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1 Introduction 

Given a closed manifold M and a discrete group G of quantized canonical transformations 
<I>9, g E G, we are developing an index theory for the algebra of operators of the form 

D=区Dふ + K
g 

onび(M).Here, the Dg are zero order pseudodifferential operators on M, only finitely 
many different from zero, and K is in the ideal£(び(M))of compact operators. 

We present suitable notions of symbols and ellipticity and show the Fredholm property 
of elliptic elements. As a first step towards an index formula, we then focus on the case 

where G is a finite extension of Z叫dEN。.We introduce the localized algebraic index of 
the complete symbol of an elliptic operator. With the help of a calculus of semiclassical 
quantized canonical transformations, a version of Egorov's theorem and a theorem on 

trace asymptotics for semiclassical Fourier integral operators we show that the localized 
analytic index and the localized algebraic index coincide. As a corollary, we express the 
Fredholm index in terms of the algebraic index. 

Acknowledgment. The support through grants DFG SCHR 319/8-1 and RFBR 
19-01-00574 is gratefully acknowledged. 
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2 Quantized Canonical'Iransformations 

Let M be a closed manifold of dimension n. Its cotangent bundle T* M carries a natural 

symplectic structure, given in local coordinates by the form 

n 

W=区dx1A de. 
j=l 

We let r; M = T* M ¥ 0 be the cotangent bundle with the zero section removed. Recall 

that a symplectomorphism is a diffeomorphism 

C:T;M→冗M

preserving the symplectic form: w(C(.1:, l), C(y, TJ)) = w((x, l), (y, TJ)). 

Definition 2.1. A canonical transformation is a symplectomorphism which in addition is 

positively homogeneous of degree 1 in the fiber: C(y, TJ) = (x, l) implies that C(y, 入TJ)= 

(x, 格） for all入 >0. 

Example 2.1. (a) Let a : M → M be a diffeomorphism of M. Then a canonical 

transformation Ca is defined by 

Ca(Y, TJ) = (い(y),t(fJa(y))-lTJ). 

Symplectomorphisms of this type extend to the full cotangent bundle. 

(b) Let H = H(パ） be a smooth function on T0 M which is positively homogeneous 

of degree 1 in the fiber. We denote by t→ Ft, t E恥 theflow on T0 M generated by 

the Hamiltonian vector field VH induced by H (recall that VH is defined by the relation 
lyHW = dH). 

Then the map (y, TJ)→ Ft (y, TJ) defines a canonical transformation for every t E艮．

In this note, which is based on the articles [15] and [19], we will study quantized 

canonical transformations, i.e., bounded operators onび(M)associated with a canonical 

transformation in a sense we shall explain next. We start with the following simple fact: 

Lemma 2.1. The (twisted) graph of a canonical relation defines a Lagrangian submanifold 

ofT0M x T0M. More precisely: The set 

A= {((パ）， (y,-TJ)) E T;M x冗M:(パ） = C(y, TJ)} 

is a Lagrangian submanifold of Ta M x Ta M, endowed with the symplectic form w鰐

The word'twisted'refers to the sign change in the second variable. The next obser-

vation is that, locally, a Lagrangian submanifold A of Ta M x Ta M can be described by 
a phase function, see [9, Theorem 21.2.16] for a proof 

Theorem 2.2. Let ((x0, 品）， (y0,TJo)) EA. Then there exist neighborhoods U of x0, V of 
y0, an open cone r in配 (forsuitable d) and a function cp : U x V x r→ 股， homogeneousof 

degree 1 in 0 and non-degenerate in the sense that the differentials d(8,。1cp)),j = 1, ... ,d, 
are linearly independent, such that locally near ((x。ぺ⑳）， (y0,TJo)) the set A is given as 

{ ((x, 8xcp(x, y, 0)), (y, -aycp(x, y, 0))) : fJ, がp(x,y, 0) = O}. 
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In other words, the map a : crit'P→ graph C, given by 

a(x, y, 0) = ((x, Oxcp(x, y, 0)), (y, -aycp(x, y, 0))) 

is a diffeomorphism from the critical set 

cri如={(x, y, 0) : 8e(x, y, 0) = O}, 

onto a conical neighborhood of ((xo, fo), (Yo, T/o)). 

(2.1) 

A canonical transformation therefore locally is given by a non-degenerate phase func-

tion and conversely, a non-degenerate phase function determines (locally) a Lagrangian 

submanifold in T0 M x T0 M. 
A bounded linear operator <I> : L2(M)→ び(M)is a quantized canonical transforma— 

tion, if it is microlocally given by oscillatory integral kernels determined by an amplitude 
function a in a suitable Hormander class $罰（町 X 町 x配） and a phase functionゃ

associated with a canonical transformation C. In particular, the quantized canonical 
transformations form a subclass of the Fourier Integral Operators on M 

In order to be more precise, let ((x0,fo), (Yo,T/o)) E T0M x T0M with (x0,~0) = 
C(y0, 710) and let, with the notation of Theorem 2.2, r.p : U x V x r→ 賊 bea phase 
function locally describing the twisted graph of C. 

Definition 2.2. We call <I> a quantized canonical transformation, if, in a conic neighbor-

hood of ((x0, fo), (y0, 710)), the Schwartz kernel K<1> of <I> can be written 

K町x,y)=J e坪(x,y,o)b(x,y, 0) d0 + K (2.2) 

where b in S誓―d)/2vanishes near 0 = 0 and outside U x V x r and K is a C00 kernel 

function. 

The full Schwartz kernel is then obtained with the help of a partition of unity. The 
choice of the order (n -d)/2 makes the induced operator continuous on L2(M). 

Example 2.2. Let a : M → M be a diffeomorphism. Then the'shift operator'Ta E 

ダ (L2(M))given by T, 四 (x)= u(い (x))is a quantized canonical transformation associ-
ated with the canonical transformation Ca in Example 2.1. 

Indeed, for u Eダ（町） we have 

u(a―1(x)) = (27r)-n J ei(a-'位），0情(0)d0= (2吋―nJ ei(a-1(x)-y,0〉u(y)dyd0 

Hence, the Schwartz kernel has the (even globally defined) phase cp(x, y, 0) =〈a-1(x)-
y,0〉.Applying the local formula for the associated Lagrangian submanifold in Theorem 

2.2 yields the graph of C. が

{ ((x, tax a―1(x)0), (y, 0)): y = a-1(x)} 

= {((a(y), taa―1(a(y))0), (y, 0))} = {((a(y), toa(yt10), (y, 0))}. 
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Example 2.3. Consider the operator e此心 forsimplicity onび（町） • Here, 

eit心 (x)= (21r)-n J ei(x-y,0〉eitl01u(y)dyd0, u Eグ（町）．

The phase function is r.p(x, y, 0) =〈x-y,0〉+tl01,parametrizing (in the sense of Theorem 
2.2) the set 

{((x, 0)), (y, 0)): x -y + t0/l01 = O} = {((y -t0/l01, 0), (y, 0))}. 

This is the graph of the canonical transformation induced by the flow of the Hamiltonian 

vector field associated to the function H(0) = 101 on T* Min the sense of Example 2.l(b). 

3 Operator Algebras 

Operators 

Let G be a discrete group with unit element e and let叫 gE G, be quantized canonical 

transformations in .!L'(び(M))satisむing

4>e三Jand叱叫三 419hmodulo X(び(M)).

Write 09 for the canonical transformation associated with仇．
We shall consider operators of the form 

D=LDふ +K,
gEG 

(3.1) 

(3.2) 

where the D9 are classical pseudodifferential operators of order zero, only finitely many 
are different from zero, and K E況（び(M)).

The following lemma collects a few basic properties of these operators. 

Lemma 3.1. (a) The operators叱 areall Fredholm operators, and 丸—, furnishes a 

Fredholm inverse to 1>9. 

(b) The operators of the form (3.2) form an algebra. 

Proof. (a) is an immediate consequence of Condition (3.1). 

In order to establish (b), it suffices to consider a product (Dふ）(Dふ） for g,h E G. 
We recall Egorov's Theorem: Given a pseudodifferential operator A of order zero we have 

1> AiI> 1 g g -=A 

where A also is pseudodifferential of order zero and the principal symbols satisfy the 

relation 

四（パ） =IJ'A(Cい（パ））．

Hence modulo 況 (L2(M)),

Dふ Dh叫三 D謹gD⑲g-1 q> g伽三 DgD⑲gh 

is of the required form. 口
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Lemma 3.2. We may assume that the operators <I>9 are unitary modulo況（び(M)),i.e. 

we may assume that, in addition to the properties (3.1), 

叫）*<I>g =I=丸（的*modulo力（び(M)).

Proof. By Egorov's theorem <f>fl(丸）* is a nonnegative pseudodifferential operator. Some-
what informally we denote by叱＝（丸（叱）＊）ー1/2叱 theunitary part in the polar decom-

position of <f>9. A computation as in the proof of Lemma 3.1 shows the assertion. ロ

In the sequel we shall therefore assume that the化 forman almost unitary represen-

tation as in Lemma 3.2. 

Alternative: Finite-dimensional Lie groups 

Given a finite-dimensional Lie group G and a unitary representation 

p: G→ .2(ザ(M)), g f--t叱

of G by quantized canonical transformations <I>9, we may also consider (under certain 

technical assumptions) operators of the form 

D=JD謹9dμ(g) : L2(M)→ ザ(M),
G 

where g→ D9 is a smooth, compactly supported family of pseudodifferential operators 

of order zero and dμ(g) denotes an invariant measure on G. As operators of this form are 

rarely Fredholm, one then studies the index theory of operators of the form I + D. We 

shall not consider these operators in this note; details can be found in [19]. 

Special cases 

1. If the group is { e}, then D is just a classical pseudodifferential operator, and we obtain 

the well-known index problem of Atiyah and Singer. 

2. If D = cf>9 for a single quantized canonical transformation, then determining the 

index is known as the Atiyah-Weinstein index problem. It has been solved independently 

and by different methods by Epstein and Melrose [5] for the case of canonical transfor-

mations on T0 M and, more generally, for canonical transformations between possibly 
different manifolds, by Leichtnam, Nest and Tsygan [12]. 

3. If the cf>9 are associated with the special canonical transformations in Example 
2.l(a), then the丸 areshift operators as pointed out in Example 2.2. The corresponding 

algebra of operators has been studied by Antonevich and Lebedev e.g. in [1], Connes and 

Moscovici [4], Perrot [14] as well as by Savin, Schrohe and Sternin [16], [17], [20]. 
4. The index problem considered by Bar and Strohmaier in [2] is closely related as it 

reduces to a Toeplitz variant of the problems considered here. 
5. If G is a Lie group acting on M locally-freely, then the G-operators coincide with 

the transverse pseudodifferential operators with respect to the foliation on M defined by 

the orbits of the group action which were studied by Kordyukov in [11]. 

More examples can be found in [19]. 
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Symbols and ellipticity 

Recall that a C*-dynamical system is a triple (A,G,(3), consisting of a C*-algebra A, a 
locally compact group G and a strongly continuous homomorphism (3 : G→ AutA (i.e., 
g→ (39h is continuous for all h E A). 

A covariant representation of a dynamical system (A, G, (3) is a pair (1r, U), consisting 

of a representation 1r : A→ 2(H) and a unitary representation U : G→ °I/ (H) on the 
same Hilbert space such that 1r(f39(a)) = U91r(a)U;. 

A pair (1r, U) induces a representation 1r ><l U: Cc(G, A)→ 2(H) by 

(1r ><l U)(f) = J 1r(f(g))U9dμ(g). 
G 

We can define a norm on Cc(G, A) by letting 

IIJII = sup{ll(1r ><l U)JII : (1r, U) covariant representation}. 

The sup is finite, since ll(1r ><l U)JIIさ11!11旦

Definition 3.1. The (maximaりcrossedproduct A ><l /3 G is the closure of Cc(G, A) in this 
norm. 

In the case at hand, we have (possibly after the modification in Lemma 3.2) an almost 
unitary representation 41・G→ 2(び(M)),. g . 1.e., a umtary representat10n with values 
in the Calkin algebraダ（び(M))/f(び(M)). Since the latter is a C* -algebra, it is a 
subalgebra of .:L'(H) for some Hilbert space H. Denote by l: 2(び(M))jf(び(M))→
2 (H) the embedding and by q : 2 (び(M))→2(び(M))jf(び(M))the canonical 
projection. Note that we have a strongly continuous action (3 of G on the C*-algebra 

A =  C(S* M) via the canonical transformations: 

(3(a) = c;i.a 

This yields a covariant representation (1r, U) of the C*-dynamical system (C(S* M), G, (3) 
via 

1r(a) = L(q(A)) Eダ (H)

砧=l(丸） E~(H), 

where A is any operator in the closure可ofthe algebra of zero order pseudodifferential 

operators inダ（び(M))with symbol a. Indeed, this is a consequence of Egorov's theorem, 
since 

Ugl(a)u;;1 = l(C;;1*a). 

Definition 3.2. The symbol associated to an operator D as in (3.2) is the collection 

O"(D) = {O"(Dg)}gEG 

of the principal symbols of the pseudodifferential operators D9. We consider O"(D) as an 
element of the crossed product algebra C(S* M) ><l G. 

We call D elliptic, if O"(D) is invertible in C(S* M) ><l G. 
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Note that we fix here the representation of D with the particular choice of Dg's and 

叱's.
The considerations before Definition 3.2 show that the quantization map 

Cc(G, C(S* M))ぅ｛び(D砂}gEGML心(Dg))叫） Eダ (H)
gEG 

naturally extends to a map 

Q: C(S*M) ><1 G→ダ(H).

Theorem 3.3. If D is elliptic, then D : び(M)→び(M)is a Fredholm operator. 

Proof. Given an elliptic operator D, the inverse a(D)-1 exists in C(S* M) ><1 G. Then 
E = Q (a (D)-1) furnishes an element ofし⑫（び(M))/況（び(M)).Any representative in 
2(び(M))is a Fredholm inverse to D. ロ

4 Analytic and Algebraic Indices 

The next task is to determine the Fredholm index of elliptic elements. Our long term goal 
is to do this using algebraic index theory in the spirit of Fedosov [7] and Nest and Tsygan 
[13]. In a first step we outline here how to establish the equality of analytic and algebraic 
indices. In fact, we define localized versions of these indices and show their equality. To 
this end we specialize further and assume that G is a finite extension of zd. We denote 

by e the unit element and by〈g〉theconjugacy class of g E G. We furthermore suppose 
that the operators叱， gE G, are unitary and satisfy 

屯e= I, 叱屯,=仇h・

We shall study an elliptic operator 

D=LD沖g

gEG 

as in (3.2). We make the additional assumption that the inverse to the symbolび(D)is 
an element of the algebraic crossed product 

O"(D)―l = {rg}gEG E C00(S* M)心lgG. (4.1) 

The localized analytic index 

Definition 4.1. We introduce the algebraic crossed product i;r,-N(M) ><la1g G where i;r,-N, 

NE  N。,is the algebra of classical pseudodifferential operators of order -N and G acts 
on i;r,-N by conjugation: A→ <I>gA叱-1.

Lemma 4.1. For each N~l there exists an operator EE w0(M)心lgG such that 

I -DE,I -EDE w-N(M) ><1 G. (4.2) 
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Proof. Let E。＝区，R謹9,where theび(R9)= r9. Then S1 = I -E。Dand S2 =I-DE。
are elements of w-1(M) ><l G. We obtain the assertion by setting E = (I+ S1 + ... + 
sf-1)E。． ロ

The elements of w-N (M) are of trace class whenever N > dim M. This motivates the 
following definition. 

Definition 4.2. Given g E G and an element区瓜幽 Ew-N心lgG, N > dimM, we 
introduce the trace functional 

叫 (L麟）＝区r(K池）， (4.3) 
l lE〈g〉

with the operator trace tr onび(M)and define the analytic index of D localized at the 
conjugacy class〈g〉by

ind9 D = Tr9(1 -ED) -Tr9(1 -DE) = Tr9[D, E] E C, 

h w ere E is an inverse modulo W -N  
叫 lgG.

The following is Proposition 19 in [15]: 

Lemma 4.2. (a) The localized index ind9 D is independent of the choice of the almost-
inverse operator and therefore a well-defined invariant of the complete symbol of D. 

(b) The Fredholm index of D is given by 

indD = L ind9D, 
(g〉cG

where the sum is over all conjugacy classes in G; 

Semiclassical calculus 

In order to define the algebraic index of the operator D, we introduce a semiclassical 
calculus for operators of this type. In fact, given h > 0, E > 0 and N EN。wedefine from 

the operator <I>9 operators <I>g,h,e,N as follows. 
Given a point ((x0, fo), (y0, rJo)) in the graph of C9 in ri M x ri M suppose that the 

integral kernel K<1>9 of <I>9 is locally given, modulo smooth kernels, by an oscillatory integral 

as in (2.2). Let 

b(x,x',0) ~ Lも(x,x',0)as 101→ oo, 
J20 

with bi(x, x', 0) homogeneous of degree (n -d)/2 -j in 0 be the asymptotic expansion of 
b. 

We define the semiclassical Fourier integral operator叫，e,Nassociated with <I> as the 
operator with the integral kernel 

kい(x,y)=h―d/2-n/2J e炉(x,y,0)L闘 (x,y, 0)x(x, y, 0)d0, (4.4) 

0::'.j<N 
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where the smooth function xis chosen such that, with a defined in (2.1), 

1 in an open neighborhood ofい (TiMx {IT/I 2': s}), 

x(x, y, 0)~{ which IB conic at infioity, 

0 in a small neighborhood of the zero section. 

Here, IT/I is defined via a choice of a Riernannian metric on M, and a subset U of MxMx配

is called conic at infinity, if there exists an R > 0 such that (x, y, 入0)E U whenever 

101 2': R, 入2':1 and (x, y, 0) E U. 

We introduce the serniclassical Sobolev spaces: 

Definition 4.3. (a) The space Hf:(M) is the set of all distributions u on M such that 

llullH~= ll(h公+l)sf2ullL2 < oo, 

where△ stands for the nonnegative Laplacian on M. 

(b) An O(hN)-operator family is a family of operators of order -N whose norm in 

ダ (Hf:(M),H戸 (M))is of the order O(hN) ash→ 0 for every s. 

A serniclassical symbol a= a(x, (, h) of order min a chart in T* M with coordinates 

(x, () is a smooth family of symbols with parameter h > 0 and an asymptotic expansion 

a(x, (, h) ~ L五（パ）， ash→0, 
j;:,o 

where aj(x,~) E sm-i, i.e., for all N~0 

い (a(x,い， h)一こ五（パ））→ 0 in sm-N ash→ 0. 
OSjSN 

We call a。Esm the leading symbol of a. 

A semi classical symbol a defines a pseudo differential operator oph (a). In local coordi-
nates 

1 
oph(a)u(x) =戸戸ff叶(x-y)Ea(x,l, h)u(y)dyd( 

We then obtain the following result whose proof occupies a large part of [15]: 

Proposition 4.3. () (Correctness of the definition) The operator family <I> a h,c,N 叩 th
integral kernel (4.4) is independent of the choice of the representation (2.2) and 

the function x modulo sums of O(hN)-families and families, which become O(h00)-

families when composed to the right by oph(a) where a(y, 77) vanishes for 1771 < 2E. 

(b} (Composition formula) Given quantized canonical transformations <I>', <I>" associated 

with C'and C" and a semiclassical symbol a, we find that for <I>= <I>'<I>" 

叫，c:,NO恥 (a)=鯰 ，N呪，c:,NO恥 (a) mod O(h州，

prnvided that c: > 0 is chosen such that a vanishes on the subsets {l~I < c }, C"—1{1~1 < 
c} C Tri M. A similaT statement holds, if we take the pmduct with oph (a) on the left 

and choose c: apprnpTiately. 
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(c} (Semiclassical Egorov theorem) Given a semiclassical symbol a, which vanishes on 

the sets {l~I < s},c-1{1~1 < s} c T*M, th e composition 

侶，c,NO四(b)虹，；，N,

where <f>は，Nis associated with <f>―1, is a semiclassical pseudodiff erential operator 

with symbol equal to 

噸 h,c,NO凡(a)幻，N)= (1十こ心，a,(3巧Dff)(c-1)*a 

1::: ピN,O<lal+lf31:C:2k

modulo symbols inducing O(hN)-families. The coefficientsμk,a,f3(x, ~) are homage-
neous functions in~of degree lfJI -k, and are expressed in terms of the amplitudes 
and phase functions of <f> and <f>―1. They do not depend on the choice of the cut-off 

functions or s. 

The localized algebraic index 

We denote by A the algebra of all zero order semiclassical pseudodifferential operators 

whose symbols vanish in a neighborhood of the zero section. According to Proposition 

4.3(c) th e mappmg 

Ax G 3 (a,g)→ er(伽，e,NO恥 (a)虹，~,N)

(for sufficiently small c > 0) defines an action of G on A. We can therefore define the 

algebraic crossed product A心lgG. We denote the product in this algebra by *・ 
Let lB = (A心1gG)+ be the algebra A心lgG with a unit adjoined. Its elements are 

given as collections 

｛江因（パ）}lEG' 
j?_O 

(4.5) 

where a1,i(x, () EA for lヂewhile ae,o(x, () is allowed to be equal to a nonzero constant 
in a neighborhood of the zero section in T* M. Denote by恥 ClBl the ideal of elements 

(4.5) with coefficients of orderさーN.

We call a E lBl elliptic, if its leading (semiclassical) symbol a。ES゚ 心lgG is invertible 
modulo symbols of order -1. 

Lemma 4.4. Let a E lBl be an elliptic symbol of order zero. Then for each N 2 1 there 

exists a symbol rN E lBl such that 

1 -a* TN, 1 -TN* a E匝V・ (4.6) 

Proof. Since a is elliptic, there exists r0 E S0(T; M)~G such that 1 -a0 * r。isof order 

-1. Then, modulo JIBN+l, 

a*r。三 (a。+L五） * ro = ao * r。+L h切 *r。三 1-w,
ピjSN lSjSN 

where w = (1 -ao * ro) -Lピj'.".Nh切*ro E lIB1. Hence 

a* r0 * (1 + w + w * w +… +w州=(1-w) * (1 + w + w * w +…+wN) = 1-wN+l, 

with wN+l E匝v+imand r = r0 * (1 + w + w * w +… +w州furnishesthe desired right 
inverse. A computation shows that also r * a -1 E匝V+l・ ロ
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A crucial fact now is the following theorem, shown in [15]. 

Theorem 4.5. Let a EA  be of order< -2dimM and let h E G be associated with the 

canonical transformation C. Suppose that C is of finite order, i.e. Ck = I for some k, 

and denote by T* M0 the fixed point set of C. Then the operator oph(a)叫，c,Nis of trace 

class for every h and we have an asymptotic expansion 

tr(oph(a)叫，,:,N)"'h―dimT*M町2L°'訳
j:2:0 

(4.7) 

in integer powers of h (the fixed point sets T* M0 are even-dimensional by /6!). The 

co嘩 cientsai in (4. 7) do not depend on the choices in the construction of叱，e,NUp to 
j=N-l. 

Definition 4.4. Let a= {a1}iEG EA況 lgG be of order < -2 dim M. Define the trace 

functional Tg,N localized at g E G by 

T9,N(a) = L tr(Oph(a凡，h,e,N)E (h-dimT*M9f2C[h])/hN-dimM, (4.S) 

に〈9〉

where (h-dimT*M"f2C[h])/hN-dimM stands for the space of Laurent polynomials 

区 c炉
-dim T* MY /2<::j <N -dim M 

and c in the definition of the屯，h,e,Nis chosen such that the first N components in the 
expansion of a1 E A in powers of h are equal to zero on the set C1{lll < 2c} C T* M. 

It turns out that the definition is independent of the choices involved in the definition 
of the 屯，h,e,N• Moreover, Tg,N is a trace. 

Definition 4.5. Given an elliptic symbol a E JR, its algebraic index localized at the con-

jugacy class〈g〉CG is defined as 

函，，Na = T9(l -rN * a) -T9(l -a* rり＝叫a,r刈 (4.9)
E (h-dimT*MY/2C[hl) /hN-dimM, 

where r is an almost-inverse symbol for a such that (4.6) holds. 

The algebraic index (4.9) is independent of the choice of the almost-inverse symbol rN 
and the algebraic indices for different N are compatible: 

ind9,Na三 ind9,N+1a mod h N-dimM 

They define the algebraic index as N→ 00 

函，aEh―dimT* M9 /2(['.[[hl]. 

The main result of [15] is: 

(4.10) 
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Theorem 4.6. Given a finite order element g E G, the algebraic index localized at g has 
no negative and no positive powers of h, and its constant term is equal to the analytic 
index: 

0 ―→  P 

ind9 oph(a) = (ind9a)lh=O・ (4.11) 

What if g is not of finite order? The following proposition gives a partial answer: 

Proposition 4. 7. Suppose that there exists a group homomorphism x : G→ Z such that 
x(go)ヂ0.Given an elliptic operator D and g。EG, we then have 

ind9。D=O.

This condition is satisfied for all elements of infinite order, provided the group is a 
finite extension of Z叫dEN。.Hence we obtain: 

Corollary 4.8. Suppose that G is a finite extension ofか. Given an elliptic symbol 
a E llll, the Fredholm index of the corresponding operator A is equal to the sum of localized 
algebraic indices over the torsion conjugacy classes in G: 

----

ind A=  L (ind9a)lh=O・ (4.12) 

〈g〉cTorG 

Here Tor G is the torsion subgroup of G. 
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