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Abstract 
In a recent paper [11], the author studied continuous symmetries of differential-difference equations 

and proposed generic symmetry prolongation formulae, which provide essential insights for extending 

Noether's theorem to differential-difference variational problems. In this note, we will review these 

results with several examples. 

1 Introduction 

Symmetries of differential equations, local transformations mapping a solution to an-

other solution, play an important role in understanding solutions and integrability of 

differential equations. Let x E即 bethe independent variables and u E即 bethe de-

pendent variables. Partial derivatives of研 arewritten in the multi-index form uJ where 

J = (J1,J2, ・ ・ ・ 甚） • For the differential case, each index Ji is a non-negative integer which 

denotes the number of derivatives with respect to xi. Namely 

01Jlu"' 
吋＝ 8(が）崎（企）j, ... 8(呼）jp) 

where IJI =・ J1 + J2 +・・・十 Jp• Consider a local one-parameter transformation with the 

following Taylor expMsions about the parameter s: 

x = x + E~(x, u) + 0(ぎ），
U=U十頭(x,u)+ O(sり．

(1) 

Its prolongation to derivatives is directly obtained through the chain rule. For instance 

when p = q = l, 
- Dxu 

u':= —· D互

To calculate symmetries, one may alternatively study the corresponding infinitesimal 

generators 

V = t(x,u)む＋訳(x,u)a研 ・
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The Einstein summation convension is used in this note. The prolongation of an in-

finitesimal generator is related to the prolongation of a local transformation (l); it can be 

conveniently written using the characteristics Q"':=炉一ぐ(Di炉） as follows (see, e.g. [9]) 

prv = t'D; + L(DJぴ）
a 

枷fa,J 

Here the total derivative with respect toが isdefined by 

D, 
8 

=~+Lu恥
8 

'ou3' a,J 

(2) 

where li is the p-tuple with only one nonzero entry 1 in the i-th place. We also use the 

shorthand notation DJ= D『 D~2 ... D点.Symmetries of a system of differential equations, 

written as 

A=  {Fk(x, [u]) = O}い， (3) 

can be determined via the so-called linearized symmetry condition: 

prv(Fk(x, [u])) = 0, whenever {Fk(x, [u]) = O}~=l holds, (4) 

where [u] is shorthand for u and finitely many of its partial derivatives. Many examples 

are available in, e.g. [9]. 

Since 1980s, a great deal of effort has been made in extending symmetry methods to 

discrete/difference equations, e.g. [1, 3-5, 10, 11, 14, 15]. In particular, Levi & Winternitz 

and their collaborators made great contributions in symmetry analysis for differential-

difference equations, e.g. [6-8]. From now on, we will mainly be focused on DDEs and 

similar notations as above will be introduced. Let the multidimensional differential and 

difference variables x E股Piand n E'02 play as independent variables and let u E即 be

the dependent variables. We define derivatives and shifts simultaneously. The forward 

shift operator (or map) S is defined as 

的： n→ n+ 11, 

while its generalisation to a function f (n) is 

芯： J(n) c-+ J(Sin). 

(5) 

(6) 

The composite of shift operators using multi-index notation is given by SJ2 = S『S空...S均
whereふ=(jい］か..., ]p2) is a pr tuple; hence both S11 and Sj are used to denote the 

forward shift. However, different from the differential multi-index J1 below, each index 

of J2 is an integer. The total derivative in the differential-difference sense is defined as 

aua 
Di=む+oxi如＋．．．十区吋1+l;;J鼻，J2.

a,J1,J2 
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Now we are ready to define derivatives and shifts of dependent variables with the following 

notation 

Uい＝見SJ2炉=$砂J1U巴

Namely, the first subindex indicates derivatives while the second subindex indicates shifts. 

We still use [u] to denote u and finitely many of its derivatives and shifts for differential-

difference equations (DD Es). 

Consider a vector field 

V=ぐ(x,n, u)む＋のa(x,n,u)a研 ，

which generates a symmetry group for a system of DDEs 

A={凡(x,n, [u]) = oH=l・

(7) 

(8) 

In this note, we are interested in its prolongations pr v which will be used to determine 

symmetries of DDEs via the linearized symmetry condition 

prv(Fk(x, n, [u])) = 0, whenever {Fk(x, n, [u]) = O}~=l holds. (9) 

2 Prolongations of infinitesimal generators for DDEs 

In the literature, there have been various prolongation formulae used to calculate syrn-

metries of DDEs, e.g., [6-8]. In this note, we will mainly review the prolongation formulae 

proposed in [11]. In the next section, we will show several illustrative examples, including 

integrable DDEs of the Volterra type, the Toda lattice and the two-dimensional Toda 

lattice. 

In [11], author of this note proved the prolongation formulae analytically for continuous 

symmetries of DDEs and in particular presented two extreme cases, depending on how 
-→9 one would define the prolongation ua or variables (x, n, u) after the transformation. 
J叫 2

f 

In particular, n is viewed as a parameter as it is discrete and invariant. In general, the 

commutativity of derivative and shift breaks, that is DSナSDwhere D is the total 

derivative with respect to new variables歪. These two extreme cases are summarized 

below, i.e. Theorem 3 and Theorem 4 in [11]. 

Case DS. The prolongation formula reads 

prv =ぐDi+L (DJ1偶）仇，Jが (10) 
a,J1,J2 

where 

QJ2 := SJ2訳一ぐutJが
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Case SD. Now the prolongation formula can be expressed in terms of the functions 

Q" = cp"(x, n, u)一ぐ(x,n,u)Di炉 as

prv=ぐむ+L(S1ぐ） (Di;I―佐）＋区 (DJふ立）0戌J2' (11) 
,,I a,J1,J2 

where 
aua 

Di;I :=む+ a:t髯＋・・・十ど吐+li;I崎，I•
a,J1 

Note that both formulae can equivalently be written as an evolutionary form when f = 

f(x), which is called a regular symmetry or a regular vector field in [11] to distinguish from 

an intrinsic one for f = f(x, u). 

To make things easier, we will only consider regular symmetries with infinitesimal gen-

erators v = fi(x)ax, + cp"'(x, n, u)au" or higher-order cases, when their prolongations can 

be equivalently written as evolutionary representations 

prv =ぐDi+ L (D戸 J立）虹，Jが (12) 
a,J1,J2 

where the characteristics are defined as Q"'=炉ーぐDi砂 again.A regular vector field 

generates a group of (divergence) variational symmetries for a differential-difference 

Lagrangian L(x, n, [u]) if there exists a (p1; p2)-tuple (Pi (x, n, [u]); lら(x,n, [u])) subject to 

prv(L) + L(Diぐ） = Div Pi +Div△ P2. (13) 

Noether's theorem assures that the symmetry characteristics Q are also characteristics of 

conservation laws for the corresponding Euler-Lagrange equations. Namely there exists 

another (p1; p2)-tuple (Pi (x, n, [u]); g(x, n, [u])) such that 

Div Pi +Div△ A=  Q"恥 (L), (14) 

where the differential-difference Euler operator E is defined by 

Ea:=ど(-Dh,S-J2
8 

au" . 
J1,J2 ふ；J2 

(15) 

Here (-D)J1 = (-1)IJ1I伽 isthe adjoint of Dふ.In the next section, we will recall several 

examples. 

Note that in [11], Noether's theorem was only proved for regular symmetries of differential-

difference variational problems. In fact, regular symmetries of DDEs have actually been 

well understood for quite some time. For general symmetries, we also believe that an 

evolutionary representative should exist although a clear explanation is not yet available. 
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In [8], the authors proposed an approach via the semi-continuum limit of symmetry pro-

longations for purely difference equations, in particular for 1 + I-dimensional DDEs. We 

are seeking for an analytic and systematic proof of an evolutionary representative for gen-

eral symmetries, which should be free from the differential or purely difference pictures. 

We will also extend Noether's theorem to include all variational symmetries as well as to 

prove Noether's second theorem for DDEs; these results will be presented in [12]. 

3 Illustrative examples 

In this section, we will derive regular symmetries of several DDEs using the linearized 

symmetry condition as well as regular symmetries of differential-difference variational 

problems and conservation laws of the underlying Euler-Lagrange equations. We will 

present the main results without providing computational details; many of the examples 

were included in [11]; see also [8]. 

3.1 Volterra-type equations 

The first family of equations we consider are the so-called Volterra-type equations 

u'=f(x,n湿ー1,u, u1)-

Now p1 = p2 = q = l; let x and n be the continuous and discrete independent variables 

respectively and let u be the dependent variable. 

One of the simplest examples is the Volterra equation 

u'= u(u1 -u_1). 

The following regular infinitesimal generators are obtained (e.g. [8, 11]) 

V1 = -XOx +砿）~, V2 = 8x, 

where c(n) is an arbitrary function. Introduce a new variable via 

u = exp(v1 -v_1), 

and we have a new differential-difference equation 

叫—凸= exp(v2 -v) -exp(v -v_2), 

which admits a differential-difference Lagrangian 

L = v(v~- v') + exp(v2 -v). 

(16) 

(17) 

(18) 

(19) 
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In the following table, we show the conservation laws 

DtP1 + (S -id)杓=QE(L), (20) 

corresponding to the variational symmetries Ov, (-1)叫1vand f(t)av, respectively. Here 

J(t) is an arbitrary function oft. 

Characteristics I Conservation laws 

Q = 1 P1 = V1 -V-1 
P2 = -exp(v1 -v_1) -exp(v -v_2) 

Q = (ー1r I尺＝（ー1r(v1-V-1) 
P2 = (-1r exp(v2 -v) -(-1r exp(v -V-2) 

Q = J(t) I A =0 

P2 = f(t) (v'+ 叫— exp(v1 -v_1) -exp(v -v_2)) 

A second example is a special Y dKN equation (e.g. [15]) 

2 U U1U-1 
u = 

U1 -U_1 

The linearized symmetry condition leads to the infinitesimal generators 

V1 = (-ltuou, 

These are consistent with [8]. 

1 
V2 =巫—うu8u, V3 = 8x, V4 = u28u. 

3.2 Semi-discretisations of the KdV equation 

As a final example, consider the KdV equation 

附十 UUx+ UxぉX = 0, 

which can be rewritten as 

如 +v丑五+Vxxxx = 0, 

by introducing四 =u. The latter is governed by a Lagrangian 

3 VtVの島 V2 

L= - --+旱
2 6 2' 

which admits the following symmetries 

Q1 = 1, 仙=Vx, Q3 =心+2Vxxx, Q4 = t. 

(21) 

(22) 

(23) 

(24) 

Hence they contribute to four distinct conservation laws. The first three can be changed 

back to conservation laws of the original equation using the same transformation叩 =U
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and they are the conservation of mass, the conservation of momentum and the conservation 

of energy: 

加 +Dx(炉+uxx)= F, 

Dt(炉） +Dx (~ 研 +u駈—;u;) = uF, (25) 

Dt(信—心） + Dx (iu4 + u2虹 +2妬切＋心）＝位+2匝）F, 

where F =切 +u妬+Uxxx・However, the last one with characteristic Q4 = t can not be 

transformed back because its flux depends on v. 

Next we consider semi-discretisations of the KdV equation preserving multiple symme-

tries and/or multiple conservation laws simultaneously. Start with semi-discretisations of 

the Lagrangian (23), for instance 

L1 = --(V1 -V) - + 
v' (v1 -v)3 伍ー 2v+ V_1)2 
2 6 2 . 

(26) 

Now v'= Vt-The underlying DDE (i.e. the Euler-Lagrange equation E(L1) = 0) is 

v~-v'」 (v1 -v)2 -(v -v_1)2 

2 2 
+ +v2-4町十 6v-4v_1 + v_2 = 0. (27) 

It becomes a semi-discretisation of the original KdV equation, introducing v -v_1 = u, 

and it reads 
叫十u' 叶ーu2

2 2 
+ +匹-3u1 + 3u -u_1 = 0. (28) 

In this case, symmetries with characteristics Q1 = 1 and Q4 = t are preserved, namely 

they are still variational symmetries of£1 and hence contributes to conservation laws 

of the Euler-Lagrange equation. The first one becomes a conservation law of the semi-

discretised equation (28): 

Dt (ui: u) + (S -id) (炉＋附ー2u+u_1)= Fi, (29) 

where F1 is the left hand side of (28). 

Alternatively, let us consider semi-discretisations by discretising time t. For instance, 

consider the following differential-difference Lagrangian 

ら＝一
釘ー V叫十v' (v')3 (v")2 

2 2 6 
＋ 2 . (30) 

Now'dash'denotes derivatives with respect to x, for example v'= Vx and so forth, while 

n is the discretised time. Its Euler-Lagrange equation is 

I 
V1 -v 

2 

I 
-1 

＋ 
I II vv +v Ill! = 0, (31) 
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which becomes a semi-discretisation of the original KdV equation using v'= u, namely 

附ー U_1

2 
+uu +u ”’ = 0. 

Now symmetries with characteristics Q1, Q2, Q4 are preserved and they become 

Q1 = 1, Q2 = v', Q4 = n. 

(32) 

(33) 

They yield three conservation laws of the Euler-Lagrange equation; the first two become 

conservation laws of the DDE (32): 

(S -id) (ui; u) + Dx (~u2 + u") = F: ぁ

(S -id)ご） +Dの(~研+uu" -~(u')2) = uF2. 

(34) 

Here F2 is the left hand side of (32). 

4 C onclus10ns and further remarks 

In this note, we reviewed the main results of the paper [11], that is continuous symme-

tries of DD Es and Noether's first theorem for deriving conservation laws of DD Es governed 

by differential-difference Lagrangians. Several examples were provided to illustrate the 

theory, in particular for regular symmetries. In our next paper [12], we will show how 

the current results can be generalised to general symmetries by proving an equivalent 

evolutionary representative for symmetry prolongations as well as extending Noether's 

two theorems to DDEs. 
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