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1 Introduction 

This paper highlights some of the contemporary developments [22] of the formalism in-

traduced, independently, by Volterra [27], Maggi [18], Poincare [21], Boltzmann [7], and 

Hamel [12]. We refer to this formalism as Hamel's formalism as Hamel gives the most 

comprehensive exposition in the finite-dimensional setting in his habilitation thesis [12]. 
Hamel's formalism is an evolution of Euler's approach to the dynamics of rigid bod-

ies [9] and fluids [10, 11], in which the angular and spatial velocities are used instead of 

material velocity. The angular velocity of a rigid body and spatial velocity of a fluid are 

examples of nonmaterial velocity, which contains the information about system's velocity, 
but is not the rate of change of system's configuration with respect to time. For a finite 

degree of freedom system, nonmaterial velocity is usually introduced as a collection of 

velocity components relative to a set of vector fields that span system's velocity space. 
One of the reasons for using nonmaterial velocity is that the Euler-Lagrange equations 

are not always effective for analyzing the dynamics of a mechanical system of interest. 

For example, it is difficult to study a rotating rigid body if the Euler-Lagrange equations, 

either intrinsically or in generalized coordinates, are used to represent the dynamics. On 

the other hand, the use of the angular velocity components relative to a body frame as 

initiated by Euler [9] results in a much simpler representation of dynamics. In a similar 
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fashion, Euler [10, 11] uses convective velocity to represent the dynamics of ideal incom-

pressible fluid. Euler's approach was further developed by Lagrange [17] for reasonably 

general Lagrangians on the rotation group and by Poincare [21] for arbitrary Lie groups 

(see [19] for details and history). 

The nonmaterial velocity used in [17] and [21] is associated with a group action. 
Hamel's formalism utilizes nonmaterial velocity that is unrelated to a group action on 

the configuration space. Hamel's equations include both the Euler-Lagrange and Euler-

Poincare equations as special cases. 

As clearly seen from his paper, Hamel was particularly motivated by nonholonomic 
mechanics. Hamel's formalism features the simplicity of an analytic representation of 

constraints and the intrinsic absence of Lagrange multipliers in equations of motion and is 
exceptionally effective for studying finite-dimensional constrained and multibody systems 

and understanding their dynamics, both analytically and numerically; see e.g. [20], [13], 

[14], [15], [6], [3], [29] and f re erences therem. 
The paper reviews the recent development of Hamel's formalism for infinite-dimensional 

mechanical systems motivated by the importance of nonmaterial velocity in continuum 

mechanics, as demonstrated by Arnold [2] and Ebin and Marsden [8], and by recent de-

velopment of infinite-dimensional nonholonomic mechanics (see e.g. [4] and [24, 25, 26]). 
Being a survey, this paper leaves many technical details out. Interested readers are 

referred to [22] for these details, applications to systems with symmetry, etc. We concen-
trate on the formulation of the Hamilton and Lagrange-d'Alembert variational principles 

for Hamel's equations, which is carried out by constructing, in a coordinate-independent 

manner, the following key components of the formalism: (i) a bracket operation on the 

system's (infinite-dimensional) velocity space and (ii) the formula for variation of nonma-

terial velocity. The illustrate the utility of the formalism, we study constrained planar 

motion of an inextensible string. 

2 Infinite-Dimensional Mechanics 

In this section we introduce a coordinate-free approach to Hamel's formalism. Thus, 

instead of frames, we use linear velocity substitutions that, in general, are not induced by 

a (local) configuration coordinatc changc. For functional-analytic tcchnicalitics, intcrcstcd 

readers are referred to [22]. It is safe to assume that all infinite-dimensional configuration 
spaces are Banach manifolds; however, the results remain correct for much more general 

settings, such as convenient spaces. 

2 .1 Lagrangian Mechanics 

Let M be an infinite-dimensional smooth manifold modeled on a vector space W and let 

TM  be its kinematic tangent bundle with the projectionび： TM→ M. Consider the 

initial inclusion map i : Q→ M and the pullback vector bundle P = i*T M. For 

convenience, we will think of Q as a subset of M. Note that Q is usually not a submanifold 

of M, see [16] for details. 

A Lagrangian is a smooth function L : P→ 股.The dynamics for this Lagrangian 
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is defined by Hamilton's principle: The curve 1: [a, b]→ Q is a trajectory if 

b 

8 J Ldt = 0 

along r-

2.2 Hamel's Formalism and Hamilton's Principle 

Let U be an open subset of M containing q E Q and let 

UxWぅ(q,()→(q,Wq()E心(U)c T M  (2.1) 

be a fiber-preserving diffeomorphism that is linear in the second input. Hence, for each 

q EU, both叱： W → TqM and w-1 : TqM→ W are invertible bounded linear operators 

smoothly dependent on q in an open subset戸 (U)C Q. As in general the Lagrangian 
fails to be defined on TM, it is necessary to consider various forms of equations of motion, 

such as weak and strong forms. 

For each l E W, the operator叱： W → TqM defined in (2.1) outputs the vector 
叱lE TqM for each q E U. Thus, each l E W generates the vector field 

咬 (q):=叱ど

on U. 

Given two vectors~'TJ E W, define an antisymmetric bilinear operation on W by 

［ふ叫：= w;l[咬，動](q), (2.2) 

where the bracket on the right-hand side is the Jacobi-Lie bracket on the manifold M. 

Next, for arbitrary t, rJ, (E W, we have 

Wg([[t, rJ]q, (]q + [[rJ, 〈]q,t]q + [[(, t]q, rJ]q) 
= [[Wt, Wry], W(](q) + [[Wry, Wく],Wt](q) + [[W(, Wt], Wry](q) = 0, 

implying, in view of invertibility of叱， theJacobi identity for the bracket [~, ~]q- There-

fore, for each q E U, the space W with the introduced bracket operation is a Lie algebra, 
denoted hereafter Wq. 

The dual bracket [ふ鳴 isa W*-valued bilinear operation on W x W* defined by 

〈［も噂叫：＝〈a,[ふ叫〉W' ~''T) E W, a E W*. 

Let q and bq denote the velocity and the virtual displacement at q E Q. From now on, 
the inverse images of q and bq are written as~''T) E W, that is, q = ¥[I q~and bq = ¥[Iげ・

Interpreting~as an independent variable that replaces q (locally) defines the La-
grangian as a smooth function of (q, ~) on U x W: 

l(q,() :=L(q, 叱(). (2.3) 

The equations of motion written when (q, ~) are selected as (local) coordinates on the 
velocity phase space are called Hamel's equations. 
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Given a smooth curve q(t) E Q, t E [a, bl, its variation is a smooth one-parameter 
family of curves 

[a, b] x [-c, s]う (t,s)→ (3(t,s) E Q such that (3(t,0) = q(t). 

An infinitesimal variation Oq is defined by 

f) 
oq(t, s) := -(3(t, s). 

8s 

When this field is evaluated along the curve q(t), we write oq(t), i.e., 

a 
初(t):= <5q(t, 0) = - f3(t, s). 

8s s=O 

Thus, a variation of a smooth curve q(t) E Q defines a curve rJ(t) E W: 

初(t)=叱(t)rJ(t). 

(2.4) 

Theorem 2.1 (Hamilton's Principe for Hamel's Equations). Let L : P→ 罠 bea La-
gmngian and l be its representation in local coordinates (q, ~). Then, the following state-
ments are equivalent: 

(i) The curve q(t), where aさtさb,is a critical point of the action functional 

dt 
が幻仇L

 

ー
ー
ハ

b
 (2.5) 

on the space of curves in Q connecting qa to qb on the interval [a, bl, where we 
choose variations of the curve q(t) that satisfy Dq(a) = Dq(b) = 0. 

(ii) The curve q(t) satisfies the weak form of the Euler-Lagrange equations 

［〈誓―羞い〉dt= 0 (2.6) 

If, additionally, iぷQis dense in TqM for every q E Q, the curve q(t) satisfies the 
strong form of the Euler-Lagrange equations, 

d bL bL 

dt蒻 bq
= 0. 

(iii) The curve (q(t), ~(t)) is a critical point of the functional 

lb l(q, ~) dt 
a 

with respect to variations 6~, induced by the variations 

初＝叫'T/,

and given by 

従＝り+[~, TJ]q-

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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(iv) The curve (q(t), ~(t)) satisfies the weak form of the Hamel equations 

［〈呪喜+[~, 塁L―羞塁，n〉dt= 0, 17 E町 (TqQ)

coupled with the equations q = ¥JJ心 IfiぷQis dense in TqM for eve可 qE Q, the 
cu四 e(q(t), ~(t)) satisfies the strong form of the Hamel equations 
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(2.11) 

(2.12) 

coupled with the equation q = ¥[I q~. 

Proof. The equivalence of (i) and (ii) is well-documented in the literature. 
To prove the equivalence of (i) and (iii), start with evaluating the quantities 8q and 

d(8q) / dt. Recall that 

a 
初(t)= - (3(t, s) = Wq(t) T/(t), where T/(t) E W. 

8s s=O 

Using the definition (2.4) of the field 8q, 

a 
叫 t)=一恥(t,s)= 8q(t)[叱(tJl= (wq(tJ T1(t)) [叱(t)]- (2.13) 

8s s=O 

Hereafter, v[J] denotes the derivative of the function f along the vector filed v; in partic-
ular, in (2.13) an operator-valued function is differentiated. 

Similarly, 

羞丸(t)= q(t)[叱(t)]= (叱(t)~(t)) [wq(tJL 
and therefore 

蒻＝（叫T/)[叱]~+叱淀，羞8q = (wば）[wq]T/ + Wqり．

From涌＝羞8q,one obtains 

wq(屹ーり） = (w~)[wT/](q)- (wT1)[i1疋](q)= [w~, WT/](q) = Wq [ふT/]q,

which implies formula (2.10). 
To prove the equivalence of (iii) and the weak form of Hamel's equations (2.11), we 

use the above formula and compute the variation of the action (2.8): 

81bl(q,~)dt= 1b (〈い〉＋〈い〉） dt 

= 1b (〈喜い〉＋〈喜，i/+ [~ 加〉） dt 

＝［〈町虞+[~, 塁L―羞い〉dt

IfiぷQis dense in TqM for every q E Q, then the subspaceい (iぷ(t)Q)is dense in q(t) 
W for each t and the variatio叫 derivativevanishes if and only if the strong form of the 

Hamel equations (2.12) is satisfied. ロ
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Example 2.1. The configuration manifold for an inextensible string moving in the plane 
is the space of smooth embeddings Emb([O, 1]配） • We will view配 asa complex plane. 

Given z E Emb([O, 1], CC), the inextensibility condition reads lz』=1, 0 ::; s ::; 1. For 
simplicity, we assume no resistance to bending. Therefore, the Lagrangian reads 

L(z) = J½(国—入(I研— 1)) ds, 
゜where入： [O, 1]→ 良 isthe Lagrange multiplier (tension) associated with the inextensi-

bility constraint. The boundary conditions for the Lagrange multiplier are a part of the 
requirement 6L = 0. For a free motion of a string, these conditions read 

入ls=O=入ls=l= 0. (2.14) 

Let 

ゑ＝叱(:=Zs(, (2.15) 

so the velocity components to be used to construct Hamel's equations are represented by 
a complex-valued function [ = [(s, t). Geometrically, the real and imaginary parts of [ 
are the tangent and normal velocity components of the points of the string. 

The Lagrangian becomes 

l= 11½(忍z衣—入（忍各ー 1)) ds, 
゜

in which the density should be understood as a function of (zか各ふ[)and the Lagrange 
multiplier入．

Next, formula (2.2) for the string becomes 

d 
[wt, WT/](z) = - ((z + TZs[)sT/ -(z + TZsT/)sl) = Zs(lsT/ -T/sl) = Wz [[, T/lz. 

dT r=O 

That is, 

[~, 叫＝らT/-~T/s· (2.16) 

Instead of establishing the formulae for the dual bracket and dual operator w*, it is 
more efficient in this example to directly work with the variational principle. We have: 

bl bl _ bl bl 
-bz 十一涎＋ー紅+~硲
bz 従位従

(2.17) 

Figure 1: An inextensible planar string. 
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and since l is real-valued, the two last terms are obtained from the first two by conjugation. 
Thus, it is sufficient to evaluate the last two terms in (2.17): 

bl bl bl bl d bl 
ー屁＋喜＝ー栢＋ー（切—狐）一ー一―栢従屁 b~ 峠

T/ 

= 11½((入Zs -Zぶ） S紅＋戸（切—⑯)―羞（忍Zs~)fj) ds —忍z⑳1: ニ；

= 11½(zsz嘉+Z8Zぷ＋入凸＋入Zsふー羞(zば））りds-½ 忍Z⑳ 1::~, 
which, after imposing the constraint Z8Z8 = 1, implies 

t=品＋入s+ iス（入—送） (2.18) 

as well as the tension conditions (2.14). Here, xis the (signed) curvature of the curve 
[O, 1]ぅs←z(s) E C. The right-hand side of (2.18) gives an explicit representation of 
the terms on the right-hand side of Hamel's equations (2.12) for the string. 

3 Mechanics with Constraints 

Here we discuss infinite-dimensional dynamics with velocity constraints. 

3.1 The Lagrange-d'Alembert Principle 

We confine our attention to constraints that are linear and homogeneous in the velocity. 
Accordingly, we consider a configuration space Q and a distribution D on Q that describes 
these constraints. Recall that a distribution D is a collection of linear subspaces of the 
tangent spaces of Q; we denote these spaces by Dq C TqQ, one for each q E Q. 

A curve q(t) E Q is said to satisfy the constraints if q(t) E'Dq(t) for all t. This 
distribution will, in general, be nonintegrable; i.e., the dynamics will be, in general, 
nonholonomic. 

The condition for a curve to satisfy the constraints is, by itself, insufficient for the 
development of constrained mechanics. One needs a mechanism that relates the trajec-
tories of the unconstrained and constrained systems. For the ideal constraints in the 

finite-dimensional setting, this is accomplished by a projection. Thus, constraints define 
a submanifold of the velocity phase space and a projection onto this submanifold. 

For a projection to be meaningful in the infinite-dimensional case, we require that D 
be a locally splitting subbundle of TQ. That is, for each q there exists a chart (U, h) 
of Q such that Th(心(U)n D) = h(U) x W互wherethe closed subspace wv of the 

model space W is splitting, or complemented, i.e., there is a closed subspace wu 
of W such that wvのwu= W and the projection ?Tv uniquely determined by setting 

(Ker?T互Im1Tり=(Wu, wv) is continuous. 
To simplify the exposition, in the rest of the section we assume that Lagrangians are 

defined on TQ and state the results for strong equations of motion. Similar statements 
for weak equations are straightforward to obtain. The following Lagrange-d'Alembert 
principle is known to be equivalent to the dynamics of systems with ideal constraints: 
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Definition 3.1. The Lagrange-d'Alembert equations of motion for the system are 

those determined by 
b 

6 J L(q, り）dt = 0, 

where we choose variations bq(t) of the curve q(t) that satisfy bq(a) = bq(b) = 0 and 

bq(t) E Dq(t) for each t where a :=; t :=; b. 

This principle is supplemented by the condition that the curve q(t) itself satisfies the 

constraints. Note that we take the variation before imposing the constraints; that is, we 
do not impose the constraints on the family of curves defining the variation. This is well 

known to be important to obtain the correct mechanical equations (see [5] for a discussion 

and references). 
The Lagrange---d'Alembert principle is equivalent to the equations 

Here, 

d <5L <5L 

dt涌 6q
Ev;, q E Vq. 

巧={a E r;Q I〈a,v〉=0,v E Vq}-

3.2 The Constrained Hamel Equations 

(3.1) 

Given a nonholonomic system, that is, a Lagrangian L : TQ→股 andconstraint distri-

bution D, select the operators叱： W → TqQ on U C Q such that there exist closed 
subspaces wv, wu c W, W = wv① wu, and叱＝炉① 炉 where炉： WV→ Dq 
and吋： WU→ Uq and their inverses are bounded linear operators smoothly dependent 
on q E U.1 

Each q E TQ is then uniquely decomposed as 

q =丸e+叱ざ， where 叱lvE Vq, (3.2) 

i.e., 叱(vis the component of q along'Dq. Similarly, each a E W* uniquely decomposes 

as 

a= av +au, 

where av and au denote the components of a along the d叫 sofW'Dand W見respectively:

知＝（凸*oalwゎ and au = (id -(1rv「)。alwu,

where (1rv) * is the dual of戸.Using (3.2), the constraints read 

~=e 。r 祀= 0, 

which implies 

T/ =炉 or が=0. 

The Lagrange-d'Alembert principle then implies the following theorem: 

1 In general, UヂQ,as numerous finite-dimensio叫 examplesdemonstrate. 

(3.3) 

(3.4) 
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Theorem 3.1. The dynamics of a nonholonomic system is represented by the strong 

form of constrained Hamel equations 

（羞喜―[~互喜I―四喜）V = 0, ざ=0, り＝鱈・ (3.5) 

Example 3.1. Consider an inextensible string moving in the plane subject to the vanish-
ing normal velocity constraint. See Figure 1. One may think of a motion of a sharp string 

on t~e horizontal ice. Using the notations introduced in Example 2.1, the constraint reads 
(= (, i.e., (E股.Equations (3.5) for the constrained string thus become 

l = lls十入s,
ゑ=z芯，(=(.

along with the inextensibility condition. 

(3.6) 

(3.7) 

It is geometrically evident (or can be confirmed with a simple calculation) that the 
inextensibility condition in the presence of constraint~= [ implies~. = 0. That is, all 
points of the string have the same speed, and (3.6) becomes 

~=入S ・

As入scan be evaluated at any s in (3.8), we conclude that 

t= 0, 

(3.8) 

i.e., ~= const throughout the motion. This is in agreement with the motion of the 
Chaplygin sleigh for which the velocity of the contact point relative to the body frame is 
constant. Unlike the sleigh, the constrained string motion is not completely determined 
by its initial state. Indeed, any solution of (3. 7) is of the form 

z =¢(s +~t), 

where¢is an arbitrary twice-differentiable complex-valued function. The initial condi-

tions define¢on the segment [O, 1]. Outside this segment, the functionゆisunknown, 
unless, for example, the motion of the front end of the string has been prescribed. The 
motion of the constrained string is therefore purely kinematic: The string follows its front 
end, which moves at a constant speed. 

This behavior is similar to that of~he degenerate Chaplygin sleigh specified by the 
1 ― Lagrangian l =ぅくく andconstraint (= (, where (= e→0之.For the degenerate sleigh, the 

dynamics reads 

(= 0, ゑ=e叱，

where 0(t) is an arbitrary function. Thus, the motions are not identified by the initial 

conditions. 

Example 3.2. Consider the Chaplygin sleigh with an inextensible string attached. As-
sume that the string is constrained as in Example 3.1, i.e., the normal velocity of each 
point of the string is zero. This system is SE(2)-invariant. The string position z is mea-
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sured relative to the sleigh, so that w and (are the angular and linear velocity components 

of the sleigh. 

The absolute velocity of the string, f, is computed to be 

f = z;1(ゑ+(+iwz),

This effectively defines the operator W. The Lagrangian, which is system's kinetic energy, 

reads 

Th 

1 

l =½(J研＋疇） +½J (翁—入(zs各ー 1)) ds. 
゜e constraint are given by〈=(and~=~-

Hamel's equations for this system become 

匂=0, 

mく＝入。，

t=年＋入s,

(3.9) 

(3.10) 

(3.11) 

where (and~are real-valued. These equations should be amended with the coupling 

conditions 

zls=O = 0, Zsls=O = 1, ~ls=O = (. (3.12) 

These simply state that the string is attached to the blade at the contact point of the 

blade and ice and the velocity of the attached string end equals the velocity of the blade. 

Arguing as in Example 3.1, one concludes that (is independent of s. Thus, equation 

(3.11) becomes 

t=入s・

Equation (3.9) implies w = const. 
The tension入isobtained by solving the equation 

入SB=0, 

and since入ls=l= 0, we conclude that 

入=(s -1)も (3.13) 

Therefore, 入ls=O=ーも which,in combination with (3.10) and (3.12), yields (= const. 
The velocity coupling condition then implies that the blade moves at a constant speed f 
Using (3.13), we conclude that入=0. 

Figure 2: The Chaplygin sleigh coupled to a constrained string. 
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Summarizing, the Chaplygin sleigh with the constrained string attached generically 

undergoes uniform circular motion. Nongeneric trajectories are straight lines. The string 

(possibly after some period of time) follows the trajectory of the contact point of the 

sleigh. 

It is interesting to point out that in this example the shape dynamics (string's motion) 

is modulated by the group dynamics (skate's motion). This is the opposite of typical 

reconstruction in finite-dimensional constrained systems discussed in [5]. 

We note also that the qualitative dynamics of this system uniform circular or straight 

line motion is consistent with the behavior of integrable Hamiltonian systems. One may 
raise the question of whether it is integrable in a more precise sense— with infinitely-many 
conserved quantities. We intend to investigate that in a forthcoming publication. 

4 Concluding Remarks 

Many interesting features of the formalism, such as symmetry reduction, have not been 

included in this short survey. It should be noted, however, that performing symmetry 

reduction may not always be a good idea. For instance, while the string motion in 

Examples 2.1 and 3.2 is SE(2)-invariant, not carrying out symmetry reduction results 

in simpler analysis. Interested readers are referred to our paper [22] for more details 

and for important functional-analytic technicalities. See also [23], [28] and [1] for the 
the extension of the formalism to field-theoretic setting with applications to analysis and 

numerical simulations. 
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