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1. Introduction

We consider the functional partial differential equation

w(,6) + H (5, D0(2,6),6) = 5= [MEm W@ - v (@Ol ()

5(¢)
for (z,€) e R" x I,

where € and §(¢) are a positive parameter and a positive parameter satisfying 6(e) — 0
as £ \, O respectively, [ is a finite interval of R, H is a Borel measurable function on
R2* x I such that for each £ € I the function H(-,£) is continuous on R?", and k is a
bounded, positive, Borel measurable function on I x I.

Equation (E). appears as a fundamental equation in optimal control of the system
whose states are described by ordinary differential equations, subject to random changes
of states in I and to control which induce the integral term in (E). and the nonlinearity
of H, respectively.

An evolution equation similar to (E). was considered in Ishii-Shimano[11]. They
proved a convergence theorem in which the limit equation is identified with a nonlinear
parabolic PDE. The second and third terms of (E). indicate the effects of homogeniza-
tion and penalization, respectively. Our motivation is to study the interaction in the
asymptotics between the effects of the almost periodic homogenization and penalization
in (E)..

In this paper we deal with the almost periodic homogenization. In (8], Ishii stud-
ied the almost periodic homogenization of Hamilton-Jacobi equations. There are many
references concerning the homogenization of Hamilton-Jacobi equations. However most
of these deal with the periodic homogenization. See e.g., [1,4,5,6,7,10]. Except for the
periodic and almost periodic cases, Souganidis studied stochastic homogenization for the
Cauchy problem for first-order PDE in [12], and Arisawa dealt with the quasi-periodic
homogenization for second-order Hamilton-Jacobi-Bellman equations in [3].

Our plan is the following. In Section 2 we explain some properties for the integral
operator of (E). and give our definition of viscosity solutions. In Section 3 we consider
three cell problems. These cell problems play important parts in proofs of our main
theorems. In Section 4 we state convergence theorems which are our main theorems.
Our main theorems, Theorems 4.2, 4.3 and 4.4, say that the equation, which the limit
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function of the viscosity solution u® of (E)., as € — 0, varies according to the ranges of
v = lim, 0 6(e)/e, Y =0, 0 <y < 00, or v = 0. In Section 5 we deal with functional
first-order PDE including two positive parameters. Theorem 5.2 says that in the case
where v = 0 (E). is influenced by the penalization first, and then the penalized PDE
is homogenized, and that in the case where v = oo it is homogenized first, and then is
penalized. In the case where v € (0,00) we can interpret that (E). is homogenized and
penalized at the same time.

2. Preliminaries

For any Borel subset 2 C R™, B(?) denotes the space of all Borel functions on €2, and
B>(£2) denotes the Banach space of bounded Borel functions f on Q with norm || f|leo,

where we write || fll = supq |f|. I denotes a fixed finite interval, with length |I| > 0,
and also the identity operator on a given space.

Throughout this paper we fix positive numbers kg, k1, with kg < k1, and assume that
k is a Borel function on I x I such that ko < k(§,7) < k; for all ;9 € I.
Next we define the continuous linear operator K : B*(I) — B>(I) by

Kf() = [kemimdn  foréel

We define & by
| KE© = [kemdn foréel
and define C : B®(I) — B>(I) and L : B*®(I) — B>(I) by

CI©) =KOIE forgel

and
L1 = [ sten torger.
We set
I(&n) = I(cE(’E;’) for &, nel.

By the Fredholm-Riesz-Schauder theory, there exists a unique function r € B®(I)
such that

[r@uemde=rn) foraliger (2.1)

[r@d=1 (2.2)

Moreover, by the Perron-Frobenius theory, we see that r(§) > 0 for all £ € I. Then by
(2.1) we see that

m <r(¢) < Kom forel. (2.3)
We define 7 by .
- T(E) 7"(n)
(&) = // k(’?) for € € I
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Then from (2.3) we have

for £ € I. (2.4)

For any integrable function h : I — R, we define

{h}-= = {f € B=(D) | [ h(€)f(€)de = 0},

Since Im(K — C) C {F}+*°, we may regard K — C as an operator from {7}* into
{F}+>. Observe that the bounded linear operator L—1I : {r}>* — {1}+ is invertible,
where 1(§) = 1 for all £ € I. Consequently, K — C is invertible. We denote this inverse
operator by (K — C)~1.

Before we give the definition of viscosity solutions of

F(z,u(z,€), Dau(z,),6) = [ K(Elu(z,n) — u(z,Eldn  for (z,6) €RXI, (B)

where F' is Borel measurable on R™ x R x R™ x I such that for each £ € I the function
F(-,£) is continuous on R"x R xR", we introduce the notation. We denote by U+ (R"x I)
the set of those functions u on R™ x I such that for each £ € R™ the function u(z, )
is Borel measurable and integrable in I and for each £ € I the function u(-,£) is upper
semicontinuous in R". Weset U~ (R"xI) = —-U*(R"xI). For any Q) C R™, C(Q)®B(I)
denotes the set of functions f on © x I such that for each z € Q the function f(z,-) is
Borel measurable in I and for each £ € I the function f(-,£) is continuous in . We call

a continuous function w : [0, 00) — [0, %) a modulus if w is non-decreasing in [0, o) and
w(0) = 0.

Definition. (i) We call v € UT(R™ x I) a viscosity subsolution of (E) if whenever
p € CYR™), € € I, and u(-, &) — ¢ attains its local mazimum at %, then

F(&,u(#,€), Dp(@),€) < [ k&, m[u(#,m) — u(@,O)ldn.

(i) We callw € U~ (R™ x I) a viscosity supersolution of (E) if whenever ¢ € C(R"),
§ €1, and u(-,§) — ¢ attains its local minimum at £, then

F(8,u(3,6), Dp(&),€) 2 [ k(€ mlu(@, n) — u(a, £)ldn.

(iii) We call u € C(R™) ® B(I) a viscosity solution of (E) if it is both a viscosity sub-
and supersolution of (E).

~ 3. Three cell problems

We begin this section by giving our assumptions on H.

(Al) H € C(R*™) ® B(I).
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(A2) lim inf{H(z,p,¢) | z,p € R",{ € I,|p| > R} = oo.

(A3) For each R > 0 the family {H(-+2z,-,-) | 2 € R"} of functions is relatively compact
in A(R™ x B(0, R) x I), where A(R™ x B(0, R) x I) denotes the set of functions
f € C(R" x B(0,R)) ® B(I), with norm || - || g(rnxB(0,R)x1) := SUPRnxB(0,R)x1 | * |
which satisfy for a modulus i and a positive constant Mg,
[f(2,2,8) = f(4: 0.0 S prllz —yl +Ip—4l), [f(z,p,€)| < Mg
for all z,y € R",p,q € B(0,R),£ € I, (#)

where B(0, R) denotes the closed ball of R™ with radius R centered at the origin.

(A4) The family {H(- + 2,-,-) | 2 € R"} of functions is subset of A(R?" x I), where
A(R? x I) denotes the set of functions f € C(R?*") ® B(I) such that for each
R > 0 there exist a modulus pygp and a positive constant Mg for which condition
(#) is satisfied. Moreover, for every sequence {z;} C R™ there are a subsequence
{z;.} C {2;} and a function H € A(R?" x I) such that

klim sup |H(z + 2;,p,§) —ff(xap; ) =0.
—oo (m,p,f)ER"XR"XI

Assumptions (A3) and (A4) relate to the almost periodic homogenization. Note that
(A4) is a stronger condition than (A3).

Example. We consider the function H(z,p,&) = b(¢)|p|™ + f(z), where m > 0, b €
B>(I) is positive, and f € C(R") is almost periodic. Then the function H satisfies (A1),
(A2) and (A4). '

Theorem 3.1. Assume that (A1)-(A3) hold. Let p € R™. There is a unique constant

A € R such that for each 6 > 0 there is a bounded and Lipschitz continuous viscosity
solution v of

/ F(n)H(z,p + Dv(z),n)dn < A+0 forz € R,
IF(U)H(%ﬁ + Du(z),n)dn > A —0 forz € R™

The problem of finding a constant A described in the above theorem is a type of the
so-called ergodic problem. We adapted here the formulation of Arisawal[2].

We can define the effective function Hy : R — R by setting Ho(p) = ), where )\ is
the constant given by Theorem 3.1.

Proposition 3.2. Hj is continuous on R™.
We refer to (8] for a proof of Theorem 3.1 and Proposition 3.2.

Theorem 3.3. Assume that (A1), (A2) and (A4) hold. Let p € R™ and vy > 0. There is
a unique constant Ay € R such that for each 8 > 0 there is a bounded viscosity solution
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v e C(R") ® B(I) of

[ H(p+ Dv(s,€,6) < M +0+= [ KEm bla,n) ~ vl Ol dy
‘ for (z,§) e R" x I,

H(z, 5+ Dav(@,€,8) = Ay =0+ k(€. bla,n) = ol € dn

| for (z,6) e R® x I.

<

Here we define A, : R — R by setting H,(p) = ), where ), is the constant given
by Theorem 3.3. \

Proposition 3.4. H, is continuous on R™.

Theorem 3.5. Assume that (A1)-(A3) hold. Let p € R". There is a unique function
A € B*®(I) such that for each 6 > 0 there is a bounded viscosity solutionv € C(R™)®B(I)
of '
{ H(z,p+ Dov(2,€),8) < M +h(E)  for(z,§) eR* x I,
H(p+ Dav(z,6),6) > MO-he)  for (5,6) e R 1,
for all (z,€) € R" x I, where h € B=(I) and h satisfies /1 |h(n)|dn < 6.
Here we define Ay : R™ X I — R by setting Hoo(p,£) = A(€), where ) is the function
given by Theorem 3.5.

Proposition 3.6. H,, € C(R") ® B(I). Moreover, for each R > 0 there is a modulus
wgr such that

| Boo(9,€) — Hoo(q,€)| < wallp — gl) for alip,q € B(O,R),€ € I.

4. Convergence theorems
We state uniqueness and existence results for (E)..

Theorem 4.1. Assume that (A1)-(A3) hold. Let € > 0. There is a unique bounded
viscosity solution u* € C(R") ® B(I) of (E)..

Consult sections 3 and 4 of [9] for the proof of Theorem 4.1. However, note that the
equations considered in [9] are slightly different from (E)..

Theorem 4.2. Assume that (A1)-(A3) hold and that lim._o6(e)/e = 0. Let ut be the
bounded viscosity solution of (E). and u be the (unique) bounded viscosity solution of
u(z) + Ho(Du(z)) = 0 forz € R™. (LE)o
Then |
limsup{}u(2,€) ~ u(z)| | = € R", ¢ € I} = 0,
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Theorem 4.3. Assume that (A1), (A2) and (A4) hold and that
é(e)

y_l'%—‘s———"")’e (0,00)

Let u® be the bounded viscosity solution of (E). and u be the bounded viscosity solution of
u(z) + Hy(Du(z)) =0 for z € R™. (LE),

Then
limsup{|u(s,€) - u(o)] | s € R, § € I} =0,

Theorem 4.4. Assume that (A1)-(A3) hold and that lim._, 6(¢)/e = co. Let u° be the
bounded viscosity solution of (E). and u be the bounded viscosity solution of
u(z) + /IT(n)I-_Iw(Du(m), ndn=0 forz € R™. (LE)wo

Then
limsup{|u(z,€) - u(z)| | 2 € R",€ € I} =0.

5. Functional first-order PDE with two parameters

In this section we consider the functional PDE with two parameters:

£ z € 1 £ £
(e, +H (L, 00(2,6,€) = [k [1@m - v @ &]dn  (Bs
for (z,€) e R" x I, ‘
where € and 6 are positive parameters.

We give a result for the existence and uniqueness of viscosity solution of (E)c s without
proving it. (See Theorem 4.1.)

Theorem 5.1. Assume that (A1)-(A3) hold. Lete, 6§ > 0. There is a unique bounded
viscosity solution u? € C(R™) ® B(I) of (E)es.

We consider the asymptotic behavior of the viscosity solution of (E). s, as 6 \, 0, and
then € \, 0 or € \{ 0, and then 6 \, 0. We state a main theorem of this section.

Theorem 5.2. Assume that (A1)-(A3) hold.

(i) If u is a bounded viscosity solution of (LE)o, then

— 1 : €, n
u(z) = ll\ru%‘ls%u (z,€) for (z,€) e R* x I.
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(ii) If u is a bounded viscosity solution of (LE)y, then

10.

11.

12.

13 : €6 n
u(z) = ll\r‘ré‘lsl{%u (z,&) for (z,§) e R® x I.
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