X(x), x E .4. (2.4) 

Equation (2.4) is called integrable in the meaning of Bogoyavlenskij if there exist q vector 

fieldsふ(:=X),X公...,Xq and n - l q sca ar-valued functions Fい..., Fn-q such that 

(i) X1, ... , Xq are linearly independent almost everywhere and commute with each other, 

i.e., [Xj, ふ]:= 0 for j, k = l, ... , q where [・, •] is the Lie bracket; 

(ii) dF1, ... , dFn-q are linearly independent almost everywhere and F1, ... , Fn-q are first 

integrals of Xい・.., Xq, i.e., d凡（ふ） = 0 for j = l, ... , q and k = l, ... , n -q. 

If X1,X公..., Xq and F1, ... , Fn-q are analytic, then Eq. (2.4) is said to be analytically 
integrable. 

Definition 2.1 is regarded as a generalization of complete integrability for Hamiltonian 

systems. The statement similar to that of the Liouville-Arnold theorem [1] also holds 

for integrable systems in the meaning of Bogoyavlenskij: if Eq. (2.4) is integrable and 
a connected component of the level set p-1(c) with F := (F1, ... , Fn-q) is regular and 

compact for c E股n-q,then it can be transformed to a linear flow on the q-dimensional 
torus'll'q [4]. 

It is well known that Poincare proved nonintegrability of the restricted three body 

problem [12]. In his work, he proved nonintegrability of analytic nearly integrable Hamil-
tonian systems under some assumptions. Here we only emphasize that his result means 

that first integrals and commutative (Hamiltonian) vector fields do not persist generally. 

2.3 Relationships between the Melnikov method and integrabil-

ity 

In addition to facts in Subsection 2.1 and 2.2, there are some relationships between inte-
grability and the Melnikov function for perturbed systems. 

As Moser stated in his monograph [11], the horseshoe map does not possess a real 

a叫 yticfirst integral. This means that, for (2.1) with assumption (M'), if the Melnikov 
function has a simple zero, then (2.1) is real analytically nonintegrable. 
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In [8], Morales showed that, for (2.1) under some conditions with the assumption 
(M'), if the differential Galois group for the variational equation around the unperturbed 
homoclinic orbit is commutative, then the Melnikov function is identically zero. We 
remark that if an extended system of (2.3) is integrable near homoclinic orbit, then the 
identity component of the differential Galois group is commutative, by Morales-Ramis 
theory [9], [10]. 

Our main results in Section 3 can be regarded as a primitive case of these facts. 

3 Main results 

Let (ヽbean-dimensional, paracompact, oriented, and smooth real manifold. Consider 
following system in J/t: 

允＝ふ(x)

where XE is a smooth vector field such that XE = x0 + sX1 + 0(ぎ）．

3.1 Periodic orbits 

We take following assumptions: 

(Al) x0 has a T-periodic orbit ,(t) where T > 0 is a constant, 

(A2) x0 has a non-constant smooth first integral F. 

Let r be a trajectory defined by x = ,(t) and 

T 

五：= J dF(Xり(,(t))dt.

゜

(3.1) 

Theorem 3.1. Assume (Al} and (A2} for (3.1). If X0 has a smooth first integral F0 
near r depending on c smoothly such that F;。=F, then巧，1= 0 holds. 

Theorem 3.2. Assume (Al} and (A2} for (3.1). If X0 has a T0-periodic orbit'" depend-
ing on c smoothly such that Ti。=T and 10 = 1, then巧，1= 0 holds. 

In other words, ifダF,-y=J 0, then F and , does not persist in the perturbed system. 
Next, we impose an additional assumption: 

(A3) X0 has a smooth commutative vector field Z. 

Let 

T 

ん z,1:= J dF([X1, Z])(,(t))dt 

゜where [・, ・] is Lie bracket. 

Theorem 3.3. Assume (Al}, (A2} and (A3} for (3.1). If X0 has a smooth commutative 
vector field Z0 near r depending on c smoothly such that Z。=Z, then f F,z,1 = 0 holds. 
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3.2 Homoclinic orbits of periodic orbits 

We give similar results for homoclinic orbits of periodic orbits. Instead of the assumption 
(Al), we consider following assumption: 

(Al') x0 has a homoclinic orbit'Yh(t) of a periodic orbit呼(t).

In this subsection we always assume (Al') and (A2). 
As in Subsection 3.1, we want to define a specific integral but in this case the situation 

is complicated. When呼(t)is an equilibrium, we denote x。＝呼 anddefine a formal 
integral 

00 
巧，7戸0:= J dF(Xり（外(t))dt.

-oo 

(3.2) 

When呼(t)is not an equilibrium, we define JF, 神，x。asfollows. Let戸＝｛呼(t): t E 
股}and戸＝｛神(t): t E恥}U f P. Fix xo E {呼(t): t E股}and take n -1 d" 1mens10nal 
supersurface S such that x0 ES and S rh fP. Take a sufficiently small neighberhood V,,0 
of X。.We set a Poincare section江。=Sn V,,0. If ltl is sufficiently large, since沖(t)is a 

homoclinic orbit of a periodic orbit呼(t),by its continuity, 神(t)and江。 cross.We denote 
the positive (respectively negative) time of the i-th intersection by I', 戸(respectivelyT閃）．
In this setting, (Al) means that 

lim ,h(T{0) = x0. 
K→土00 (3.3) 

Then we define a formal integral 

T町）

fF, 沖，xo:= k,l杷001三dF(Xり（袂(t))dt. (3.4) 

Theorem 3.4. Assume (A1') and (A2) for (3.1). If X0 has a smooth first integral F0 
near rh depending on s smoothly such that Fi。=F, then右，沖，xoconverges to 0. 

Theorem 3.5. Assume (A1') and (A2) for (3.1). Suppose that there exists a periodic 

orbit'Yf of X0 depending on E: smoothly such that幡＝呼.Jf X0 has a homoclinic orbit 
情 to呼 dependingon E: smoothly such that喩＝仇 thenダ恥，xoconverges to 0. 

Now we impose the additional assumption (A3). When呼 isan equilibrium, define 

~ rto 
c/F, 沖，xo:= k,l杷00[翌 dF([X1,Z])(神(t))dt. (3.5) 

and when 1P is not an equilibrium, define 

= 
/F, 神，xo:= J dF([X1'Z])け(t))dt.

-oo 

(3.6) 

Theorem 3.6. Assume (Al'), (A2) and (A3) for (3.1). If X0 has a smoo~h commutative 
vector field Z0 near fh depending on r:: smoothly such that Z,。=Z, then /F,z,7 converges 
to 0. 
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4 Ideas of the proofs 

We have Theorem 3.1 and 3.2 by calculating J dF0 and dF respectively. Similarly, we J咋
can prove Theorem 3.3 and 3.4. 

Here we give the sketch of the proof of Theorem 3.3. At first, we construct a first 

integral corresponding to given commutative vector field by using the cotangent lift trick 

[3]. It is well-known that any cotangent bundle has a symplectic form induced by Liouville 

form [2] and we denote it by n。.Let X be a smooth vector field on J/t and h x be a 
function on T*、(definedby 

hx(x,p) =〈p,X(x)〉 (4.1) 

for (x,p) E T*.4'where〈,〉isa natural pairing. Then the cotangent lift of X, denoted by 
X, is the Hamiltonian vector field of the Hamiltonian hx with the symplectic form 00. 
In the local coordinates (互…，丘Pi,…，p砂， withthe frame a … a a a ax;-, 'fun同戸.., 后， the

differential equation given by X is expressed as 

dx (8hx 
dt 
-=X(x) = 

誓＝ー。〗;r,)Tl~}_a;:) 
‘
‘
,
l
)
 

2

3

 

4

4
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‘
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In [3]:proposition 2, they use following fact. 

Lemma 4.1. Assume Z is a commutative vector field of X. Then hz is a first integral 

of the cotangent lift X of X. 

Next, we find a periodic orbit in the lifted system. Let X be a smooth vector field 

on .4/and r be an integral curve given by a non-stationary particular solution x = ef>(t) 
of X. An immersion i : r→ .4 induces a vector bundle Tr :=がTM.Then we get a 

connection of the vector bundle Tr: 

▽ s :=£xYlr (4.4) 

where Y is any smooth vector field extension of the section s of the bundle Tr. Then 

▽ s = 0 is said to be the variational equation of X along r [2, 5]. Moreover, for the dual 
connection v'*, ▽ *a = 0 is said to be the adjoint variational equation of X along r. 
Locally, v'*a = 0 can be written as 

誓＝ー(~~位(t)))T'T/ (4.5) 

Lemma 4.2. Let r be an integral curve of the vector field X and▽ * a = 0 be its adjoint 

variational equation. If X has a first integral F, then a= dF!i, is a horizontal section of 
▽ *. 

We remark that (4.3) is the same as (4.5) when x = cp(t). So under the assumptions of 

Theorem 3.3, the lifted system X。ofX。hasa periodic orbitい(t),dF('Y(t))) by Lemma 4.2 

and a first integral hz by Lemma 4J. If the lifted system X0 has a commutative vector 

field Z0 such that Z0 = Z + O(i::), X0 has a first integral hz" such that hz" = hz + O(c) 
and we can apply Theorem 3.1 to the lifted system. 
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5 Some relation with Melnikov methods 

Finally, we remark relationships between our main results and Melnikov method. 
We return to (2.3) and make the assumption (M). By the setting and the assumption 

(M), we have a first integral Hand a orbit (q"'(t), t) of the unperturbed system of (2.3). 
Moreover, when the resonance condition lT°'= mT (l, m E N are relatevely prime) 

holds, ぅ戸(t):= (q可t),t + T) is mT-periodic orbit of unperturbed system of (2.3) for all 
T E [O, T]. So we can apply Theorem 3.1 to the system (2.3) with a first integral H(x) 

and mT-periodic orbitぅ戸(t).Then the integral in Theorem 3.1 is 

匹̀/l= JmT DH(q噴）） • g(炉(t),t + T)dt 

゜
and this coinsides with the subharmonic Melnikov function M→ (T) . So we get following 
Theorem. 

Theorem 5.1. Under the resonance condition zra = mT (l, m EN are relatevely prime) 

and the assumption (M), if (2.3) has a smooth first integral Fe depending on s smoothly 
such that F;。=F, then Mmfl(T) must be identically zero. 

As in the subharmonic case, we get similar statement for the cese of homoclinic orbits. 

Theorem 5.2. Under the assumption (M'), if (2.3) has a smooth first integral Fe de-
pending on s smoothly such that F;。=F, then M(T) must be identically zero. 
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