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Abstract. In general, a Hamiltonian system is nonintegrabe if chaotic dynamics 
occurs. However, chaotic dynamics may not occur even if it is nonintegrable. Here 
we are interested in the following question: Does chaotic dynamics occur in a Hamil-
tonian system when it is nonintegrable? We review some previous results related 
to this question for two-degree-of-freedom H皿 iltoniansystems with saddle-centers 
and homoclinic orbits. We also state some extensions of the results to a higher-order 
approximation, heteroclinic orbits and more-or infinite-degree-of-freedom systems. 
In particular, the extended theory shows that Arnold diffusion type motions can 
occur in three-or more-degree-of-freedom systems. 
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1 Introduction 

1.1 Background 

Consider n-degree-of-freedom Hamiltonian systems of the form 

x = lnDH(x), x E茫，

where H: 股n→艮 issmooth or analytic, ln is the 2n x 2n symplectic matrix 

Jn = (贔n i点）

(1.1) 

and idn is then x n identity matrix. Letting x = (q,p) E町 X町， werewrite (1.1) as 

り=DpH(p, q), jJ = -D直 (p,q), (1.2) 

which has a well-known form in mechanics when q and p are position and momentum, 
respectively. We begin with the definition of integrability for (1.1) (see, e.g., Section 3.2 
of [24]). 

Definition 1.1. The Hamiltonian system (1.1) is (Liouville) integrable if there exist n 

scalar functions Fi(x) (= H(x)), 凡(x),...'凡(x)such that 

(i) DF1(x), ... , DFn(x) are linearly independent a.e.; 
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(ii) [F;, Fi](x) := DF;(x)JnDFi(x)三 0.

It is a well-known fact the dynamics of integrable Hamiltonian systems are very simple 

as stated in the following theorem (see, e.g., Chapter 10 of [3] for the details). 

Theorem 1.1 (Liouville-Arnold). Suppose that Eq. (1.1) is integrable and let F(x) = 
(Fi(x), ... , Fn(x)). If the level set p-1(c) is connected and compact for some c E JR叫
then the dynamics of (1.1) on p-1(c) are diffeomo'TJ)hic to a linear flow on 11'匹

Let <Pt denote the flow of (1.1) and let ,(t) be a periodic orbit in (1.1). The stable and 
unstable manifolds of ,(t), W刊,(t))and町 (,(t)),are defined as 

町 (,(t))= {x E町 Ilim inf似(x)-,(s)I = O}, 
t→ +oosE恥

町 (,(t))= {x E恥nI lim inf 1¢ 心）一 ,(s)I= O}. 
t→ -oo sER 

Assume that町 (,(t))and wu(,(t)) are of dimension n. In this situation we state the 
well-known Smale-Birkhoff homoclinic theorem (see, e.g., Section 5.3 or [12] or Section 26 
of [33]) as follows. 

Theorem 1.2. If町 (,(t))and町 (,(t))intersect transversely on the (2n-l)-dimensional 
level set H-1(c) for some c E賊， thenchaotic dynamics occurs: There exists a chaotic 

invariant set A containing 

(i) countably many periodic orbits; 

(ii) uncountably many bounded nonperiodic orbits; 

(iii) a dense orbit. 

From Theorem 1.1 we see that if chaotic dynamics occurs, then Eq. (1.1) is nonin-

tegrabe. However, chaotic dynamics may not occur even if it is nonintegrable. So we 
are interested in the following question: Does chaotic dynamics occur when Eq. (1.1) is 
nonintegrable? 

As an example, we consider a two-degree-of-freedom system 

れ =X2, む＝四， 坊＝一x1-cx~ — dxi, ね＝一四ー 2cx1x2, (1.3) 

. 1s a generalization with the Hamiltonian H =½(xi+x炉 +x~+xD+cx五 +½dxi- Eq. (1 3) . 
of the Henon-Heiles system [13], which was discussed in many references (see [30] for an 
earlier list of such references). A numerically computed chaotic orbit in (1.3) for c = 1, 
d = -l and H = l/6, which was actually treated by Henon and Heiles [13], is displayed 
in Fig. 1. It is a well-know fact that Eq. (1.3) is integrable for c/ d = 0, か1(see, 

e.g., [9]). The noninetgrability of (1.3) was shown for c/d # 0, ¼, ふ1by Ito [17, 18] earlier 
and for c/d =½by Morales-Ruiz et al. [27] more than two decades later. The Ziglin 
theory [45] was used in the former work while the Morales-Ramis (or Morales-Ramis-
Simo) theory [24, 26, 27], which was regarded as an extension of the Ziglin theory based 
on differential Galois theory [5, 29], was used in the latter. See Section 3.2 for an outline 
of the Morales-Ramis theory. On the other hand, the occurrence of chaos in (1.3) was 
proved by Grotta Ragazzo [10] for c/ d cJ O 1 1 3 1 

, 6'2'4' . He used asymptotic properties of 
special solutions to stationary Schrodinger equations and a theorem of Lerman [19] for 
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Figure 1: Numerically computed chaotic orbit in (1.3) for c = 1, d = -1 and H = 1/6: 
(a) Its projection onto the three-dimensional (x1, x2, x3)-space; (b) its projection onto the 
two-dimensional (xぃx3)-spaceon the three-dimensional Poincare section at砂 =0.

two-degree-of-freedom Hamiltonian systems with saddle-centers and homoclinic orbits. A 

different method based on a fundamental idea of Melnikov's method [12, 33], was also 
developed for such systems and used to prove the same result in [34]. See Section 2.2 for 
an outline of the method. Moreover, it was shown by an extension of the method in [41] 
that Eq. (1.3) exhibits chaotic dynamics for c/d =¾, Thus, the nonintegrability is closely 
related to the occurrence of chaos in (1.3) although the occurrence of chaos for c/d =½ 
is still an open problem. 

1.2 Object of this review 

In this article, we review some previous results [34, 37] related to our question for two-
degree-of-freedom Hamiltonian systems with saddle-centers, 

出=J凸 H(x,y), y = J凸 H(x,y), (x, y) E配 x記 (1.4)

where H: 配 x配→艮 iscr+i (r~3) except that it is analytic when we discuss the 

nonintegrability of (1.4). Note that J1 is the 2 x 2 symplectic matrix 

ふ =(~1~)-
We assume the following on (1.4): 

(Al) For any x E望 DxH(O,0) = DyH(x, 0) = O; 

(A2) J⑰ H(O, 0) has a pair of positive and negative eigenvalues, and there exists a 

homo clinic orbit (x, y) = (砂(t),0) such that limt→土OO丑(t)= 0 (see Fig. 2); 

(A3) J立 H(O,0) h y as a pair of purely imaginary eigenvalues. 

It follows from (Al)-(A3) that the x-plane, {(x, y) E配 x股2I y = O}, is invariant under 
the flow of (1.4); the origin (x, y) = (0, 0) is a saddle-center; and by the Lyapunov center 
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Figure 2: Homoclinic orbit丑(t)on the x-plane Figure 3: Periodic orbits near the origin 

theorem (e.g., [1, 22]) there exists a family of periodic orbits near it (see Fig. 3). The 

periodic orbits have two-dimensional stable and unstable manifolds, which may intersect 

transversely on the level set H-1(c) for some c E恥 Hence,by Theorem 1.2 chaotic 
dynamics may occur in (1.4). 

We also state some extensions of the above results to a higher-order approximation in 

[41], heteroclinic orbits in [31], and more-or infinite-degree-of-freedom systems in [35,38]. 
In particular, the extended theory shows that Arnold diffusion type motions, which is 

not slow but very similar to well-know Arnold diffusion [2, 20], can occur in three-or 

more-degree-of-freedom systems. Moreover, a buckled beam, which was studied as an 

early example of infinite dimensional systems having chaotic motions by Holmes and 

Marsden [16] (see also [14, 23]) when it is subjected to damping and periodic external 

force, is shown to still exhibit chaotic motions even when it is not subjected to them. 

The outline of this article is as follows: In Section 2 we describe the Melnikov-type 

method developed in [34] for detection of chaos in the two-degree-of-freedom Hamiltonian 
system (1.4). We begin with the standard Melnikov method [12, 33] and end with briefly 
illustrating the theory for an example including (1.3) as a special case. In Section 3 we 
describe the result of [37] on a relationship between nonintegrability and chaos for (1.4). 
Necessary parts of the differential Galois theory and Morales-Ramis theory are also briefly 

provided. We state several extensions of [31, 35, 38, 41] for the above results in Section 4 
and finally give some comments on future work in Section 5. 

2 Detection of Chaos 

2.1 Standard Melnikov method 

We begin with the standard Melnikov method. See Section 4.5 of [12] or Section 28 of [33] 
for the details. Consider two-dimensional time-periodic systems of the form 

x = J1DH(x) + sg(x, t), x E記 (2.1) 

where O < r:: ≪l, H: 配 → 股andg: 配遺→ 配 arecr+i and er (r :S 2), respectively, 

and g(x, t) is T-periodic in t (T > 0) for any x E記 Weassume that the origin x = 0 

is a hyperbolic saddle and has a homoclinic orbit丑(t)in (2.1) with r:: = 0. It follows 

that when c > 0 is sufficiently small, near x = 0 there exists a hyperbolic periodic orbit 

訊t)which has two-dimensional stable and unstable manifolds, ws仇(t))and wu仇(t)).
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periodic orbit 

Figure 4: Perturbed phase space for (2.1) 

We can approximate orbits on W"('Y0(t)) and wu('Y0(t)) as x = x山(t-t0) + Et(t), where 
t = t(t) is a solution to the variational equation 

t= J詞 H(砂(t-to))t + g(砂(t-t0), t). 

See Fig. 4. The signed distance d(t0) between W臼 (t))and町 ('Y0(t))near x =砂（一to)
and t = 0 mod T can be estimated as 

d(to) = 
EM(t0) 

DH(呼（一to))
+0(召），

where 
00 

M(to) = J DxH(砂(t),0)・g(砂(t),t + t0)dt 
-oo 

and the dot represents the inner product. We call M(t0) the Melnikov function. 

Theorem 2.1. If M(t0) has a simple zero, then for s > 0 sufficiently small W臼 (t))
and wu(%(t)) intersect transversely. 

Using the Smale-Birkhoff homoclinic theorem [12, 33] (see also Theorem 1.1) and The-
orem 2.1, we see that if M(t0) has a simple zero, then chaotic dynamics occurs in (2.1). 

2.2 Melnikov-type method 

We now consider the two-degree-of-freedom Hamiltonian system (1.4) under assumptions 
(Al)-(A3), and describe the Melnikov-type method developed in [34]. See [34] for the 
details. The Hamiltonian H(x, y) is assumed to be er刊 (r:::: 3). 

As stated in Section 1.2, there exists a family of periodic orbits near the saddle-center 

at (x, y) = (0, 0). Let ,0(t) denote a periodic orbit of the family such that max氏 IRIう'e(t)I= 
O(c), where O < E: ≪1. We can approximate orbits on the two-dimensional stable and 
unstable manifolds ofぅe(t),ws(ぅ0(t))and wu(う0(t)),as x = .Th(t-t0) + E:2~(t), y = E:TJ(t), 
where (~, TJ) = (~(t), TJ(t)) is a solution to the variational equation 

t = 11D;H(x山(t-t0), O)~+ g(x山(t-t0), TJ) + O(c), 

り=J⑰H(砂(t-t0), O)TJ + O(c), 
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where g(x, TJ) =½JDxD;H(x, O)(TJ, ry). Applying an argument used in the standard Mel-
nikov method, we see that the signed distance d(t0) between W"(,0(t)) and wu仇(t))
near (x, y) = (砂(-t0),0) is estimated as 

d(to) = 
sM(t0) 

DxH(砂（一t¥ n¥ 
+0(ぎ），

where M(t0) is the Melnikov function given by 

00 

M(to) = J D直（砂(t),0)・g(砂(t),ry(t + t0))dt. 
-oo 

We can also see that 

d 
-[D切（砂(t),O)(ry(t + t0), ry(t + to))] 
dt Y 

= -2DxH(xh(t), O)(ry(t + to), ry(t +to))・g(xh(t), ry(t + to)), 

so that 
00 

M(t0) = -½D~H(xh(t), O)(T1(t + t0), T/(t + t0)) . 
-co 

See [34]. 
Let w(t) and <I>(t) be, respectively, fundamental matrices of 

り=J図H(砂(t),0)77 

and 

り=J⑰H(0,0)77 

(2.2) 

(2.3) 

such that刺0)= id2. Let B士=limt→土00<I>(-t)w(t) and let B。=B+B=1. We can write 
ry(t) = w(t -t0)B=1<I>(t0)ry0 + O(c) with 770 (c/ 0) E記 whichsatisfies 

,,(t)→ {: □゚t0)B。<>(t,),.

Thus, the Melnikov function is rewritten as 

as t→ -oo; 

as t→ 00. 

M(to) = qo(T/o) -qo(B。<I>(to)T/o), T/o(ヂ0)E記

where q0(ry) =肛巧H(O,O)(ry, ry) for'f/ E配.We obtain the following theorem. 

Theorem 2.2. If M(t0) has a simple zero, then for s > 0 sufficiently small W臼 (t))
and wu(ぅ'c(t))intersect transversely on the level set H-1(c) with c = H(,c(t)). 

Using Theorem 1.1 and Theorem 2.2, we see that if M(t0) has a simple zero, then 
chaotic dynamics occurs in (1.4). 
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2.3 Example 

We apply the method of Section 2.2 to a two-degree-of-freedom system with the Hamil-

tonian 

H(x, y) =½(-xi+ 研yi) + n: 1 X『H+½疇閲＋詞＋砂） + O(yr}. (2.4) 

It includes the Henon-Heiles system (1.3) as a special case of n = 2 in which 

2c 2(d -c 
出＝

） 

辺'
あ＝

《「+Jli'
μ ✓ 「了戸

W = - X10 = 
J 2 ' 2 c '  

/33 = 
μ(c + d) 
《「+μ2'

μ=ロ
if c/d > 1/2 and 

2c 
/31 = d, あ=2c, 島 =0, W=ロ

if c/d < 1/2. We easily see that assumptions (Al)-(A3) hold and 

砂(t)=((~ こ）i/(n-1) sech2/(n-1J (n; り），
(n2>:)l/(n-1) sech2/(n-1J『；り） tanh (n; り）） (2.5) 

We compute 

M(to) =研b(v1l丁屈cos(2叫。＋伽） + b), 
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We see that if 
f32 

＃ 
(n -1)2 

f31 2(n+l) 
R(R+l), REN, (2.6) 

then M(t0) has a simple zero so that by Theorem 2.2 chaotic dynamics occurs. The same 

condition was also obtained by Grotta Ragazzo [10] although his approach was valid 

only for a restricted cl邸 sof two-degree-of-freedom Hamiltonians of the form H(q,p) = 

½IPl2 + V(q) with q,p E配 (cf.Eq. (1.2)), where V(q) is a cr+1 function. Note that 

condition (2.6) holds for (1.3) when c/d # 0, 1, ふぶ1.
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3 N onintegrability and Chaos 

3.1 Differential Galois theory 

We present such an introductory material of differential Galois theory as needed below. 
See [5, 29] for thorough explanations of the theory. 

Let阪 bea differential field endowed with a derivation 8, and consider linear systems 
of the form 

匈=Ay, A E gl(n, 恥）． (3.1) 

Let C瓦：= {a E応 I8a = O} be the field of constants of応.For instance, when K = C(t), 
then C恥=C. A differential field extension lLつ恥 isa field extension such that lL is a 
differential field and the derivations on lL and K coincide on応.Let 3 be a fundamental 
matrix of (3.1). A differential field extension lLつ応 iscalled a Picard-Vessiot extension 
if 

(i) lL is generated by区 andentries of 3; 

(ii) CJL = C沢・

We now fix a Picard-Vessiot extension lLつ応 anda fundamental matrix三withentries 
in lL. Let a be a応-automorphismoflL, i.e., a field automorphism oflL such that 8(a(a)) = 

a(8a) for any a E lL and a(a) = a for any a EK. Since加（三） =a(底） = a(A3) = Aa(三），
we see that a(三） is another fundamental matrix of (3.1). Hence, by a fundamental result 
of linear differential equations, we have a(三） = 3M" for some Mu E GL (n, CJL). A 
group of応 automorphismsof lL is called the differential Galois group Gal(lL/区） of (3.1). 
An algebraic group G C GL (n, CJL) generally has a unique irreducible component of G 
containing the identity element, which is called the identity component G0. We denote 
the identity component of Gal(lL虞） by Gal(lL/恥）o_ 

3.2 Morales-Ramis theory 

We consider (1.1) as a complex Hamiltonian systcm. Let x(t) be a nonconstant particular 

solution to (1.1). We write solutions to (1.1) near元(t)asx =元(t)+JfwithfE (C竺where
0 < 6≪1. Substituting this expression into (1.1) and keeping the resulting equation up 
to O(J), we obtain the variational equation of (1.1) around元(t),

t= InザH(元(t)K (3.2) 

Let G0 be the identity component of the differential Galois group for (3.2). The following 
theorem was proved in [26] (see also [24]). 

Theorem 3.1 (Morales-Ruiz and Ramis). If Eq. (1.1) is meromorphically integrable near 
元(t),then G0 is abelian. 

It follows from Theorem 3.1 that if G0 is not abelian, then Eq. (1.1) is meromor-

phically nonintegrable. We write solutions to (1.1) as x =元(t)+ Jf(l) +秘炉＋・・・
to obtain higher-order variational equations like (3.2). Morales-Ruiz et al. [27] extended 
Theorem 3.1 and obtained a stronger necessary condition for meromorphic integrability of 
(1.1) with the differential Galois group for the linearization of the higher-order variational 
equations. See [27] for the details. 
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3.3 Relationship between nonintegrability and chaos 

We return to the two-degree-of-freedom system (1.4). The Hamiltonian H(x, y) is assumed 
to be analytic. The variational equation of (1.4) around (砂(t),0) is given by 

i=』D;H(xh(t),0)もり＝ふD;H(xh(t),O)ry, (, TJ E (C2. (3.3) 

We call the first and second equations of (3.3) the tangential and normal variational 
equations, respectively. Let G0 be the identity component of the differential Galois group 
for the normal variational equation when the domain of the independent variable t is 

restricted to a neighborhood of艮U{土oo}in a Riemann surface (see [25, 37, 42, 43] for 
the details). It follows from Theorem 3.1 that if G0 is not abelian then Eq. (1.4) is 
meromorphically nonintegrable near (丑(t),0). Furthermore, we can prove the following 

theorem [37]. 

Theorem 3.2. If G0 is not abelian, then for E > 0 sufficiently small wsげ(t))and 
町 (,0(t))intersect transversely on the level set H-1(c) with c = H(,0(t)). 

A similar result for a restricted class of two-degree-of-freedom natural Hamiltonian 

systems was obtained by Morales-Ruiz and Peris [25] earlier based on the result of Grotta 
Ragazzo [10]. Thus, if G0 is not abelian, then not only the system (1.4) is nonintegrable 
but also chaotic dynamics occurs. 

We now apply Theorem 3.2 to the Hamiltonian (2.4). The normal variational equation 
around the homoclinic orbit (2.5) becomes 

り1=ゅ，り2= -(研+(3り~7 l) sech2 (n; り））爪 (3.4) 

which is transformed to the Gauss hypergeometric equation 

s(l -s)塁+(1十二） (1 -2s)塁—(ニ -p) (二 +p+l)=0 (3.5) 

under the change of variables 

s =½(1 -tanh (n ; り））， T/1= (4s(l -s))iw/(n-1) (n; り）(, 
where 

p =½(而— l), a= 
訊 (n+ 1) 
出(n-1)2 

+1. 

Note that the singular points s = 0 and 1 in (3.5), respectively, correspond to t = oo 
and -oo in (3.4). Using an argument in Section 5 of [37], we see that when w > 0, if 
condition (2.6) holds, then the identity component of the differential Galois group of (3.5) 
is not abelian, so that G0 is not abelian. Using Theorem 3.2, we reobtain the result of 
Section 2.3. 
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翌(t)

Figure 5: Heteroclinic orbit砂(t)on the x-plane. 

4 Several Extensions 

4.1 Higher-order Melnikov method 

We consider the two-degree-freedom system (1.4). Let ¥JJ(t) and <I>(t) be, respectively, 
fundamental matrices of (2.2) and (2.3) with <I>(O) = id2, as in Section 2.2. Recall that 

B土=limt→土oo<I>(-t)¥JJ(t) and B。=B+B=1. Let 

qJ(x, 17) = (j: 2)!D戸H(x,0)三少 j= 0, l, ... , 

00 

K(v) = J加（炉(t),¥JJ(t)v) -q1(0, <I>(t)B+v)]dt 

:1゚加（砂(t),W(t)v) -q, (0, <D(t) /J v)]dt. 
-oo 

We define the first-and second-order Melnikov functions as 

M叫=qo(O, r10) -qo(O, B。<I>(to)r10)
and 

島 (to)=-<I>(to)rJo・Dび(0,O)B_J凸 K(B=1<1>(to)rJo) 

+ q1 (0, <I>(to)rJo) -q1 (0, B。<I>(to)rJo),
respectively, where 170 (ヂ 0)E配.In this situation, we can prove the following [41]. 

Theorem 4.1. If M1(t0) = 0 and M州0)has a simple zero, then for E: > 0 sufficiently 
small W8(,0(t)) and wu(,0(t)) intersect transversely on the level set H-1(c) with c = 

H(,0(t)). 

Using Theorem 4.1, we can show that chaotic dynamics occurs in (1.3) when c/d =¾
See [41] for the details. 

4.2 Heteroclinic orbits 

We still consider the two-degree-freedom system (1.4) but assume the following instead 
of (Al)-(A3): 

(Al') For any x E配， DyH(x,0) = 0 and for some x±E配， D直 (x士， 0)= O; 
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(A2') J閂 H(x土， 0)has a pair of positive and negative eigenvalues, and there exists a 

heteroclinic orbit (x, y) = (砂(t),0) such that limt→士co砂(t)=互 (seeFig. 5); 

(A3') J⑰ H(x士，0)has a pair of purely imaginary eigenvalues, iw士and-iw土

It follows from (Al')-(A3') that the x-plane is invariant under the flow of (1.4); there are 
two saddle-centers at (x, y) = (x土， O);and by the Lyapunov center theorem (e.g., [1,22]) 
there exists a family of periodic orbits near each saddle-center (cf. Fig. 3). Let冗，0(t)

denote periodic orbits of the families such that m邸 tE艮竹戸(t)-(x士， O)I= O(s). The 
periodic or bits冗，0(t)have two-dimensional stable and unstable manifolds, w•(r±,0(t)) 
and W刊宜，0(t)).So W刊1—,0(t)) may intersect町 b+,0(t))transversely on the level set 
叩 (c)for c E股 whenH(r+,0(t)) = H(r_,0(t)) = c for some c E艮

Let ¥JJ(t) and <P±(t) be, respectively, fundamental matrices of 

り=J⑰H(砂(t),O)rJ and り=J図H(x土， O)rJ

such that虹 (0)= id2. Let B土= lim虹 (-t)¥JJ(t)and B。=B+B=1. We define the 
t→士co

Melnikov function as 

M(to) = q_(rJo) -q+(B。<I>(to)rJo), rJo(ヂ0)E蔚

where q土(TJ)=½ 閃H(x±,O)(TJ,TJ) for rJ E記 Inth・. 1s s1tuat1on, we can prove the followmg 

[31]. 

Theorem 4.2. If M(t0) has a simple zero and H(r+,0(t)) = H(口 (t))= c for some 
cE股， thenfor r:: > 0 sufficiently small町（い(t))intersects w•(r+,0(t)) transversely on 
the level set H-1(c). 

Suppose that there also exists a heteroclinic orbit from (x+, 0) to (x_, 0) and the cor-
responding Melnikov function has a simple zero. Then, as in Theorem 4.2, W吋1+.c(t))
intersects W刊い(t))transversely. Thus, there exist transverse heteroclinic cycles yield-

ing transverse homoclinic orbits to ぅ臼士，0(t)(see, e.g., Section 26.1 of [33]). Hence, by 
Theorem 1.2 chaotic dynamics may occur in (1.4). 

Let G0 be the identity component of the differential Galois group for the variational 

equation of (1.4) around (x, y) = (砂(t),0) (cf. Eq. (3.3)). We have the following result 
similar to Theorem 3.2. 

Theorem 4.3. Suppose that H(x, y) is analytic and叫=w_. If G0 is not abelian and 

H(r+,c(t)) = H(r—, 0(t)) = c for some c E良， thenfor r:: > 0 sufficiently small町（い(t))
intersects w•(r+,0(t)) transversely on the level set H-1(c). 

See [43] for the proof. A result of [42] on Bogoyavlenskij nonintegrability [4] of gen-
eral systems (which are not necessarily Hamiltonian) near homo-and heteroclinic orbits, 
along with Theorem 4.2, were used there. The statement of Theorem 4.3 does not nec-

essarily hold for w+ -=J w_: W刊,-,0(t))may not intersect w•(r+,0(t)) even if Eq. (1.4) is 
nonintegrable. See [43] for the details. 



194

4.3 Three-or more-degree-of-freedom Hamiltonian systems 

We consider (n + 1)-degree-of-freedom Hamiltonian systems of the form 

x=みD直 (x,y), り=J凸 H(x,y), (x, y) E配 x股竺 (4.1) 

where n 2 2, H : 配 x股2n→股iscr+i (r 2 2n+4). We make the following assumptions: 

(Al") For any x E IB.2, D直 (0,0) =凡H(x,O)= O; 

(A2") J閂 H(O,0) has a pair of positive and negative eigenvalues, and there exists a 

homoclinic orbit (x, y) = (丑(t),0). 

(A3") J図 H(O,0) has n pairs of purely imaginary eigenvalues土iwj,j = l, ... ,n, sat-
isfying the nonresonant condition 

k・W = k1W1 +・ ・ ・+ kn叫 -=J0 

fork= (kい...'k砂E四 suchthat 1さlkl=区7=1lk』:s:;4. 

It follows from (Al")-(A3") that the x-plane is invariant under the flow of (4.1) and the 
origin (x, y) = (0, 0) is a saddle-center. We can also show that there is a symplectic 
transformation (x, y)→ (s, u, I, 心） E股 XIB_ X町 x'll'nsuch that the Hamiltonian H is 
expressed as 

H(s,u, I, 心）＝入su+w•I+ 札 (AI·I)+g(s, u, I, 7/J) 

near the origin, where A is an n x n matrix, and g : 尺 XIB_ X町 X']['n→罠 iscr+l for 

I -=JO and of higher order than 2 in s, u and I. Moreover, we assume the following: 

(A4") A is nonsingular. 

Using the invariant manifold theory [7,8] (see also [32]) and a version of the KAM theorem 
[28], we see from (A4") that a Cantor set of n-dimensional invariant tori which have 
(2n + 1)-dimensional stable and unstable manifolds exists near the origin. See [38] for 
more details. 

Let W(t) and <I>(wt) be, respectively, fundamental matrices of 

り=J図H(砂(t),0)77 and り=l図H(0,0)77

such that州0)= idn. Let B±= limt→±00 <I>(-wt)W(t) and B。＝凡B=1.We define the 
Melnikov function as 

n 

M(0; r) = q0(r) -qo(B。<I>(0)r), r E応=Il(O,oo), 
j=l 

where q0(77) =肛閂H(O,0)(77, 77). In this situation we have the following theorem [38]. 

Theorem 4.4. Suppose that M(0; r) has a simple zero at 0 = 0。forsome r E艮:tfixed. 

Then the unstable manifold of an invariant torus near the origin intersects the stable 
manifold of another invariant torus near the origin transversely on the level set H-1(c) 

for some c E艮.Here the projections of the two invariant manifolds onto they-space are 

close to {呻(0)rI 0 E 11'吋 and{呻(0)B。<I>(0。)rl0E11'吋， whereE > 0 is sufficiently 
small .. 



195

町 (9i).
町（幻

9i あ !j'N-1 $N 

Figure 6: Transition chain 

Let N > l be an integer and suppose that M(0; r) has a simple zero atり＝が E'lI'n

for r =戸 E記， j= l, ... , N -l, such that <I>(か)rHl =B。<I>(0叩 forsomeがE'lI'n.Let 

W⑰)  and町（巧）， respectively,denote the (2n + 1)-dimensional stable and unstable 
manifolds of巧 forj = l, ... , N. Using Theorem 4.4, we can find N invariant tori 

尻 ...'!YNsuch that wu(名） intersects w・(各 1)transversely for j = l, ... , N -l, on 
the level set H-1(c) for some c E罠 suchthat H(名） = c, j = l, ... , N. We refer to the 
sequence of invariant tori夙，．．．，グNas a transition chain. See Fig. 6. So we see that 
there exists an open set of points arbitrarily close to夙， connectedby trajectories with 
points arbitrary close to !YN through points near巧， j= 2, ... , N -l. This is very similar 
to Arnold diffusion, which occurs in nearly integrable systems [2, 20], although the drift 
speed is not slow. See [38] for more details. Numerical evidence for Arnold diffusion type 
motions in a three-degree-of-freedom system was also provided in [36]. 

4.4 Undamped, buckled beam: An infinite-degree-of-freedom 

Hamiltonian system 

We now consider an undamped, buckled beam with hinged ends, shown in Fig. 7. We 
adopt the following mathematical model of the beam as in [16]: 

u+u"" + [r-氏 fo¥u'げd(]u" = 0, (4.2) 

where u represents the transverse deflection, the prime and overdot represent partial 
differentiation with respect to z and t, respectively, and r and K represent the compressive 
force and stiffness due to "membrane" effects, respectively. The boundary condition is 
given by u(O) = u(l) = 0 and u"(O) = u"(l) = 0. Especially, the distance R, between the 
hinged ends is non-dimensionalized such that R, = 1. Eq. (4.2) is an infinite-dimensional 
Hamiltonian system with the symplectic form 

fl((u1, u1), (u凸）） = /1 (u四 1-u西）dz 

゜
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and the Hamiltonian 

z=lと'、:.; 名:o::
＇ 
＇ 

-o―I 

Figure 7: Buckled beam 

H(u,u) = fo1 [虐研ー［げ＋託")2]dz +~[1\ u')2dz r 
We assume that召 <f<4召， sothat only the first mode u = sin 1r z is unstable. 

Let 
n+l 

U=  I: ぃinJ1nz,
l=l 

(4.3) 

where 11 = 1 and 11 E N, l = 2, ... , n + 1, with 11 <・ ・ ・< 1n+i・Note that Eq. (4.3) 
satisfies the boundary condition. Substituting (4.3) into (4.2), we obtain 

れ＝四，む＝叩ー（叶+LJ!+l砧 X1,

切=Yn+l, Yn+l = -wl Yl 

'm~<)n 
-jf+l (xi+ J戸二） Yl, 

(4.4) 

l = l, ... ,n, 

which is an (n + 1)-degree-of-freedom Hamiltonian system of the form (1.4) and (4.1) for 
n = 1 and n > 1, respectively, where 

団 =Jl+l l = l, ... ,n. 

We also show that assumptions (Al)-(A3) or (Al")-(A3") without the nonresonant con-
dition hold. Assuming the nonresonant condition for n > l and applying Theorems 2.2 
and 4.4 to (4.4) for n = l and n > l, respectively, we prove that chaotic vibrations occur 
in (4.2). See [35] for the details. We remark that assumption (A4") holds if 

j『#
m(m+ 1) 

2'  
mEN, i.e., Jzヂ6,204, 6930, 235416, .... 

The case of n = 1 was also studied in [11] earlier. 
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5 Future Work 

Finally, we give some comments on future work. First of all, one may raise the open 

problem of determining whether the Henon-Heiles system (1.3) exhibits chaos for c/d =½
Especially, it makes the problem difficult that there exists only a degenerate saddle-center 

at which the Jacobian matrix has a double zero eigenvalue. To overcome this difficulty, 

the Lyapunov center theorem has to be extended. Since Eq. (1.3) is nonintegrable as 

stated in Section 1.1, it seems natural to expect that chaotic dynamics occurs then. A 

numerical simulation presented in [27] also supports this conjecture. Some preliminary 

result was obtained in [39]. 

Second, extensions of the results stated in Sections 2 and 3 to reversible systems with 
saddle-centers: 

允=f(x), XE茫，

where there exists a linear involution R : 股2n→良2n(R2 = id2n) such that Rf(x) + 
J(Rx) = 0. Reversible systems have some similar properties as Hamiltonian systems, 

e.g., the statement of the Lyapunov center theorem holds (see e.g., [6]), but may not have 

a first integral, so that their trajectories may not be restricted to a lower-dimensional 

space than the phase space and more complicated behavior may occur. Some preliminary 

result was obtained in [40]. 

As described in this article, for Hamiltonian systems with saddle-centers and homo-

or heteroclinic orbits, especially in the two-degree-of-freedom case, we now understand 

a relationship between nonintegrability and chaos to some extent. However, when a 
Hamiltonian system with homo-or heteroclinic orbits has only hyperbolic saddles at 

which all eigenvalues of the Jacobian matrix are real, it is not so clear whether it can 
exhibit chaotic dynamics even for the two-degree-of-freedom case. No essential progress 

in this direction has been made since the work of Holmes [15] in 1980. For instance, for the 

heavy top, which has been one of important dynamical systems since the time of Euler 

and Lagrange, the problem of nonintegrability was completely solved by Ziglin [44, 46] 
(see also [21,47]) but the occurrence of chaos in a special case with only such a hyperbolic 

saddle is still an open problem. So a new theory for detecting chaos and discussing 
a relationship between nonintegarbility and chaos in Hamiltonian and non-Hamiltonian 

systems (e.g., reversible systems) with such hyperbolic saddles is expected. 
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