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Abstract 

In mechanics, a Dirac structure, which is the unified notion of symplectic and Poisson struc-
tures, has been widely used to formulate mechanical systems with nonholonomic constraints, 
electric circuits as well as thermodynamic systems. In particular, the induced Dirac structure 
on the cotangent bundle from a given constraint distribution plays an essential role in the 
context of implicit Lagrangian and Hamiltonian systems. However, there has been almost no 
research on the Dirac geometry associated to the tangent bundle TQ, although it may be rele-
vant with regular Lagrangian systems. In this paper, we introduce an induced Dirac structure 
on TQ, called a Lagrangian Dirac structure. For the regular case, we finally show that one can 
define a Lagrange-Dirac system on TQ. 

1 Lagrangian systems 

In this section, we shall make a short review on Lagrangian systems in the context of conventional 

Hamilton's principle as well as the induced symplectic structure called the Lagrangian two-form 

(see Marsden and Ratiu [1999]). 

1.1 Hamilton's principle 

Let us first recall Hamilton's principle in mechanics. Consider a mechanical system with an n-

dimensional configuration manifold Q and let L be a Lagrangian on the tangent bundle TQ. Con-

sider the following action functional 

S(q) = JゎL(q(t),q(t))dt, 
where q(t), t E [ti, t2] C 賊， denotesa curve joining q1 = q(t1) and q2 = q(t2) on Q and where 

り(t)=羞q(t)denotes the time derivative of q(t). Hamilton's variational principle states that the 
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motion q(t) of the mechanical system is given by a solution curve of the critical condition of the 

action functional 

硲 (q)= !!__ /2 L(qe(t), 佑(t))dt= 0, 
dE e=O t, 

(1) 

where qc(t) := q(t, E) is an arbitrary variation of q(t) with fixed endpoints, qo(t) = q(t) and qo(t1) = 

q(t1), qo(t分=q(t叫， forall EE [-a, a]. The infinitesimal variations associated with the variations 

qc(t) are given by 
d 

Jq(t) :=― q,(t). 
dE 
<=0 

It follows from equation (1) that the solution curve q(t) satisfies the Euler-Lagrange equations 

d 8L 8L 

dt匈 8q
=0. 

1.2 Lagrangian symplectic structures on tangent bundles 

(2) 

Legendre transform. Recall the Legendre transform associated to L is given by the fiber deriva— 

tive lFL: TQ→ T*Q as 
d 

lFL(v)・w = - L(v + Ew), 
dE e=O 

where v, w E TqQ and lFL(v)・w indicates the derivative of Lat v along the fiber⑰ Q in the direction 

w. Notice that the map lFL : TQ→ T*Q is fiber-preserving over Q and it maps the fiber TqQ to 
the fiber r;Q. Thus, the Legendre transform lFL: TQ→ T*Q is locally represented by 

lFL(q, v) =い詈），
where p :=紐 ET;Q denotes the momentum variable in mechanics. When a given Lagrangian 
L:TQ→ 良 ishyper-regular, the map lF L : TQ→ T*Q is to be a diffeomorphism. 

Lagrangian forms on tangent bundles. Let L : TQ→ 股bea hyperregular Lagrangian. Let 
冗： T*Q→ Q be the cotangent bundle projection. The cotangent bundle T*Q naturally has the 
canonical one-form 0 defined by, for each aq E r;Q, 

0(aq)・Waq =〈aq,Taq 7rQ(Waq)〉，

where w°'q E TacqT*Q and the canonical symplectic structure is given by 

!1= -d8. 

In local coordinates (q1, ... , q門forq E Q and (q1, ... , q叫P1,・・・,Pn) for (q,p) E T*Q, one has 8 = 
Pi dqi and the canonical symplectic structure is represented by O = dqi I¥ dpi. 
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By using the Legendre transform lF L : TQ→ T*Q, we can define an induced one-form釘 on
TQ, called the Lagrangian one-form, by 

釘=(JFL)*8, 

and also define the induced symplectic structure l1L on TQ, called the Lagrangian two-forrn, by 

伍=(JFL)*O. 

Since !1 = -d8 holds and the exterior derivative d commutes with the pull-back, it reads 

伍＝ーd8£・

Note that the Lagrangian on己orm釘 onTQ holds, for Vq E TQ, 

釘 (vq)・叫 ＝〈lFL(vq),Tv汀Q佃vq)〉，

where Wv" E Tv"TQ, and TQ: TQ→ Q is the tangent bundle projection. 

． 
Local expressions. Using local coordinates (q1, …, q凡v1,…，研） for (q, v) E TQ, the coordinate 

expression of釘 maybe represented by 

釘＝生
枷9
dl, 

and hence幻＝ーd釘 maybe locally denoted by 

8化 防L
伍= dl八呪+ dq'八dv1.
珈 8qJ 枷屯vJ

The induced bundle map況： TTQ→ T*TQ associated with the Lagrangian two-form !IL is 
represented by the skew-symmetric matrix as 

聞ー (;:;~a~L~叫；が
8v屯v1

-~-~j) 
In the above, since we assume that L is hyperregular, the Hessian is nonsingular, i.e., 

det し喜~j) =J 0 
and therefore nL is nondegenerate. 
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Lagrangian systems. In this paragraph, we shall make a brief review on the Lagrangian system 

in the context of the Lagrangian symplectic structure. Let us see how the intrinsic Euler-Lagrange 

equations can be formulated in the context of the Lagrangian two-form on the tangent bundle. 

Let us define an energy EL on TQ by, for u = (q, v) E TQ, 

恥 (u):=〈lFL(u),u〉-L(u). 

Let XL be a vector field on TQ and if XL satisfies the condition 

幻 (u)(XL(u),w)= d恥 (u)・W (3) 

for all u E TQ and w E TuTQ, thenふ issaid to be a Lagrangian vector field or a Lagrangian 

system for L (see also Abraham and Marsden [1978]). 

From the condition (3), we get an intrinsic Euler-Lagrange equations for the Lagrangian 

system: 

ixL幻 =dEL・ (4) 

Since we assume that the Lagrangian Lis hyperregular, the Lagrangian vector fieldふ onTQ is 

uniquely determined by 

ふ＝（叫―ldEL, (5) 

Energy conservation. Let u(t), t E [t1, t2] be the integral curve of the Lagrangian vector field 

ふ onTQ. Then, the energy駈 isconserved such that 

d 

dt 
-EL(u(t)) = d恥 (u(t))・Xふ (t))

＝伍(u(t))(X叫 (t))ふ (u(t)))

=0, 

where the skew-symmetric property of OL is employed. 

Local expressions of Euler-Lagrange equations on TQ. In finite dimensions, using local 

coordinates (qi, vりforu = (q, v) E TQ, the local expression of the energy EL may be given by 

8L 
幻 (q',v')=―v'-L(q', v') 

枷 t

and the differential of恥 maybe given by 

dEL = aEL aEL 
8qi 
dず十
8vi 
dv', 

where 
8EL 82L . 8L 8EL 8化
＝炉—―

8qi 8q屯vj 8qi' 
.VJ. 

枷i = 8v沼vJ
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The Lagrangian vector fieldふ maybe locally denoted by 

8 8 
ふ＝が—＋が—
吋珈

and hence 
ixL幻

四 四炉L
= [ (a疇― 8v吻j)が―珈枷jiJ1] 叫＋し喜~1q1) dv' 

Then, it follows from equation (4) that one has 
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(6) 

which are lifted from the Euler-Lagrange equations on Q in (2). Then, the Lagrangian vector field 

XL is uniquely determined by the Lagrangian Las 

｛詈＝し喜;,,)―'(-a,~~がが＋塁），
dl i 
-=v.  
dt 

(7) 

Second-order vector field. Recall TQ : TQ→ Q; (q, v) t-+ q is the tangent bundle projection 
and let TTQ : TTQ→ TQ; (q,v,q,v) t-+ (q,v) be also the canonical projection. Let us define a 
submanifold of TTQ by 

y(2)Q = {w E TTQ I TTQ(w) = TrQ(w)}, 

where TTQ : TTQ→ TQ; (q,vい） t-+ (q,q) is the tangent map of TQ. Hence, it follows that, for 
an element 

w = (q,v,q,v) E TTQ, 

if it is an element of the submanifold y(2) Q c TTQ, then it satisfies the second-order condition 

V =q. 
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So, we call rC2lQ a second-order submanifold of TTQ. 

If a vector field X on TQ satisfies TTq o X = id, then X is called the second-order vector field, 

which is defined as X : TQ→ rc2JQ; (直）→ (q, q, ij). Hence, it is obvious that the Lagrangian 

vector field XL in (7) is second-order because 

ず＝｀〗~j)-1(-{):j2~k が＋塁）
Let (q(t), q(t)) be an integral curve of XL and q(t) = TQ o (q(t), q(t)) is a base integral curve of 

(q(t), q(t)). The integral curve of XL can be uniquely determined by the base integral curve q(t) 

with a given initial condition in TQ. 

2 Dirac structures on tangent bundles 

In this section, we shall introduce an induced Dirac structure on the tangent bundle from a given 

distribution on Q and Lagrangian L. In particular, we shall assume that L is hyperregular. In this 

case, we can develop the Lagrange-Dirac dynamical system on TQ. 

Dirac structures. Recall the definition of a Dirac structure, see Courant and Weinstein [1988]. 

Let V be a vector space, let〈・,・〉bethe natural paring between V and its dual space V*, and 

consider the symmetric paring on V① V* defined by 

《(v,a),(v,a)》＝〈a,v〉+〈a,v〉,

for (v,a),(v,a) EV① V*. A linear Dirac structure on V is a subspace D c V① V* such that 

D = D1-, where the subspace D1-is orthogonal to D relative to the pairing《,》・

Let P be a smooth manifold and let T P① T* P denote the Pontryagin bundle over P, defined as 

the direct sum of the tangent and cotangent bundle of P. In this paper, we shall call a subbundle 

DcTP① T* Pa Dirac structure on P, if D(x) is a linear Dirac structure on the vector space TxP 

at each point x E P. 

In mechanics, the most important Dirac structure is an induced Dirac structure on the cotangent 

bundle T*Q, which is defined by the canonical symplectic structure O on T*Q and a given constraint 

distribution如 onQ as in Yoshimura and Marsden [2006a]. Such an induced Dirac structure plays 

an essential role in formulating the dynamics of nonholonomic mechanics, electric circuits, fluids 

as well as nonequilibrium thermodynamic systems in the context of implicit Lagrangian systems, 

which may allow the cases of degenerate Lagrangians as shown in Yoshimura and Marsden [2007, 

2009]; Gay-Balmaz and Yoshimura [2015, 2018]. 

In this paper, we primarily focus on an induced Dirac structure on the tangent bundle TQ and its 

associated Lagrange-Dirac dynamical system on TQ, where the given Lagrangian is hyperregular. 
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Nonholonomic constraints. Now let us consider the case in which nonholonomic constraints 

are given. Let△ Q be a constraint distribution on Q given by 

△叫q):= {(q,v) E TQ I (か(q),V砂=0, r = 1, …，m<n}, 

where研 (q)= w[(q)dqi are given r-constraint one-forms on Q. If for any vector fields X, YE  X(Q) 

with values in△ Q, the condition 

[X(q), Y(q)] E位 (q)

holds for each q E Q, then the constraint distribution△ Q c TQ is integrable in the sense of 

Frobenius and the given distribution is holonomic since there exists a submanifold N C Q such 

that, for each q E Q, 

TqN=△叫q).

In this paper, we consider the general case in which the constraint distribution△ Q is nonintegrable, 

namely, nonholonomic. 

Lagrangian Dirac structure on the tangent bundle. Let L be a regular Lagrangian on TQ 

and E)L = (1FL)*8 is the Lagrangian one-form, where 8 is the canonical symplectic structure on 

T*Q as before. Recall that given a regular distribution△ Q on Q, the lifted distribution C on TQ 

is defined by 

C = (T℃)―1(△砂

which is locally given by, for each (q, v) E TQ, 

C(q,v) = {(q,v,<5q,<5v) E T(q,v)TQ I (q,<5q) E△叫q)}.

Then, we can define an induced Dirac structure DL c TTQ④ T*TQ on TQ from the distribution 

△ Q and the Lagrangian L by, for each u = (q, v) E TQ, 

DL(u) = { (w, a) E TSQ x r;TQ w E C(u), 

and〈a,8u〉＝幻(u)(w,8u),for all 8u E C(u)}, (8) 

where we recall nL = -d8 L is the Lagrangian two-form. 

Note that this Dirac structure DL is dependent on the given Lagrangian L on TQ. In other 

words, the Dirac structure DL is not naturally attributed with the tangent bundle, but is induced 

from a given distribution△ Q and a given Lagrangian L. In other words, the induced Dirac structure 

DL on the tangent bundle TQ can be induced from the Dirac structure DT*Q on the cotangent 

bundle by the Legendre transform. In this sense, let us specifically call D L a Lagrangian Dirac 

structure on TQ. 
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Lagrange-Dirac systems on the tangent bundle. Associated to the Lagrangian L on TQ, 

we can define the energy EL on TQ by, for u E Q, 

EL(u) :=〈lFL(u),u〉-L(u). 

Given EL and DL, a curve u(t) E TQ is a solution of the Lagrange-Dirac system if it satisfies 

the condition 

(u(t),d幻 (u(t)))ED瓜u(t)). (9) 

It follows from the condition (9) that we get the intrinsic Lagrange-d'Alembert equations 

onTQ: 

{ .,.,,, 幻 ("e(t))-d恥 ("e(t))E C(V-O)°, 

如(t)E C(uo), 

By computations using local coordinates (qi, vi) for u E TQ, we can obtain the local expression of 

the Lagrange-d'Alembert equations on TQ: 

82L dvj が切 8L 
—＋が—ー＝入 r

枷i8vjdt 8v屯qj 8qi rWi, 

dqi i 
-=V  
dt 

(10) 

叫(q)が=0.

Energy balance equatmn. Along a solution curve u(t) = (q(t),v(t)) E TQ of the Lagrange-

Dirac system on TQ in (9), the energy balance equation holds as: 

3 Examples 

d 
一恥(q(t),v(t))= 0. 
dt 

Lagrangian systems with nonholonomic constraints. We illustrate our theory with an ex-

ample of the mechanical system in which the Lagrangian L on TQ has the form of kinetic minus 

potential energy as 

L(q, v) = T(q, v) -U(q), 

where U(q) denotes the potential energy defined on an n-dimensional configuration manifold Q 

and T(q, v) =½ 的 (q)v叫 thekinetic energy with an n x n mass matrix Mij whose elements are 
dependent on q E Q. Further we assume that det M磯）ヂ 0at each q. From the given Lagrangian 

L(q, v), we have the energy as 

恥 (q,v)= -M磯）が炉 +U(q).
2 
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Suppose that we have nonholonomic constraints△ Q C TQ given by 

△叫q):= {(q,v) E TQ I〈wr(q),Vq〉=0, r = 1, …, m<n}, 

where研 (q)=叫(q)dlare given r-constraint one-forms on Q. Then, we can define the induced 

Lagrangian Dirac structure DL on TQ as in (8). 

By direct computations, it follows from the condition for a curve u(t) = (ず(t)'び(t))in TQ 

(u(t),d恥 (u(t)))E DL(u(t)) 

that we can obtain the Euler-Lagrange equations on TQ by using Lagrange multipliers入ras 

M 
dvj 8Mij 1 8Mjk 

vj炉―-—
au 

・・一 ＋ 
'1 dt 8qk 2 8qi 

VJ位＝一
8qi 
＋入r叫(q)

dq'i 
-=V  
dt'  

叫(q)q= 0. 

Planar linkage mechanisms. We show an example of holonomic mechanical systems, i.e., a 

planar linkage mechanism as in Fig.l. The planar linkage is consisted of three rigid links with four 

ideal pin joints, where we assume that there is no friction at the joints and also that there exists 

the gravitational acceleration g along the negative direction of y-axis. The configuration manifold 

X 

Figure 1: Rigid planar linkage mechanism 

of the planar linkage mechanism is denoted by Q =配 X S1 X配 X S1 X配 X S1, whose local 

coordinates are given by q = (xi, Y1, 01, x2, Y2, 02, xふY3,島） for each q E Q. The linkage mechanism 
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has a set of holonomic constraints given by 

rp(q) = 

-xi + Ii cos 01 
-y1 + Ii sin01 
-X2 + 2/i COS仇十bcos02 
-y2 + 211 sin釘十12sin 02 
-X3 + [3 cos 03 + d 
-y3 + [3 sin 03 
2/i cos 01 + 212 cos的ー 213cos03 -d 
2/i sin仇+212 sin 02 -2/3 sin 03 

=0. 

In the above, cf; = (訊…，炉）九 whereeach cp(qy is a function on Q. Define the Lagrangian on TQ 

by using v = (Vx,, Vy,, v0,, vお2,Vy2, v02, Vx3, Vy3, V03) E TqQ as 

L(q, v)一言圧(vx,2 + Vy, 2) + t 1I;v0, 2 -U(q) 
where mi and Ii denote the mass and the moment of inertia of the i-the link respectively and where 

U(q) =区i=lm叩 i・
Then, the dynamics of the planar linkage mechanism may be represented by the Lagrangian 

systems with holonomic constraints on TQ as 
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where the mass matrix 1s M = diag(m1加 2 
',m山 /3,m2,m2,m2ば/3,m3,m3,m3lげ/3).

4 Con cl us ions 

In this paper, first we have reviewed conventional Hamilton's principle in mechanics to formulate 

the Euler-Lagrange equations. Then, we have seen the geometry of the tangent bundle TQ, in 

which the Lagrangian forms are induced on TQ from the canonical forms on the cotangent bundle 

via the Legendre transform. In particular, for the case in which a given Lagrangian is regular, we 

can develop the Lagrangian system on TQ. Second, we have introduced an induced Dirac structure 

DL on TQ, which is called Lagrangian Dirac structure, from a given distribution△ Q and a regular 

Lagrangian Lon TQ. We have shown that the solution curve of the Lagrange-Dirac system satisfies 

the generalized Lagrange-d'Alembert equations. We have illustrated our theory with examples of a 

nonholonomic mechanical system and a rigid planar linkage mechanism with holonomic constraints. 
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