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1 Introduction 

This article aims to provide a preview of integrable Hamiltonian forms of the averaged 
Hebbian learning equation (AHLE), the exponential-type geodesics (e-geodesics) of the 
finite discrete distributions, and their quantum analogues. The quantum analogues are 
two kinds of explicitly solvable matrix averaged Hebbian learning equations (MAHLEs) 
on the quantum statistical manifold (QSM), and their Hamiltonian forms. The entire 
contents including details on these equations and their Hamiltonian forms will be found 
in future papers [1, 2, 3] in preparation, which are motived directly by the papers [4] by 
Nakamura and [5, 6] by the author: In the paper [5], the extension of the AHLE referred 
to as the MAHLE-II in this article is constructed on the QSM, which admits the gradient 
equation form understood to be a natural quantum statistical analogue of Nakamura's 

gradient form of the AHLE [4]. Further, in [6], all the trajectories of the MAHLE-II are 
shown to be understood as the e-geodesics of the QSM. 
The paper [1] deals with the Hamiltonian analysis of the AHLE on the cotangent 
bundle of the simplex. Although the Hamiltonian analysis on the cotangent bundle of 
the simplex looks merely an alternative version of Nakamura's Hamiltonian analysis on 

the tangent bundle of the simplex, the cotangent bundle version by the author [1] has 
a big advantage not only in connecting the AHLE with the e-geodesics of the finite dis-
crete distributions but also in organizing quantum analogue of that connection together 

with discussing solvability and integrability of the systems dealt with. The Hamiltonian 
form of the MAHLE-I is found and studied in [2], which is shown to be integrable and 

explicitly solvable by quadrature. The Hamiltonian form of another MAHLE referred to 
as the MAHLE-II is found and studied in [3], which is shown to be explicitly solvable by 
quadrature. Further, in [3], any of the e-geodesics of the QSM is shown to be a trajectory 
of the Hamiltonian form of the MAHLE-II associated with one of the coefficient matrices. 

The AHLE is the first order differential equation 

~i = 2cjらー2(t心）ら (j = 1, 2, …，n) with I: 保 =0
k=l k=l 

(1) 

on the n -l dimensional simplex 

Sn-1 = {~E Rn 芦 ~k = l, ら>O(j=l,2,・・・,n)} (2) 
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without boundary, where CjS are constants. The overdot as attached toらonthe lhs of (1) 
indicates the derivation in the time-variable, say t, throughout this article. Since Eq.(l) 
is invariant under the homogeneous translation c・>-+ c・+ a =…  1 (j 1,2, ,n, a ER), of the 
cjs, the requirement, Lk=l保=0, in (1) is posed well. Note that the cjs in Nakamura [4] 
are set positive though. 
To discuss quantum statistical analogues of both the AHLE and its Hamiltonian form, 
it is convenient to prepare the notation of three subspaces of the space, denoted by M (n), 
of n x n complex matrices: 

凡： the space of n x n Hermitean matrices 

H~: th f e space o n x n pos1t1ve definite Hermitean matrices (3) 

H炉： th f e space o n x n traceless Herm1tean matrices 

The notation for the three spaces listed in (3) and M(n) will be frequently used in 
this section and section 4 especially. Under the notation above, the quantum statistical 
manifold (QSM) is defined to be 

Qn = {p E H: I Tr (p) = 1}, (4) 

where Tr stands for the trace of matrices in this article. The MAHLEs are then described 
as the first order differential equations, 

MAHLE-I p = (prt + fp) -Tr (prt + fp) p with r E (H; ・Hn)tro, (5) 

MAHLE-II p=(pC+Cp)-2Tr(Cp)p with CEH;;0 (6) 

where rand Care constant matrices and (H;::•Hn)tro denotes the set of traceless matrices 
in the form AB with A EH;:: and BE Hn. In the case that rand C in the MAHLE-I and 
MAHLE-II are diagonal respectively, the MAHLEs can be restricted to the submanifold, 

Dn = {p E Qn Ip: diagonal}, (7) 

of Qn, and both of the MAHLEs thus restricted on Dn are identical with the AHLE. 
Hence, it makes sense that we refer the ODEs (5) and (6) on Qn as the matrix averaged 
Hebbian learning equations (MAHLEs). 
The contents of this article is outlined in what follows. In section 2, the symplectic 
reduction is organized to characterize the cotangent bundle T*Sn-I of Sn-I as the reduced 
phase space of the cotangent bundle T*凡 ofthe positive 2n-ant, Bn, of Rn. In section 3, 
a Hamiltonian system on T*Sn-I is constructed as the reduced Hamiltonian system of 
another Hamiltonian system on T* Bn. The reduced system thus constructed is shown to 
be explicitly solvable and completely integrable. Furthermore, this reduced Hamiltonian 
system is a Hamiltonian form of both the family of the AHLEs and the exponential-
type geodesics on the space of the finite discrete distributions. Section 4 is devoted to 
quantum analogues of sections 2 and 3. After a quantum analogue of the symplectic 
reduction made in section 2, a pair of Hamiltonian systems on the cotangent bundle 
T*仏 ofthe quantum statistical manifold Qn is presented: One is an explicitly solvable 
and integrable Hamiltonian system that is shown to be a Hamiltonian form of the family 
of the MAHLE-Is. Another is an explicitly solvable parametric Hamiltonian system as a 
Hamiltonian form of the MAHLE-II: The family of those parametric Hamiltonian systems 

realizes all the exponential-type geodesics on Qn. Section 5 is for conclusion. 
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2 Symplectic reduction of T* Bn to T*Sn-l 

We start with considering the cotangent bundle 

T* Sn-1 = { (~, 7]) E Sn-1 X Rn I~T 7] = 0} (8) 

of Sn-l as the phase space for the Hamiltonian form of the AHLE, where T indicates the 
transpose operation. Following Nakamura [4], we endow the Riemannian metric 

n l 
ds2 = L -dtkRdtk 

k~l fa 

with Sn-1-The T心 isidentified with the tangent bundle 

n 

TSn-1 = {い）E Sn-1 X Rn苔四=0} = Sn-1 X Rn-l 
of Sn-l through the diffeomorphism 

(9) 

(10) 

(3 : (ふT/)E T*Sn-1→ (~, u) E TSn-1 with Uj =~jT/j (j = 1, 2, …，n). (11) 

We endow the canonical symplectic form 

n n 

dび=L dT/k I¥ d~k with <7 = L T/kd(k (12) 
k=l k=l 

with T*Sn-l• We note that the symplectic form on TSn-l adopted in Nakamura [4] is 
understood to be the pull-back, (/3―1) * (dCJ), of dCJ by (3―1. 
In connection with information geometry [7], we have the following lemma concerning 
the Riemannian manifold (Sn-1, d呼） (see also subsection 3.4): 

Lemma 2.1 ([1]) The Riemannian manifold (Sn-l, d茫） for the AHLE is the statistical 
manifold of the finite discrete distributions with n elementary events. 

Owing to this lemma, we can identify a Hamiltonian form of the family of AHLEs with 
that of the e-geodesics in section 3. 

When we wish to make Hamiltonian analysis on T*Sn-l, we have to handle with the 
constraints, e'T/ = 0 and UTrJ +~Tv = 0, governing the tangent bundle, 

T(T*Sn-1) = {(~,rJ,u,v) E Sn-1 X Rn X Rn X Rn 1e'T/ = 0, UT'T] +ev = O}, (13) 

of T*Sn-l・In order to avoid such constraints in our analysis, we introduce the cotangent 
bundle 

T*凡={(x,y) E Rn x Rnに>0 (j = 1, 2, …, n)} 

of the positive 2凡 ant

Bn = {x E Rn I Xj > 0 (j = 1, 2, …，n)} 

(14) 

(15) 
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as the'extended phase space'of (T*Sn-1,dr,), where du is the canonical symplectic form 

n n 

品=L dyk I¥凸 with u = L Ykdxk・ (16) 
k=l k=l 

The account for referring (T* Bn, du) to as the'extended phase space'is that (T* Bn, du) 

is reduced symplectically to the phase space (T*Sn-l, da). As easily seen from (14), we 
have no constraint on T(T*凡） other than the positivity of Xj (j = l, 2, …，n). 
The base manifold Bn of T* Bn is made into the principal R-bundle over Sn-l with the 

R-action 

叫：XE Bn→ e8X E凡 (sER) 

and the projection 

μ:XE Bn→ （文Xk)-lXE Sn-1・
k~l 

With Bn, we endow the Riem皿 nianmetric 

犀＝（幻）―1I: __!__dxhRdxh, 
k~l h~l Xh 

(17) 

(18) 

(19) 

so that the projectionμ: Bn→ Sn-l becomes a Riemannian submersion. Under this 

geometric circumstance, the reduction made in this section can be understood to afford 

a new example of Kummer's theorem [8] on the symplectic reduction. 

Remark We note here that Nakamura endowed the metric, (Lk=l xk) x d茫 withBn in 
his Hamiltonian analysis on the tangent bundle rsn-1 [4]. 

We proceed to the symplectic reduction of (T* Bn, du) associated with the symplecti-
cally lifted R-action 

応： (x,y) E T*Bn→ (e8X, e―8Y) E T*Bn 

of叫.The moment map associated with応takesthe form 

J : (X, y) E T* Bn >--+ YT X E R. 

(20) 

(21) 

On the inverse image J-1(0) of J, the R-action応 isfree and proper. Hence due to the 

reduction theorem by Marsden and Weinstein [9], the quotient set J-1(0)/R is allowed to 

have a differentiable structure as the reduced phase space. Indeed, by the map 

V: (x,y) E J-1(0) i-+ ((り）―lX, (位）y)ET*Sn-l, (22) 

the quotient manifold J-1(0)/R is realized as T*Sn-l• Then it follows from Kummer's 
theorem [8] that the reduced symplectic form is identical with the canonical symplectic 
form dCJ on T*Sn-l• Namely, da and dCJ satisfy the relation 

¢品=v*da, (23) 

where l : J-1(0)→ T*凡 isthe inclusion map. In a summary, we have the following 
theorem. 
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Theorem 2.2 ([1]) The extended phase 3pace (T瓦，dcr)is reduced to the phase space 
(T*Sn-l, di7) by the symplectic R-action叫 definedby (20). 

Remark We do not have to go to an explicit expr_ession of du into details since we can 
reduce any Hamiltonian equations invariant under叫 onT*凡 toHamiltonian equations 
on T*Sn-l by using not du but the projection v. 

3 Hamiltonian form of both the family of the AHLEs 

and the e-geodesics 

We organize a Hamiltonian system on (T*Sn-I, dCJ) as a Hamiltonian form of both the 
family of the AHLEs and thee-geodesics on Sn-I, that is given along with the symplec-
tic reduction from another integrable Hamiltonian system on the extended phase space 

(T*Bn, 曲）．

3.1 Completely integrable Hamiltoman system (T*恥 do-,K) 

Examining closely the Hamiltonian f~rm of the AHLE found by Nakamura [4], we consider 
the Hamiltonian system (T* Bn, diJ, K) with the Hamiltonian 

n 

K(x,y) = L(XkYk)2 ((x,y) E T*Bn), 
k~l 

whose Hamiltonian equation takes the form 

切=2叶Yj, 約＝ー2x鳩 (j= 1,2,・・・,n). 

Since Eq.(25) admits {x必}j=l,2, …，n as first integrals, it is easily integrated to be 

巧(t)= exp (2txj(O)yj(O))以0),

叫t)=exp(-2巳(O)yi(O))Yi(O) 
(j = 1, 2, ・・・, n). 

(24) 

(25) 

(26) 

Theorem 3.1 ([1]) The Hamiltonian system (T況，diJ,K) is explicitly solvable by 
quadmtuTe with the solution (26) and completely integmble in the sense that it admits 

n functionally independent and commutative ji,Tst integmls { x心}j=l,2, …，n・ 

Remark The defining equation (24) of the Hamiltonian k can be read as the relation 
｛ among the first integrals x即 }j=l,2,…，n and the Hamiltonian K. 

3.2 Th e reduced Hamiltoman system (T*Sn-I, da, K) 

Since K (x, y) is invariant under the }!,-action叫 wecan apply the symplectic reduction 
organized in section 2 to (T*凡，dCJ,K), too. According to Marsden and Weinstein [9], 
the reduced Hamiltonian K(ふT/)is defined to satisfy K o l = K o v. By calculation with 
（ふrt)=v(x,y) and xTy = ert = 0, we obtain the reduced Hamiltonian in the form, 

n 

K(ふTJ)= L(釦汀 （（い，TJ)E T* Sn-1). (27) 
k~l 
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Lemma 3.2 ([1]) The Hamiltonian system (T*Bn,du,K) is reduced by the R-action応
to the Hamiltonian system (T*Sn-1, dび，K).

In turn, we derive the H皿 iltonianequation for the reduced Hamiltoni色nsystem 
(T*Sn-l, da, K) together with its solution. Since any trajectories of (T*凡，du,K) subject 
to (x(O), y(O)) E J-1(0) are placed on J-1(0), we can apply the projection v and its 

differential広： T(J-1(0))→ T(T*Sn-i) to the solution (26) with (x(O),y(O)) E J-1(0) 
and the differential equation (25) restricted on J-1(0), respectively. By calculation, we 

have 

し=2(砂）もー2(言い）(k)ら

初＝ー2(詞）T/j + 2 (乳い）＆）佑
(j = 1,2,・・・,n) (28) 

as the Hamiltonian equation for the reduced Hamiltonian system (T*Sn-l, dび，K)together 
with its solution 

with 

(j (t) = S(t t1 exp (2t(j(O)TJj (0)) (j(O) 

T/j(t) = S(t) exp(-2tら(O)TJj(O))T/j(O) 

n 

S(t) = Lexp(2t~k(O)叫0))~k(O).
k~l 

(j = 1, 2, ・・・, n) (29) 

(30) 

The solution (29) is understood to be obtained by quadrature since the projection process, 
(~(t),'T/(t)) = v(x(t),y(t)) with (x(O),y(O)) E J-1(0), is of algebraic manipulation and 
since the solution process for (26) is of quadrature. Further, as seen easily from (28), the 

reduced Hamiltonian system admits {砂L=1,2,... ,n as first integrals. Since { {況}j=l,2, .. ,n 
are the reduction of { x必 h=1,2,... n, n -1 integrals, {訊}j=l,2, …，n-l of them are function-
ally independent and commutative with relation Lk口i~遁＝一＜訓n・Hence,we have the 
following theorem. 

Theorem 3.3 ([1]) The Hamiltonian system (T*Sn-l, dCJ, K) is explicitly solvable by 
quadrature with the solution {29) and completely integrable in the sense it admits n -1 

functionally independent and commutative first integrals {も叫j=l,2,…, n-1 subject to 
切 n= -Lk:i~k'T/k· 

Remark The defining equation (27) of the Hamiltonian K and L髯釦/k=―品枷 can
be read as the relation among the first integrals {炉ゅ}j=l,2,…，n and the Hamiltonian K. 

3.3 The family of the ALHEs and (T*Sn-1,dO',K) 

Fixing the values of the first integralsも(t)TJj(t)to be Cj =も(O)rJj(O)(j = 1, 2, •··, n) in 
Eqs. (29) and (30), we see thatら(t)(j=l,2,…，n) of (29) satisfy the AHLE given by 
(1). On referring to the family of differential equations in the form (1) associated with 
all the sets of coefficients { { Cj L=1,2, …, n} with Lにck= 0 as the family of AHLEs, we 
understand that the solution (29) of the Hamiltonian system (T*Sn-l, du, K) exhausts all 
the trajectories of the family of AHLEs and vice versa. Therefore, we have the following 
theorem. 
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Theorem 3.4 ([1]) The Hamiltonian system (T*Sn-I, dび，K)is a Hamiltonian form of 
the family of the AHLEs. 

3.4 (T*Sn-l, da, K) and thee-geodesics 

We start with considering Sn-I as the statistical manifold of finite discrete distributions. 
Let E = {1, 2, ・・・, n} be the set of n elementary events, and let p(C, ~) be the probability of 
a finite discrete distribution defined by 

p(£; t) = te (£E£, t E Sn-1)- (31) 

Then the family of all the finite discrete distributions { {p(パ）},Ed~ESn-1 is naturally 
identified with Sn-l・The intrinsic coordinates of Sn-l defined by 

( 
ら=log...J.... (j=l,2, …, n -1) 
品

(32) 

are called the exponential coordinates, which are used very often for information geom-

etry of Sn-l (see Amari and Nagaoka [7] as the standard literature). The exponential 
coordinates (are, however, not so convenient for global analysis of mechanics on Sn-l like 
the objective of this article. Using (32), we can draw explicit expressions of the Fisher 
metric and the exponential-type geodesics in terms of our t from those known in terms 
of the conventional exponential coordinatesく(see[7]) as follows. 
By a straightforward calculation, we have the identity 

記=t昌い如＝団（竺十 1 )心 18)d(R, 
k~l tk h,f~l (h 1 —江―~11 〈m

(33) 

on the Fisher metric between the expressions in our coordinates~and in the conven-
tional exponential coordinates ((see [7]), where 8hm denotes the Kronecker's delta. The 
exponential-type geodesics are described in the straight-line form 

ら(t)= 2c丑＋ら(0) (tER,j=l,2, …, n-1) (34) 

with arbitrary constants Cj ER (j = 1, 2, …，n -l) in terms of the exponential coordinates 
(according to [7]. Through the relation (32), Eq. (34) is shown, by calculatiion, to be 
equivalent to Eq. (29) under the first integral constraint 

n-l 
ら(t)叫t)三ら(0)叫0)=り (j = 1, 2, …, n) with Cn =—区 Ck. (35) 

k=l 

In a summary, we have the following theorem. 

Theorem 3.5 ([1]) The Hamiltonian system (T*Sn-I, da, K) is the Hamiltonian form 
of the exponential-type geodesics on the statistical manifold Sn-I of the finite discrete 
distributions. 

Combining Theorem 3.5 with Theorem 3.3, we have the following theorem. 

Theorem 3.6 ([1]) The Hamiltonian system (T*Sn-I, da, K) for the exponential-type 
geodesics on Sn-I is explicitly solvable by quadrature with the solution (29) and com-
pletely integrable in the sense it admits n -l functionally independent and commutative 

first integralsらり (j= l, 2, …，n-l)with如訓n=-L髯如]k・
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3.5 Conclusion of section 3 

On closing this section, we show the following theorem as the net result of this section by 
putting Theorems 3.3, 3.4, and 3.6 together. 

Theorem 3.7 ([1]) The explicitly solvable and completely integrable Hamiltonian system 
(T*Sn-l, du, K) is the Hamiltonian form of both the family of AHLEs and the exponential-
type geodesics of the finite discrete distributions. 

As the closing remark of section 3, we would like to mention of a distinction between 

Hamiltonian mechanics in this article and the previous studies on Hamiltonian mechanics 
on statistical manifolds (Fujiwara and Amari [10], Boumuki and Noda [11]). The phase 
spaces taken in [10] and [11] are even-dimensional classical statistical manifolds while the 
cotangent bundle of the statistical manifold of the finite discrete distributions are taken as 
the phase space in this article. Since we are interested in the exponential-type geodesics 
here, our cotangent-bundle setting looks more natural than the phase-space setting made 
in [10, 11] since geodesics on a given manifold are known very well to be governed by a 
second order differential equation on that manifold. 

4 Quantum statistical analogues 

In this section, we briefl芯givea pair of quantum analogues of the reduction of Hamilto-
nian system (T*凡，da,K) to (T*Sn-I, du, K) in order to find Hamiltonian forms of the 
MAHLE-I, the MAHLE-II, and the exponential—type geodesics on the quantum statistical 
manifold Q n・ 

4.1 Symplectic reduction of T* Hrt to T*Qn 

The organization of this subsection is almost on a parallel with that of section 2. Let 
us start with considering the space of n x n positive definite Hermitean matrices H; and 

its submanifold Qn defined by (4) as quantum statistical counterparts of En and Sn-I, 
respectively. We endow the Riemannian metrics 

（三，己')p= Tr(三ら（己')) (p E Qn, B, B'E肥゚ ご乃Qn) (36) 

with Qn, and 

1 
((X, X'))r = Tr (X Lr(X')) (r E H;, X, X'E Hn~TpH;) (37) 

Tr(r) 

withHふwhereら（三） is the symmetric logarithmic derivative (SLD) of 己€⑰仏 defined
by 

1 
三=2(叫（三）＋ら(3)p) (p E 仏，三€匹°竺闊） (38) 

(see [12]), and Lr(X) the extended one of XE TrH;t by 

X=~(心(X) + Lr(X)r) (r EH;, XE HnごT加）． (39) 
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The metric (・, •} defined by (36) is the quantum SLD-Fisher metric (cf. Hayashi [12]), 
so that the Riemannian manifold (Q n, (•, •}) is called the quantum statistical manifold 
(QSM). We have the following lemma on a relation between (Sn-I, d呼） and (Qn,(・,・}). 

Lemma 4.1 ([2, 3]) Let the submanifold'Dn of Qn be defined by (7). Then the Rie-
mannian submanifold ('Dn, (・, ・}Iわn)of the quantum statistical manifold (Qn,(・,・}) is the 
isometric embedding of the Riemannian manifold (Sn-I, ds2)。1finite discrete distribu-
tions. 

In view of Lemma 4.1, a differential equation on Qn deserves for being referred to as a 
matrix averaged Hebbian learning equation (MAHLE) if it can be restricted on'Dn and if 
the restriction becomes the AHLE: A pair of MAHLEs to be dealt with in what follows 

are introduced already by (5) and (6). 
As a quantum statistical counterpart of the principal R-bundleμ: Bn→ Sn-I, H,; is 
made into the principal R-bundle over仏 withthe R-action 

W8:rEH;H-がrEH; (sER) (40) 

and the projection 

匹：r EH;>--+ (Tr(r)t1r E Qn- (41) 

Due to this R-bundle structure of H;; over Qn, the symplectic reduction applied to T* H;; 
in what follows can be understood to afford another new example of Kummer's theorem 
[8] in addition to the reduction made in section 2. 
We consider the cotangent bundles, T叩 ofH;; and T*仏 ofQn, which take the 
forms 

T*H; = H; X Hn (42) 

and 

T*Qn = { (p, II) E Qn X Hn I Tr (pIT) = O}, (43) 

respectively. Note that we have the diffeomorphism 

応： (p, II) E T*Qn→ (p, 犀(II))E TQn ec Qn x H;:0 (44) 

as the quantum statistical analogue of (11), where LP1 denotes the inverse of the SLD Lp 
(see (38)). 
With T* H,t, the canonical symplectic form dA is endowed, which is defined to be 

叫，P)((X, Y), (X', Y')) = Th (Y X') -Th (XY') 
((r,P) ET*Hふ(X,Y), (X', Y') E T(r,P)(T冗） = Hn X Hn) 

(45) 

with 

入(r,P)(X,Y) = Tr(PX). ((r, P) E T*H;, (X, Y) E T(r,P)(T*H;)). (46) 
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We proceed to the symplectic reduction of the phase space (T*H;,dA.) by the sym-
plectic R-action 

飢： (r, P) E T*H; 1--+ (e8r, e―8P)ET*H; (sER). 

On a parallel with the reduction made in section 2, we find the moment map 

JQ : (r, P) E T* H; 1--+ Tr (r P) E R 

(47) 

(48) 

associated with the R-action叱.The quotient set, ぢ(0)/R,of the level set摺(0)by 
the R-action飢isthe reduced phase space: By the smooth map, 

匹： (r,P)EJ, り1(0)日・(p,II)= ((Tr(r))―1r, Tr (r)P) E T*QnごJり1(0)/R, (49) 

J-1(0)/R is realized as T*Qn. 
Following the same procedure as used in section 2, we obtain the reduced symplectic 
form on T*Qn: According to Kummer's theorem [8], the reduced symplectic form turns 
out to be the canonical one, which is denoted by dA henceforce. The dA is of course 
determined by the formula i * dA = v* dA similar to Eq. (23), where匂：髯(0)→T*仏 is

Q Q 
the inclusion. On the same account as given in the ending remark of section 2, we will 
not need an explicit expression of dA in what follows. At conclusion of this subsection, 

we have the following theorem. 

Theorem 4.2 ([2]) The phase space (T* H,t, dA.) is reduced to the phase space (T*Qn, dA) 
by the symplectic R-action飢 definedby (41). 

4.2 Th e exponential-type geodesics on Qn 

We move to the exponential-type (e-) geodesics on Qn in turn. To discuss thee-geodesics 
in this article and other papers [1, 2, 3, 6] by the author, the SLD defined by (38) is taken 
as the logarithmic derivative. Then, according to Hayashi [12], the e-geodesic denoted by 
Pe(t) on Qn with the initial condition 

Pe(O) = Po, Pe(O) = 3。 (50) 

is given explicitly in the form 

叫） = {Tr (直％（己o)Po e½Lpo(己o))} ― 1 e½LPO ぽo)Poeい。国）， (51)

where Lp0(三。） is the SLD of己。 atp0. The differential of Pe (t) in t satisfies the relation 

叫）＝；仏(t)ら(3。)＋ら(3。)Pe(t)} -Tr (Lpo(B。)Pe(t)) Pe(t) (52) 

(see [12]). Equation (52) has the following alternative form 

iJe(t) =pe(t)~(ら（三o)- Tr (L: 国））In)十｝（伝(3。)_ Tr(L: にo))In) Pe(t) 

-Tr ((Lp0(三o)-Tr (L: にo))In) Pe(t)) Pe(t) 
(53) 
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with 

Tr (ら（三o)_ Tr (L~(三。））In)= 0, (54) 

where In denotes the identity matrix of degree n. Equation (53) is in a very convenient 
form for connecting thee-geodesics with the MAHLE-II. 

4.3 The MAHLE-I and its Hamiltonian form 

As a natural quantum statistical analogue 9f血heHamiltonian system (『Bn,da,K),we 
consider the Hamiltonian system (T* H,t, dA, F1) with the Hamiltonian 

内(r,P) = Tr (r Pr P) ((r, P) ET* H:), (55) 

whose Hamiltonian equation is calculated to be 

r = 2rPr, P = -2PrP. (56) 

Since rP (= (Pr)りisallowed as a matrix-valued first integral of (56), we easily solve (56) 
to be 

r(t) = exp (t (r(O)P(O))) r(O) exp (t (r(O)P(O))) ¥ 

P(t) = (exp(-tr(O)P(O)))t P(O) exp(-tr(O)P(O)) 
(57) 

by quadrature. The matrix-valued first integral r P consists of n久ahalf of the dimension of 
T* Hi, functionally independent real-valued first integrals which form a non-com:11utative 
Lie algebra. We note here that the defining equation (55) of the Hamiltonian Fr can be 
read as the relation among the entries of r P and the Hamiltonian凡.Then, we have the 
following theorem. 

Theorem 4.3 ([2]) The Hamiltonian system (T* Hi, dふ幻 isexplicitly solvable by 
quadrature and integrable in the sense that it admits the matrix-valued first integral r P 
consisting of n2 functionally independent first integrals forming a non-commutative Lie 
algebra. 

Since the Hamiltonian方ofthe Hamiltonian system (T* Hi, d入内） is invariant under 
the symplectic R-action泣8_given by (47), we can apply the symplectic r~duction by the 
R-action飢to(T* Hi, dA, Fi), too. According to the reduction formula Fro匂=FrovQ, 
for乃weobtain the function 

凡(p,II)= Tr (pIIpII) ((p, II) E T*Qn C Qn X Hn) (58) 

as the Hamiltonian of the reduced Hamiltonian system of (T* H;, dふ尻）• The Hamilto-
nian equation of the reduced system (T*Q砂 A,凡）is available by applying the differential 
map of the projection !IQ : 樹(0)→T*Qn to the Hamiltonian equation (56) restricted on 
J-1(0), which turns out take the form 

p = 2pIIp -2Tr (pIIp) p, 

II = -2IIpII + 2Tr (pIIp) II. 
(59) 
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The solution of (59) is available directly by applying the projection VQ to the solution 

(57) with (r(O),P(O)) Eぢ(0),which is written in the form 

with 

P1(t) = (S1(t))―1 exp (t p(O)II(O)) p(O) exp (t p(O)II(O)) t, 
II1(t) = S1(t) exp(-tp(O)II(O))tII(O) exp(-tp(O)II(O)) 

的(t)=叫exp(t p(O)II(O)) p(O) exp (t p(O)II(O)) t). 

(60) 

(61) 

Taking the defining constraint Tr (pII) = 0 into account, we see that pII is a matrix-
valued first integral consisting of n2 -1, a half of dim T*Qn, functionally independent 
real-valued first integrals forming a non-commutative Lie algebra. Hence, we can say 
that (T*Qn, dA, 凡） is integrable. Further, as seen above, the process to reach (60) is the 
combination of quadrature to have (57) and the algebraic manipulations in the projection 
process by VQ, so that the solution (60) is understood to be obtained by quadrature. 
Hence, we have the following theorem. 

Theorem 4.4 ([2]) The Hamiltonian system (T*Qn, dA, 凡） is explicitly solvable by 
quadrature and integrable in the sense that it admits the matrix-valued first integral pIT 
consisting of n2 -1 functionally independent first integrals forming a non-commutative Lie 
algebra. 

We give an account for referring to (T*Qn, dA, Fr) as a Hamiltonian form of the family 
of MAHLE-I with all the coefficient matrices {「 E(H,.t-凡）tro}. On denoting p(O)II(O) by 
r, we see that r E (H,.t・Hn)tro and that the solution (60) with Pr(O)ITr(O) = r E (H,.t・Hn)tro 
satisfies the first order differential equation (5). Conversely, for any trajectory denoted 

by Pr(t) of the MAHLE-I (5) with Pr(O) = p0, we find the trajectory (pr(t),ITr(t)) 
of the Hamiltonian system (T*Qn, dA, い） with (pr(O), IIr(O)) = (Po, p計r),whose Pr(t) 
coincides with the trajectory Pr(t) of the MAHLE-I. In a summary, we have the following 
theorem. 

Theorem 4.5 ([2]) The Hamiltonian system (T*Qn, dA, Fi) is a Hamiltonian form of 
the family of the MAHLE-Is. 

At the end of this subsection, we make a mention of a relation between the trajectories 
of the family of the MAHLE-Is and thee-geodesics on Qn: We can only find the relation 
which is shown in Theorem 3.7 under the isometry mentioned in Lemma 4.1. 

4.4 The MAHLE-II and its Hamiltonian form 

At the end of the previous subsection, we see that the Hamiltonian form, (T*Qn, dA」う）
of the MAHLE-I is not a Hamiltonian form of the e-geodesics on Qn-On recalling that 
the coefficient matrix r in (5) originates in the matrix-valued first integral r P of the 
Hamiltonian system (T叩，dふ凡）， westart with considering another Hamiltonian 

吋(r,P) = Tr(CrP + PrC), (62) 
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on (T叩，dA)which includes already a fixed traceless Hermitean matrix C having a role 
of coefficient_ m::,trix appearing in the MAHLE-II given by (6). The Hamiltonian equation 
of (T* H,t, dA, F[j) is calculated to be in a separation of variables form, 

r = rC + Cr, P =-PC-GP, (63) 

which is easily solved to be 

r(t) = exp(tC) r(O) exp(tC), P(t) = exp(-tC) P(O) exp(-tC) (64) 

by quadrature. 
Like in the case of MAHLE-I, we apply the symplectic reduction by the R-action飢
(see (47)) to (T*H;,dA鱈）， sincethe Hamiltonian耽 isinvariant under the symplectic 
action叱， too.Indeed, through the reduction formula巧oしQ= Ffj o VQ, we obtain the 
reduced Hamiltonian 

Ffj (p, II)= Tr (C pII + IIpC) ((p, II) E T*Qn C Qn X Hn)- (65) 

By applying the differential map of the projection匹：埒(0)→T*Qn (see (49)) to the 
Hamiltonian equation (63) restricted on髯(0),the Hamiltonian equation of the reduced 
system (T*Qn, dA, Ffj) is written in the form 

p=pC+Cp-2Tr(Cp)p, Il=-IIC-CII+2Tr(Cp)II (CEH~r0). (66) 

As seen immediately, the first equation in (66) for pis the very MAHLE-II given by (6). 
The solution of (66) is obtained directly from (64) with (r(O), P(O)) E J-1(0) through the 

Q 
projection v: 摺(0)→T*Qn-which turns out, by calculation, to take the form 

with 

Pn(t) = (Sn(t))―1 exp (tC) p(O) exp (tC), 

叫 (t)=拗(t)exp (-tC) II(O) exp (-tC) 

SII(t) =Tr(exp(tC)p(O) exp(tc)). 

(67) 

(68) 

From the expression, (67) and (68), of the solution of (T*Qn, dA, Fn), any first integrals 
seems to be hardly found, so that we say the explicit solvability of (T*Qn, dA, Ffj) only, 
here. In a summary, we have the following. 

Theorem 4.6 ([3]) The Hamiltonian system (T*Qn, dA, Ffj) is a Hamiltonian form of 
the MAHLE-II, which is explicitly solvable to be (67) with (68) by quadrature. 

We proceed to study a relation between the MAHLE-II and the exponential-type 

geodesics of Qn. A comparison between the governing equation (53) with (54) for the 
e-geodesic with the initial condition (50) and the MAHLE-II given by (6) yields the 
following theorem as an extension of [6]. 
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Theorem 4.7 ([3]) All the exponential-type geodesics Pe(t) with the initial condition (50) 
are the trnjecto虚 sPII(t) of the MAHLE-II with the coefficient matrix 

C=~{ら（三o)-Tr(L: にo))In} (69) 

Conversely, all the trajectories Prr(t) of the MAHLE-II with arbitrary CE H『0are the 
exponential-type geodesics Pe (t) with the initial condition 

Pe(O) = PII(O), 広(0)= PII(O)C + CpII(O)-2Tr (C匹 (0))PII(O). (70) 

In view of Theorem 4.7, we reach to the concluding theorem of this subsection. 

Theorem 4.8 ([3]) The family of Hamiltonian systems { (T*Qn, dA, Ffi)}cEH;;o realizes 
all the exponential-type geodesics on Qn. Conversely, any exponential-type geodesic on Qn 

is a trajectory of a Hamiltonian system belonging to { (T*Qn, dA, Ffj) }cEH炉・

5 Con cl us ion 

In this article, we have shown very briefly three kinds of Hamiltonian systems: 

(1) The explicitly solvable and completely integrable Hamiltonian system (T*Sn-l, du, K) 
is found as a Hamiltonian form of both the family of the AHL Es and the exponential-
type geodesics on the finite discrete distributions. 

(2) As one of the pair of quantum analogues of the Hamiltonian form (T*Sn-l, dび，K),
the explicitly solvable and integrable Hamiltonian system (T*Qn, dA」う） is found 
as a Hamiltonian form of the family of the MAHLE-Is. 

(3) As another of the pair of quantum analogues of the Hamiltonian form (T* Sn-l, du, K), 
the family of explicitly solvable Hamiltonian systems { (T*Qn, dA, F斤）}CEH,'[0 is 
found. This family is understood to be a family of Hamiltonian forms of the 
exponential-type geodesics on Qn in the sense that the family of Hamiltonian sys-
tems realizes all the e-geodesics and vice versa. 

All through the process of finding and studying these three kinds of systems, the sym-

plectic reduction technique within the framework of cotangent bundles works very well. 
Many of details and proofs are consigned in three future papers [1, 2, 3]. 
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