Homogenization and penalization of Hamilton-Jacobi equations with integral terms

東京都立大学大学院理学研究科 嶋野 和史(Kazufumi Shimano) Department of Mathematics, Tokyo Metropolitan University E-mail address: kshimano@comp.metro-u.ac.jp

1. Introduction

We consider the functional partial differential equation

$$u^{\varepsilon}(x,\xi) + H\left(\frac{x}{\varepsilon}, Du^{\varepsilon}(x,\xi), \xi\right) = \frac{1}{\delta(\varepsilon)} \int_{I} k(\xi,\eta) \left[u^{\varepsilon}(x,\eta) - u^{\varepsilon}(x,\xi)\right] d\eta \quad (E)_{\varepsilon}$$
for $(x,\xi) \in \mathbf{R}^{n} \times I$,

where ε and $\delta(\varepsilon)$ are a positive parameter and a positive parameter satisfying $\delta(\varepsilon) \to 0$ as $\varepsilon \searrow 0$ respectively, I is a finite interval of \mathbf{R} , H is a Borel measurable function on $\mathbf{R}^{2n} \times I$ such that for each $\xi \in I$ the function $H(\cdot, \xi)$ is continuous on \mathbf{R}^{2n} , and k is a bounded, positive, Borel measurable function on $I \times I$.

Equation $(E)_{\varepsilon}$ appears as a fundamental equation in optimal control of the system whose states are described by ordinary differential equations, subject to random changes of states in I and to control which induce the integral term in $(E)_{\varepsilon}$ and the nonlinearity of H, respectively.

An evolution equation similar to $(E)_{\varepsilon}$ was considered in Ishii-Shimano[11]. They proved a convergence theorem in which the limit equation is identified with a nonlinear parabolic PDE. The second and third terms of $(E)_{\varepsilon}$ indicate the effects of homogenization and penalization, respectively. Our motivation is to study the interaction in the asymptotics between the effects of the almost periodic homogenization and penalization in $(E)_{\varepsilon}$.

In this paper we deal with the almost periodic homogenization. In [8], Ishii studied the almost periodic homogenization of Hamilton-Jacobi equations. There are many references concerning the homogenization of Hamilton-Jacobi equations. However most of these deal with the periodic homogenization. See e.g., [1,4,5,6,7,10]. Except for the periodic and almost periodic cases, Souganidis studied stochastic homogenization for the Cauchy problem for first-order PDE in [12], and Arisawa dealt with the quasi-periodic homogenization for second-order Hamilton-Jacobi-Bellman equations in [3].

Our plan is the following. In Section 2 we explain some properties for the integral operator of $(E)_{\varepsilon}$ and give our definition of viscosity solutions. In Section 3 we consider three cell problems. These cell problems play important parts in proofs of our main theorems. In Section 4 we state convergence theorems which are our main theorems. Our main theorems, Theorems 4.2, 4.3 and 4.4, say that the equation, which the limit

function of the viscosity solution u^{ε} of $(E)_{\varepsilon}$, as $\varepsilon \to 0$, varies according to the ranges of $\gamma := \lim_{\varepsilon \to 0} \delta(\varepsilon)/\varepsilon$, $\gamma = 0$, $0 < \gamma < \infty$, or $\gamma = \infty$. In Section 5 we deal with functional first-order PDE including two positive parameters. Theorem 5.2 says that in the case where $\gamma = 0$ (E) $_{\varepsilon}$ is influenced by the penalization first, and then the penalized PDE is homogenized, and that in the case where $\gamma = \infty$ it is homogenized first, and then is penalized. In the case where $\gamma \in (0, \infty)$ we can interpret that $(E)_{\varepsilon}$ is homogenized and penalized at the same time.

2. Preliminaries

For any Borel subset $\Omega \subset \mathbf{R}^m$, $\mathcal{B}(\Omega)$ denotes the space of all Borel functions on Ω , and $\mathcal{B}^{\infty}(\Omega)$ denotes the Banach space of bounded Borel functions f on Ω with norm $||f||_{\infty}$, where we write $||f||_{\infty} = \sup_{\Omega} |f|$. I denotes a fixed finite interval, with length |I| > 0, and also the identity operator on a given space.

Throughout this paper we fix positive numbers κ_0 , κ_1 , with $\kappa_0 < \kappa_1$, and assume that k is a Borel function on $I \times I$ such that $\kappa_0 \le k(\xi, \eta) \le \kappa_1$ for all $\xi, \eta \in I$.

Next we define the continuous linear operator $K: \mathcal{B}^{\infty}(I) \to \mathcal{B}^{\infty}(I)$ by

$$Kf(\xi) = \int_I k(\xi, \eta) f(\eta) d\eta$$
 for $\xi \in I$.

We define \overline{k} by

$$\overline{k}(\xi) = \int_I k(\xi, \eta) d\eta$$
 for $\xi \in I$

and define $C:\mathcal{B}^\infty(I)\to\mathcal{B}^\infty(I)$ and $L:\mathcal{B}^\infty(I)\to\mathcal{B}^\infty(I)$ by

$$Cf(\xi) = \overline{k}(\xi)f(\xi)$$
 for $\xi \in I$

and

$$Lf(\xi) = \int_{I} \frac{k(\xi, \eta)}{\overline{k}(\xi)} f(\eta) d\eta$$
 for $\xi \in I$.

We set

$$l(\xi, \eta) = \frac{k(\xi, \eta)}{\overline{k}(\xi)}$$
 for $\xi, \eta \in I$.

By the Fredholm-Riesz-Schauder theory, there exists a unique function $r \in \mathcal{B}^{\infty}(I)$ such that

$$\int_{I} r(\xi)l(\xi,\eta)d\xi = r(\eta) \qquad \text{for all } \eta \in I,$$
(2.1)

$$\int_{I} r(\xi) d\xi = 1. \tag{2.2}$$

Moreover, by the Perron-Frobenius theory, we see that $r(\xi) > 0$ for all $\xi \in I$. Then by (2.1) we see that

$$\frac{\kappa_0}{\kappa_1|I|} \le r(\xi) \le \frac{\kappa_1}{\kappa_0|I|} \qquad \text{for } \xi \in I.$$
 (2.3)

We define \bar{r} by

$$\overline{r}(\xi) = \frac{r(\xi)}{\overline{k}(\xi)} \bigg/ \int_{I} \frac{r(\eta)}{\overline{k}(\eta)} d\eta$$
 for $\xi \in I$.

Then from (2.3) we have

$$\frac{\kappa_0^3}{\kappa_1^3|I|} \le \overline{r}(\xi) \le \frac{\kappa_1^3}{\kappa_0^3|I|} \qquad \text{for } \xi \in I.$$
 (2.4)

For any integrable function $h: I \to \mathbf{R}$, we define

$$\{h\}^{\perp,\infty} = \{f \in \mathcal{B}^{\infty}(I) \mid \int_{I} h(\xi)f(\xi)d\xi = 0\}.$$

Since $\operatorname{Im}(K-C) \subset \{\overline{r}\}^{\perp,\infty}$, we may regard K-C as an operator from $\{\overline{r}\}^{\perp,\infty}$ into $\{\overline{r}\}^{\perp,\infty}$. Observe that the bounded linear operator $L-I:\{r\}^{\perp,\infty} \to \{1\}^{\perp,\infty}$ is invertible, where $\mathbf{1}(\xi)=1$ for all $\xi \in I$. Consequently, K-C is invertible. We denote this inverse operator by $(K-C)^{-1}$.

Before we give the definition of viscosity solutions of

$$F(x,u(x,\xi),D_xu(x,\xi),\xi)=\int_I k(\xi,\eta)[u(x,\eta)-u(x,\xi)]d\eta \quad ext{ for } (x,\xi)\in\mathbf{R} imes I, \quad ext{ (E)}$$

where F is Borel measurable on $\mathbf{R}^n \times \mathbf{R} \times \mathbf{R}^n \times I$ such that for each $\xi \in I$ the function $F(\cdot, \xi)$ is continuous on $\mathbf{R}^n \times \mathbf{R} \times \mathbf{R}^n$, we introduce the notation. We denote by $\mathcal{U}^+(\mathbf{R}^n \times I)$ the set of those functions u on $\mathbf{R}^n \times I$ such that for each $x \in \mathbf{R}^n$ the function $u(x, \cdot)$ is Borel measurable and integrable in I and for each $\xi \in I$ the function $u(\cdot, \xi)$ is upper semicontinuous in \mathbf{R}^n . We set $\mathcal{U}^-(\mathbf{R}^n \times I) = -\mathcal{U}^+(\mathbf{R}^n \times I)$. For any $\Omega \subset \mathbf{R}^m$, $C(\Omega) \otimes \mathcal{B}(I)$ denotes the set of functions f on $\Omega \times I$ such that for each $x \in \Omega$ the function $f(x, \cdot)$ is Borel measurable in I and for each $\xi \in I$ the function $f(\cdot, \xi)$ is continuous in Ω . We call a continuous function $\omega : [0, \infty) \to [0, \infty)$ a modulus if ω is non-decreasing in $[0, \infty)$ and $\omega(0) = 0$.

Definition. (i) We call $u \in \mathcal{U}^+(\mathbf{R}^n \times I)$ a viscosity subsolution of (E) if whenever $\varphi \in C^1(\mathbf{R}^n)$, $\xi \in I$, and $u(\cdot, \xi) - \varphi$ attains its local maximum at \hat{x} , then

$$F(\hat{x},u(\hat{x},\xi),Darphi(\hat{x}),\xi) \leq \int_I k(\xi,\eta)[u(\hat{x},\eta)-u(\hat{x},\xi)]d\eta.$$

(ii) We call $u \in \mathcal{U}^-(\mathbf{R}^n \times I)$ a viscosity supersolution of (E) if whenever $\varphi \in C^1(\mathbf{R}^n)$, $\xi \in I$, and $u(\cdot, \xi) - \varphi$ attains its local minimum at \hat{x} , then

$$F(\hat{x},u(\hat{x},\xi),Darphi(\hat{x}),\xi)\geq\int_{I}k(\xi,\eta)[u(\hat{x},\eta)-u(\hat{x},\xi)]d\eta.$$

(iii) We call $u \in C(\mathbf{R}^n) \otimes \mathcal{B}(I)$ a viscosity solution of (E) if it is both a viscosity suband supersolution of (E).

3. Three cell problems

We begin this section by giving our assumptions on H.

(A1) $H \in C(\mathbf{R}^{2n}) \otimes \mathcal{B}(I)$.

- (A2) $\lim_{R\to\infty}\inf\{H(x,p,\xi)\mid x,p\in\mathbf{R}^n,\xi\in I,|p|\geq R\}=\infty.$
- (A3) For each R > 0 the family $\{H(\cdot + z, \cdot, \cdot) \mid z \in \mathbf{R}^n\}$ of functions is relatively compact in $\mathcal{A}(\mathbf{R}^n \times B(0, R) \times I)$, where $\mathcal{A}(\mathbf{R}^n \times B(0, R) \times I)$ denotes the set of functions $f \in C(\mathbf{R}^n \times B(0, R)) \otimes \mathcal{B}(I)$, with norm $\|\cdot\|_{\mathcal{A}(R^n \times B(0, R) \times I)} := \sup_{\mathbf{R}^n \times B(0, R) \times I} |\cdot|$, which satisfy for a modulus μ_R and a positive constant M_R ,

$$|f(x, p, \xi) - f(y, q, \xi)| \le \mu_R(|x - y| + |p - q|), \quad |f(x, p, \xi)| \le M_R$$
for all $x, y \in \mathbf{R}^n, p, q \in B(0, R), \xi \in I$, (#)

where B(0,R) denotes the closed ball of \mathbb{R}^n with radius R centered at the origin.

(A4) The family $\{H(\cdot + z, \cdot, \cdot) \mid z \in \mathbf{R}^n\}$ of functions is subset of $\mathcal{A}(\mathbf{R}^{2n} \times I)$, where $\mathcal{A}(\mathbf{R}^{2n} \times I)$ denotes the set of functions $f \in C(\mathbf{R}^{2n}) \otimes \mathcal{B}(I)$ such that for each R > 0 there exist a modulus μ_R and a positive constant M_R for which condition (#) is satisfied. Moreover, for every sequence $\{z_j\} \subset \mathbf{R}^n$ there are a subsequence $\{z_{j_k}\} \subset \{z_j\}$ and a function $\tilde{H} \in \mathcal{A}(\mathbf{R}^{2n} \times I)$ such that

$$\lim_{k\to\infty}\sup_{(x,p,\xi)\in\mathbf{R}^n\times\mathbf{R}^n\times I}|H(x+z_{j_k},p,\xi)-\tilde{H}(x,p,\xi)|=0.$$

Assumptions (A3) and (A4) relate to the almost periodic homogenization. Note that (A4) is a stronger condition than (A3).

Example. We consider the function $H(x, p, \xi) = b(\xi)|p|^m + f(x)$, where m > 0, $b \in \mathcal{B}^{\infty}(I)$ is positive, and $f \in C(\mathbf{R}^n)$ is almost periodic. Then the function H satisfies (A1), (A2) and (A4).

Theorem 3.1. Assume that (A1)-(A3) hold. Let $\hat{p} \in \mathbb{R}^n$. There is a unique constant $\lambda \in \mathbb{R}$ such that for each $\theta > 0$ there is a bounded and Lipschitz continuous viscosity solution v of

$$\left\{ \begin{array}{lcl} \int_{I} \overline{r}(\eta) H(x, \hat{p} + Dv(x), \eta) d\eta & \leq & \lambda + \theta \ for \ x \in \mathbf{R}^{n}, \\ \int_{I} \overline{r}(\eta) H(x, \hat{p} + Dv(x), \eta) d\eta & \geq & \lambda - \theta \ for \ x \in \mathbf{R}^{n}. \end{array} \right.$$

The problem of finding a constant λ described in the above theorem is a type of the so-called ergodic problem. We adapted here the formulation of Arisawa[2].

We can define the effective function $\bar{H}_0: \mathbf{R}^n \to \mathbf{R}$ by setting $\bar{H}_0(\hat{p}) = \lambda$, where λ is the constant given by Theorem 3.1.

Proposition 3.2. \bar{H}_0 is continuous on \mathbb{R}^n .

We refer to [8] for a proof of Theorem 3.1 and Proposition 3.2.

Theorem 3.3. Assume that (A1), (A2) and (A4) hold. Let $\hat{p} \in \mathbb{R}^n$ and $\gamma > 0$. There is a unique constant $\lambda_{\gamma} \in \mathbb{R}$ such that for each $\theta > 0$ there is a bounded viscosity solution

 $v \in C(\mathbf{R}^n) \otimes \mathcal{B}(I)$ of

Here we define $\bar{H}_{\gamma}: \mathbf{R}^n \to \mathbf{R}$ by setting $\bar{H}_{\gamma}(\hat{p}) = \lambda_{\gamma}$, where λ_{γ} is the constant given by Theorem 3.3.

Proposition 3.4. \bar{H}_{γ} is continuous on \mathbb{R}^n .

Theorem 3.5. Assume that (A1)-(A3) hold. Let $p \in \mathbb{R}^n$. There is a unique function $\lambda \in \mathcal{B}^{\infty}(I)$ such that for each $\theta > 0$ there is a bounded viscosity solution $v \in C(\mathbf{R}^n) \otimes \mathcal{B}(I)$ of

$$\begin{cases} H(x,\hat{p}+D_xv(x,\xi),\xi) & \leq \lambda(\xi)+h(\xi) & for (x,\xi) \in \mathbf{R}^n \times I, \\ H(x,\hat{p}+D_xv(x,\xi),\xi) & \geq \lambda(\xi)-h(\xi) & for (x,\xi) \in \mathbf{R}^n \times I, \end{cases}$$

for all $(x,\xi) \in \mathbf{R}^n \times I$, where $h \in \mathcal{B}^{\infty}(I)$ and h satisfies $\int_I |h(\eta)| d\eta \leq \theta$. Here we define $\bar{H}_{\infty} : \mathbf{R}^n \times I \to \mathbf{R}$ by setting $\bar{H}_{\infty}(\hat{p},\xi) = \lambda(\xi)$, where λ is the function

given by Theorem 3.5.

Proposition 3.6. $\bar{H}_{\infty} \in C(\mathbb{R}^n) \otimes \mathcal{B}(I)$. Moreover, for each R > 0 there is a modulus ω_R such that

$$|\bar{H}_{\infty}(p,\xi) - \bar{H}_{\infty}(q,\xi)| \le \omega_R(|p-q|)$$
 for all $p, q \in B(0,R), \xi \in I$.

4. Convergence theorems

We state uniqueness and existence results for $(E)_{\varepsilon}$.

Theorem 4.1. Assume that (A1)-(A3) hold. Let $\varepsilon > 0$. There is a unique bounded viscosity solution $u^{\varepsilon} \in C(\mathbf{R}^n) \otimes \mathcal{B}(I)$ of $(E)_{\varepsilon}$.

Consult sections 3 and 4 of [9] for the proof of Theorem 4.1. However, note that the equations considered in [9] are slightly different from (E).

Theorem 4.2. Assume that (A1)-(A3) hold and that $\lim_{\epsilon \to 0} \delta(\epsilon)/\epsilon = 0$. Let u^{ϵ} be the bounded viscosity solution of $(E)_{\varepsilon}$ and u be the (unique) bounded viscosity solution of

$$u(x) + \bar{H}_0(Du(x)) = 0 \qquad \qquad \text{for } x \in \mathbf{R}^n. \tag{LE}_0$$

Then

$$\lim_{\varepsilon \searrow 0} \sup\{|u^{\varepsilon}(x,\xi) - u(x)| \mid x \in \mathbf{R}^n, \xi \in I\} = 0.$$

Theorem 4.3. Assume that (A1), (A2) and (A4) hold and that

$$\lim_{\varepsilon \to 0} \frac{\delta(\varepsilon)}{\varepsilon} = \gamma \in (0, \infty).$$

Let u^{ε} be the bounded viscosity solution of $(E)_{\varepsilon}$ and u be the bounded viscosity solution of

$$u(x) + \bar{H}_{\gamma}(Du(x)) = 0$$
 for $x \in \mathbf{R}^n$. (LE)_{\gamma}

Then

$$\lim_{\varepsilon \searrow 0} \sup\{|u^{\varepsilon}(x,\xi) - u(x)| \mid x \in \mathbf{R}^n, \xi \in I\} = 0.$$

Theorem 4.4. Assume that (A1)-(A3) hold and that $\lim_{\varepsilon\to 0} \delta(\varepsilon)/\varepsilon = \infty$. Let u^{ε} be the bounded viscosity solution of $(E)_{\varepsilon}$ and u be the bounded viscosity solution of

$$u(x) + \int_{I} \overline{r}(\eta) \overline{H}_{\infty}(Du(x), \eta) d\eta = 0$$
 for $x \in \mathbf{R}^{n}$. (LE)_{\infty}

Then

$$\lim_{\varepsilon \searrow 0} \sup\{|u^{\varepsilon}(x,\xi) - u(x)| \mid x \in \mathbf{R}^n, \xi \in I\} = 0.$$

5. Functional first-order PDE with two parameters

In this section we consider the functional PDE with two parameters:

$$u^{\varepsilon,\delta}(x,\xi) + H\left(\frac{x}{\varepsilon}, Du^{\varepsilon,\delta}(x,\xi), \xi\right) = \frac{1}{\delta} \int_{I} k(\xi,\eta) \left[u^{\varepsilon,\delta}(x,\eta) - u^{\varepsilon,\delta}(x,\xi)\right] d\eta$$
 (E)_{\varepsilon,\delta} for $(x,\xi) \in \mathbf{R}^{n} \times I$,

where ε and δ are positive parameters.

We give a result for the existence and uniqueness of viscosity solution of $(E)_{\varepsilon,\delta}$ without proving it. (See Theorem 4.1.)

Theorem 5.1. Assume that (A1)-(A3) hold. Let ε , $\delta > 0$. There is a unique bounded viscosity solution $u^{\varepsilon,\delta} \in C(\mathbb{R}^n) \otimes \mathcal{B}(I)$ of $(E)_{\varepsilon,\delta}$.

We consider the asymptotic behavior of the viscosity solution of $(E)_{\varepsilon,\delta}$, as $\delta \searrow 0$, and then $\varepsilon \searrow 0$ or $\varepsilon \searrow 0$, and then $\delta \searrow 0$. We state a main theorem of this section.

Theorem 5.2. Assume that (A1)-(A3) hold.

(i) If u is a bounded viscosity solution of (LE)₀, then

$$u(x) = \lim_{\epsilon \searrow 0} \lim_{\delta \searrow 0} u^{\epsilon,\delta}(x,\xi)$$
 for $(x,\xi) \in \mathbf{R}^n \times I$.

(ii) If u is a bounded viscosity solution of $(LE)_{\infty}$, then

$$u(x) = \lim_{\varepsilon \searrow 0} \lim_{\delta \searrow 0} u^{\varepsilon,\delta}(x,\xi)$$
 for $(x,\xi) \in \mathbf{R}^n \times I$.

References

- 1. O. Alvarez and H. Ishii, Hamilton-Jacobi equations with partial gradient and application to homogenization, *Comm. Partial Differential Equations*, **26** (2001), no.5/6, 983-1002.
- 2. M. Arisawa, Some ergodic problems for Hamilton-Jacobi equations in Hilbert spaces, Differential and Integral Equations, 9 (1996), no.1, 59-70.
- 3. M. Arisawa, Quasi-periodic homogenization for second-order Hamilton-Jacobi-Bellman equations, *Adv. Math. Sci. Appl.*, 11 (2001), no.1, 465-480.
- 4. M. C. Concordel, Periodic homogenization of Hamilton-Jacobi equations, II. Eikonal equations, *Proc. Roy. Soc. Edinburgh Sect. A* **127** (1997), 665-689.
- 5. L. C. Evans, The perturbed test function technique for viscosity solutions of partial differential equations, *Proc. Roy. Soc. Edinburgh Sect. A* 111 (1989), 359-375.
- 6. L. C. Evans, Periodic homogenisation of fully nonlinear partial differential equations, *Proc. Roy. Soc. Edinburgh Sect. A* **120** (1992), 245-265.
- 7. K. Horie and H. Ishii, Homogenization of Hamilton-Jacobi equations on domains with small scale periodic structure, *Indiana Univ. Math. J.*, 47 (1998), 1011-1058.
- 8. H. Ishii, Almost periodic homogenization of Hamilton-Jacobi equations, *International Conference on Differential Equations*, Vol. 1,2 (Berlin, 1999), 600-605, World Sci. Publishing, River Edge, NJ, 2000.
- 9. H. Ishii and K. Shimano, Asymptotic analysis for a class of infinite systems of first-order PDE: nonlinear parabolic PDE in the singular limit, *Comm. Partial Differential Equations*, 28 (2003), no.1/2, 409-438.
- 10. P.-L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, unpublished.
- 11. K. Shimano, Homogenization and penalization of functional first-order PDE, to appear in Nonlinear Differential Equations and Applications.
- 12. P. E. Souganidis, Stochastic homogenization of Hamilton-Jacobi equations and some applications, Asymptotic Analysis, 20 (1999), no.1, 1-11.