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Nonintegrability of three-degree-of-freedom Birkhoff normal 

forms of resonance degree two 

Shogo Yamanaka 

Graduate School of Informatics, Kyoto University 

1 Introduction 

In this paper, we study integrability of three-degree-of-Hamiltonian systems in Birkhoff 

normal form. Let H be a real analytic function of z = (x, y) E配 x配 andassume it has 

the following power series expansion: 

00 3 

H(z) =区Hj(z), が =L信（叶＋砂）， (1) 
j=2 k=l 

where H1 represents homogeneous terms of degree j and wぃ吟叫>0 are constants. The 

Hamiltonian H is said to be in Birkhoff normal form if 

3 

{H, が}:=L8H8H2 8H28H 

j=l (axj ayj - axj ayj) = 0・ 

It is well known that there exists a formal symplectic transformation z =の(()such that 

Ho¢is in Birkhoff normal form. In this case, Ho¢is called a Birkhoff normal form of H 

and¢is called a normalization of H. If the equilibrium is non-resonant, i.e., w心正3are 

rationally linear independent, then the Hamiltonian vector field of the normal form Ho¢ 

is linear. On the other hand, the equilibrium is resonant, that is, w1占 2,w3 are rationally 

linear dependent, the Hamiltonian vector field of H o¢may not be linear. Hence the set 

m 

R:= {筏 EZ3 I~"/k咄= O}, 
k=l 

which is called the resonance set of H, plays an important role in the normal form theory. 

The number"/ := dim¥Q Span¥QR is the resonance degree. 

The central problem is to give a sufficient condition that the formal normalization¢ 

is analytic in the neighborhood of the equilibrium. We fucus on the results related with 

integrability. An m-degree-of-freedom Hamiltonian system is called analytically (resp. 
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meromorphically) integrable if there exist m analytic (resp. meromorphic) functions H1 = 

H,H2, ... ,Hm such that {Hj, 凡}= 0 for j, k = 1, ... m. Ito [4, 5] showed that if 

a Hamiltonian with the resonance degree "/~1 is analytically integrable, then there 

exists an analytic normalization of H. Zung[ll] proved without any assumptions about 

resonance degrees that if a Hamiltonian is analytically integrable, then it has an analytic 

normalization. This means that an integrable system is transformed to an integrable 

normal form in the analytic framework. However, a Hamiltonian in Birkhoff normal form 

may not be integrable: there exists an analytically nonintegrable Birkhoff normal form 

with resonance degree "/~2, while Birkhoff normal forms with "/~1 are always integrable 

(see [5]). 

The purpose of the paper is to study integrability of (1) in Birkhoff normal form with 

resonance degree 2. We assume (w1,w2,w3) = (1,2,w),w = 1,2,3 or 4 and that (1) is 

in Birkhoff normal form and a cubic polynomial. Integrability and dynamics of these 

systems have been studied (see [1, 3, 10]). Our Hamiltonian systems for w = 1, 2, 3 and 4 

can be analytically transformed into the following Hamiltonian systems, respectively: 

H = a[p2(Pi -q『)+ 2p1q1q砂+b[p2(P~ — qり+2p3知q2], (w-1) 

H = a[p2(Pi -q『)+ 2p1q1q叶+b[p3(Pi -qi)+ 2p1q1q3], (w-2) 

H = a[p2(Pi -qi)+ 2p1q1q2] + b[p3(P1P2 -q1q2) + q3(q1P2 + P1q2)l, (w-3) 

H = a[p2(Pi -q『)+ 2p1q1q叶十 b[p3(p~ — q芸） + 2p2q2q3], (w-4) 

where a, b E股 areparameters, by some time-dependent transformation 

的 =cos(叫＋も）qi+ sin(叫＋も）Pi, 

Yi= -sin(叫＋も）qi+ cos(叫＋も）Pi, 

whereもareconstants. Without loss of generality, we can assume that a, b~0 and that 

a~b~0 for (w-l). 

A Hamiltonian in Birkhoff normal form has a first integral H2. Moreover, the Hamilto-

nian (w-2) has another first integral 

a2 + b2 

2 
(Pi+ qi)+ (aq2 + b証+(a釦＋如）2_ 

Hence we need only to study the case of w = l, 3, 4. It is apparent that (q~+ p~)/2 is a 

first integral when b = 0. Moreover, the Hamiltonian (w-1) has a first integral 

q1p3 -Pl仰
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when a= band 

(q1p3 -Pl鱈(p~+ q~) + 2 [炉(q~- p~) -q2卿 3r

when a = 2b. Hence we already know that (w-3) and (w-4) are integrable whenμ:= 

b/a = 0 and (w-1) is integrable whenμ= 0, 1/2, 1. 

The Morales-Ramis theory[9] is a powerful tool to prove nonintegrability. Consider a 

general Hamiltonian system: 

ゑ =JDH(z), z E (Cm x (C叫 (2) 

where J is an m x m symplectic matrix 

J= (-~m~m) 
Let z =る(t)be a particular solution of (2). We obtain the variational equation (VE) 

along z =ゑ(t)

~= JD2H(合(t))'T/.

Moreover, when the Hamiltonian system has first integrals or invariant plains, the varia-

tional equation can be reduced to a system of less linear equations called normal varia-

tional equation (NVE). As in introduced in the next subsection, we can define the differ-

ential Galois group G for a system of linear differential equations. 

Theorem 1.1. (/9}) Let G be the d~ 汀erentialGalois group of (NVE) of (2) along z =ゑ(t).

If a Hamiltonian system (2) is meromorphically integrable, then the identity component 

G0 of G is commutative. 

Using the Morales-Ramis theory, Christov[2] stated that (w-1), (w-3) and (w-4) are 

nonintegrable if they are not already known to be integrable as above. However his proof 

contained some errors. Following his approach and correcting the errors, we obtain the 

following theorem. 

Theorem 1.2. Letμ= b/a. The following hold: 

If (w-1) is meromorphically integrable, thenμ= 0, 3/10, 1/2, 3/4, 9/10, or l. 

If (w-3) is meromorphically integrable, thenμ= 0 orμis written as 

k2 
μ= C, k E (Q and 1/2 < k :S 1 

If (w-4) is meromorphically integrable, thenμ= 0. 

(3) 
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By this theorem, parameters for which (w-4) is integrable or nonintegrable are com-

pletely determined. However, it is unknown whether or not (w-1) forμ= 3/10, 3/4, 9/10 

is integrable and (w-3) forμwritten by (3) is integrable, although these systems are 

thought to be nonintegrable. 

In Section 2, we review some of the standard facts on the differential Galois theory. In 

Section 3, we show the sketch of the proof of the main theorem. 

2 Preliminaries 

Consider a system of linear differential equations on a Riemann surface r 

リ=Ay, A E Mat(n, M(f)), (4) 

where M(f) is the set of meromorphic functions on r. The set M(f) is a differential field 

with a derivation 8 =羞.We have an extension of differential fields LっM (r) called the 

Picard-Vessiot extension for (4) and the differential Galois group G := DA叫L/M(f))= 

{CJ E Aut(L/M(r)) I 8 o CJ= CJ o 8}. 

If we fix a fundamental matrix屯 thenwe have a faithful representation of G on the 

general linear group as 

R: DAut(L/M(f))→ GL(n,C), u→Mび 9

where GL(n, C) is the group of n x n invertible matrices with entries in C. This repre-

sentation is not unique and depends on the choice of the fundamental matrix屯 buta 

different fundamental matrix only gives rise to a conjugated representation. Fixing the 

fundamental matrix, we can identify the image R(G) C GL(n, q as the differential Galois 
group G. Let G C GL(n, C) be an algebraic group. Then it contains a unique maximal 

connected algebraic subgroup G0, which is called the connected component of the identity 

or identity component. 

Let S C r be the set of singularities in the entries of A. We also refer to a singularity of 

the entries of A as that of (4). Let t。Er ¥ S. We prolong the fundamental matrix cI>(t) 

analytically along any loop I based at t。andcontaining no singular points, and obtain 

another fundamental matrix 1 * cI>(t). So there exists a constant nonsingular matrix M団

such that 

1 * cI>(t) = cI>(t)M1,J・ 

The matrix M1,l depends on the homotopy class [,] of the loop I and is called the mon-

odromy matrix of [1]. 
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Let 1rパ¥S, t0) be the fundamental group of homotopy classes of loops based at t。.We 

have a representation 

R: 7r1 (r ¥ s, to)→ GL(n, C), ["!] r-+ M17J・

The image of R is called the monodromy group of (4). As in the differential Galois 

group, the representation R depends on the choice of the fundamental matrix, but the 
monodromy group is defined as a group of matrices up to conjugation. In general, a 

monodromy transformation defines an automorphism of the corresponding Picard-Vessiot 

extension. Hence the monodromy group is a subgroup of the differential Galois group. A 

singular point t = f of (4) is called regular if for any sector a< arg(tーり<b with a< b 

there exists a fundamental matrix <I>(t) = (的(t))such that for some c > 0 and integer 

N,I的(t)I< cit —酎 as t→ fin the sector; otherwise it is called i汀 egular.A system (4) 

is said to be Fuchsian if all singularities are regular. The following is useful to compute 

the differential Galois group of Fuchsian equations. 

Theorem 2.1 (Schlessinger). Assume that a system (4) is Fuchsian. Then the differential 

Galois group of (4) is the Zariski closure of its monodromy group. 

Finally, we review some ways to determine whether the identity component G0 of the 

differential Galois group is solvable for a second order differential equation 

d2x dx 
正+P1(z)石噂(z)x= 0, P1(z),P2(z) E (C(z). (5) 

Using transformation x = exp(-½J p1 (x)dx)y, this equation is transformed into 

砂 1 1 dp1 

dz2 
- = r(z)y, r(z) = -p2(z) + -p1(z戸十—―

4 2 dx 
(z). (6) 

It is easy to see that G0 of (5) is solvable if and only if that of (6) is solvable. Using 

Kovacic's algorithm[8], we can determine whether G0 of (6) is solvable or not. Since we 

need many pages to write down the algorithm completely, we show the special case of the 

algorithm in order to prove nonintegrability of (w-4). 

p ropos1tion 2.2. Assume r(z) E C(z) has only poles of order 2 at z = a1, ... , a凡 00.

Let be = limx→ cr(z)(z -c)叫c= a1, ... , aN and b00 = limz→ 00r(z)z2. If the following 

conditions are all satisfied, then the identity component G0 of the differential Galois group 

of (6) is not solvable: 

(i) Let o祖＝ら士らy'I―工］尻. For each families s(釘），...,s(an),s(oo) E {+,-}, the 

number 
N 

心oo)_L心巧）
j=l 

is not a non-negative integer. 



206

(ii) Let 

Ee= {2+k✓ 「二面 Ik = 0, 土2}LJ Z, C = aい・..,aN,00-

The all elements of E; 叩..., EaN, E00 are even. 

(iii) There exists c E { a1, ... , a N, oo} such that y1言]尻 (j.Q.

If (5) has only three regular singular points, Kimura's theorem [7] is more useful than 

Kovacic's algorithm to determine the solvability of G0. If z = a EC is a regular singular 

point, the solutions of the algebraic equation 

X(X -1) + cぷ＋砂=0, ci = lim(z -a圧 (z).
z→a 

are called the characteristic exponents of z = a. If z = oo is a regular singular point, the 

solutions of the algebraic equation 

X(X + 1) -c1X + c2 = 0, c1 = lim九 (z).
z→OO 

are called the characteristic exponents of z = oo. 

Theorem 2.3 (Kimura's theorem). Assume (5) has only three regular singular points 

and let a, (3,'Y be the differences of characteristic exponents at these three singular points. 

Then the identity component G0 of the differential Galois group of (5) is solvable if and 

only if either (A) or (B) holds: 

(A) at least one of the four numbers a+ (3 +'Y, -a+ (3 +'Y, a -(3 +'Y, a+ (3―'Y is an 

odd; 

(B) the numbers a or -a, (3 or -(3 and"(or-"(belong (in an arbitrary order) to some 

of the following fifteen families: 
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1 ! + l 2 

2 ! + l 2 

3 ±-+ l 3 

4 ! + l 2 

5 ~+ l 3 

6 ! + l 2 

7 ±-+ l 
5 

8 ;i_ + l 3 

， ! + l 2 

10 ~+ l 
5 

11 ~+ l 
5 

12 ~+ l 3 

13 i + l 
5 

14 ! + l 2 

15 J + l 
5 

Here, l, m, n are integers. 

3 Sketch of the proofs 

3.1 Caseofw=l 

—1 +m  2 

1+m 3 

—1 +m  3 

l+m 3 

l+m 
4 

l+m 3 

l+m 3 

l+m 
5 

~+m 
5 

l+m 3 

~+m 
5 

—1 +m  3 

l+m 
5 

l+m 
5 

i+m 
5 

The Hamiltonian system of (w-1) is 

C 

!+n 3 

!+n 3 l+m+n E 2.Z 

!+n 
4 

!+n 
4 l+m+n E 2.Z 

!+n 
5 

!+n 3 l+m+n E 2Z 

!+n 
5 l+m+n E 2.Z 

!+n 
5 

!+n 
5 

l+m+n E 2.Z 

~+n 
5 

l+m+n E 2Z 

!+n 
5 l+m+n E 2Z 

!+n 
5 l+m+n E 2Z 

!+n 3 

!+n 3 l+m+n E 2Z 

41 = 2a(p1釦 +q叩） ，か=2a(q1P2 -Piゅ），

iJ2 = a(pi -qf) + b(p~- q]), 加＝ー2ap1q1ー2bp叫3,

仰=2b(p如 +q叩），応=2b(p叫3― q叩）．

This has a particular solution of the form 

紐）＝一y'2iq2(t), q2(t) =½ 賃悶， q3(t) = 0, 

P1(t) =⑫加(t), P2(t) = -『ふt)'p3(t)=O,
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where pis Weierstrass's p function 

402 
訳=4討ー93, 93 = - C = -

炉 (q(t),p(t))

27'2a・  

The normal variational equation for仰 =p3=0is

羞(~) = G:;: 闊~~:;塁）） (~) (7) 

By the transformation z = p'(2at), we get 

喜(~) = (宣）：竺） (~)' 
whereμ= b/a. We rewrite the equation as a second order equation 

d梵 54z d(9μ(4び(μ-1) + 9(μ+ 3)砂）—+ --
dz2 27丑ー 4び dz (27丑ー 4C叩

=0, 

which has three regular singular points at z =士苧C,oo. The characteristic exponents 
土2汲iof z = C are and those of z = oo are 1 可― 5仕一詔 3μ, —詑. Thus the differences of 

th h e c aractenst1c exponents are a = - = -2 
3μ,(3 

2 2 3μand "/ = 1 -3μ. 

Proposition 3.1. Assumeμ=/= 0, the differential Galois group of (7) is solvable if and 

only ifμ= 3/10, 1/2, 3/4, 9/10, 1. 

Proof. We use Kimura's theorem to prove the proposition. Since O <μ:=; 1, a+ (3 + "(= 

1 +~µand -a + (3 + "(= 2μ/3 can not be odd. If a + (3 -"(= 2μ-1 is odd, μ=  1. 

Hence this equation falls into (A) only whenμ= 1. 

Since the difference of the exponents have same denominator, this equation does not 

fall into cases of 2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15. If this equation falls into case 1, then 

2μ/3 = 1/2, i.e., μ=  3/4. If this equation falls into case 3, then 2μ/3 = 1/3, i.e., 

μ= 1/2. If this equation falls into case 11, then -2μ/3 = 2/5 -1, i.e., μ= 9/10. If this 

equation falls into case 13, then 1 -2μ/3 = 4/5, i.e., μ= 3/10. Hence this equation falls 

into (B) only whenμ= 3/10, 1/2, 3/4, 9/10. 

ロ

Remark 3.2. Equation (7) is Fuchsian equations on a torus. Generally, it is difficult 

to compute monodromy matrices of equations on a torus. Christov/2} computed local 

monodromy matrices and stated that G0 is not commutative. However, non-commutativity 

of the local monodromy matrices does not mean non-commutativity of the monodromy 

group M. Moreover, G0 may be commutative even if M is not commutative. 
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3.2 Case of (w-3) 

The Hamiltonian system for Hamiltonian (w-3) is 

り1= 2a(p1釦 +q渭2)+ b(p如 +q叩），か=2a(p汎1-P心） + b(q2p3 -p叩），

iJ2 = a(p予― qr)+b(p1釦 +q叩），和＝ー2ap1q1 + b(q1p3 -Pi知），

仰=b(P1P2 -q1ゅ），加＝ーb(q1P2+ p1q2). 

This has a particular solution of the form 

紐）＝ v'2sF F F 1 
亭 cosh(bsFt)' の(t)= 72 tanh(bsFt), q3(t) =亭百cosh(bsFt)

P1(t) = 0, P2(t) = 0, p3(t) = 0, 

μ十ご
where s = - and F is a number such that F =が(q(t),p(t)).

v'2 
Using the invariant plain p1 = p2 = p3 = 0 and the first integral H汽weobtain (NVE) 

羞(!:)= (誓~;:悶；:~ ぢ）§□苓惑:;;)F2)(!:) 
By the transformation x =½(tanh(bFst) + 1), we can reduce the NVE to the hypergeo-

metric equation 

言— k(~+x~l) 虞+ [k (~+ (x~ い） +2xtx-=-\)]~2 =0, 

where k =μ .  Note that k is not a real number for O <μ< 1 and 1/2 < k :S 1 
μ十ご

for 1 :Sμ. The characteristic exponents of x = 0, 1 are 1, k and those of x = oo are 

-2k + 1, -2. Since this hypergeometric equation is reducible, the identity component of 

G is always solvable. Hence we can't use to Kovacic's algorithm and Kimura's theorem 

in order to prove nonintegrability of (w-3). 

We compute the differential Galois group directly by using the monodromy matrices. 

When k =J 1, we obtain 

M。=G~) , M1 = G :) , K = e―21rik 

from the formula for monodromy matrices of a reducible hypergeometric equation [6]. 

Lemma 3.3. Let G be the differential Galois group of (NVE). If k E (Q, then G0 is 

commutative. If k tf-(Q, then G0 is not commutative. 

Proof. Let M =〈M。,Mりbethe monodromy group. By the Schlessinger theorem, we 

obtain G = M. 
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If k E Q, then there is N E N such that K,N = 1. In this case, 

G=Mc{G  ~) I a, b E <C, 炉 =1}・ 
Hence, 

c0c { G ~) laEC} 

and G0・ 1s commutative. 

If k is not a rational number, then t£is not a root of the unity. Hence 

〈Mい｛（； ~) laE<C*} 

and thus 

G=Mコ{G~) I a EC*}・ 

Noting that C0 = (M)0 is a normal subgroup of C and M1 E C0, M2 EC, we have 

叩 M兄＝（； 1ー ,,,)EG0.
K, 

The matrix (~ 1 -"') is not commutative with M1 and then G0 is not commutative. 
K, 

ロ

3.3 Case of (w-4) 

The Hamiltonian system for Hamiltonian (w-4) is 

•
q
l．
卯
．
卯

= 2a(q叩+P1P2), 

= a(pi -qi) + 2b(p2釦 +q叩），

= b(p各― qり，

•
P
l．
釦
応

= 2a(p2q1 -P1卯），

= -2ap渭1+ 2b(q2p3 -p叩），

= -2bp凶2・

This has a particular solution of the form 

q1(t) = 0, 

P1(t)=O, 

姐t)= -C 1 
3ゅ(ibv'2t)'

P2(t) = --l炉'(ibv'2t)

2叶 bv1°'.泣）＇

q3(t) =占P2(t),

p3(t) =古卯(t),

where f;J is Weierstrass's elliptic function, which satisfies 

ゅ12= 4p3 -gぁ
402 

仰＝一
27' 

C=-
i¥1'2比(q(t),p(t))

cJ 0. 
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The normal variational equation is written as 

羞 (~)~(~~:r;;::':~ ご：［茫）(!) 
By the transformation z = p'(ibv'2t), the equation is transformed into 

衣 27丑+4び dl 6(27μ 砂— 27y'2iC砂+ 12μ02 z + 4y'2四）
dz2 z(27丑ー 4び） dz -1りウ立 Aん）ヽ ？

e = o. (s) 

To determine wether G0 of this equation is solvable or not, we use Kovacic's algorithm. 

By the transformation e = exp(! J 27丑+4C2)2 z(27z2-4C2) 7/, this equat10n become 

贔
dz2 

= r(z)TJ, 

3 (243 + 216μ りz4-216⑫ μC砂+(216 + 96μ りCデ+32¥1'2iC切ー 16C4_ 
r(z) = --

4 丑(27砂— 4C叩

Proposition 3.4. Forμ ヂ0,the identity component G0 of the differential Galois group 

of (8) is not solvable. 

Proof. Poles of r(z) are x = 0, 士予豆ooand the those orders are all 2. Let a土＝土21c.

The coefficients are 
3 2 1 2 

b。=—如= ba_ = boo = --μ ―― 
4'9  4・ 

We obtain a 土 = -l 土土土 1 2v'2・ 土1,a =a  =a  =—土―-µz. Hence the 1magmary part of 0 2 a+ a_ oo 2 3 

s(=) _ s(O) _ s(a+) _ s(a-) 
a=  a。 a叫％＿

is non-zero, and condition (i) of Proposition 2.2 holds. 

We have E。={ -2, 2, 6}, Ee = {2}. Hence condition (ii) holds. 
Since Jf+鳳＝苧μirf--(Ql, condition (iii) holds. 
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