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Abstract

In mechanics, a Dirac structure, which is the unified notion of symplectic and Poisson struc-
tures, has been widely used to formulate mechanical systems with nonholonomic constraints,
electric circuits as well as thermodynamic systems. In particular, the induced Dirac structure
on the cotangent bundle from a given constraint distribution plays an essential role in the
context of implicit Lagrangian and Hamiltonian systems. However, there has been almost no
research on the Dirac geometry associated to the tangent bundle 7'Q, although it may be rele-
vant with regular Lagrangian systems. In this paper, we introduce an induced Dirac structure
on T'Q, called a Lagrangian Dirac structure. For the regular case, we finally show that one can
define a Lagrange-Dirac system on 7'Q).

1 Lagrangian systems

In this section, we shall make a short review on Lagrangian systems in the context of conventional
Hamilton’s principle as well as the induced symplectic structure called the Lagrangian two-form
(see Marsden and Ratiu [1999]).

1.1 Hamilton’s principle

Let us first recall Hamilton’s principle in mechanics. Consider a mechanical system with an n-
dimensional configuration manifold @ and let L be a Lagrangian on the tangent bundle 7'Q. Con-

sider the following action functional
123
S@= [ Llav.do)d,
ty

where ¢(t), t € [t1,t2] C R, denotes a curve joining ¢ = ¢(t1) and g2 = ¢(t2) on Q and where
d(t) = £q(t) denotes the time derivative of g(t). Hamilton’s variational principle states that the
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motion ¢(t) of the mechanical system is given by a solution curve of the critical condition of the
action functional
d

35(q) = e

[ tato.ama=o 1)

e=0J1t

where ¢.(t) := q(t, €) is an arbitrary variation of ¢(t) with fixed endpoints, go(t) = ¢(t) and go(t1) =
q(t1), qo(t2) = q(t2), for all € € [—a,a]. The infinitesimal variations associated with the variations

ge(t) are given by

dq(t) == o

qe(t).
e=0
It follows from equation (1) that the solution curve ¢(t) satisfies the Euler-Lagrange equations
d oL 0L
LoL_ 2 )
dt 9¢  0Oq

1.2 Lagrangian symplectic structures on tangent bundles

Legendre transform. Recall the Legendre transform associated to L is given by the fiber deriva-
tive FL : TQ — T*Q as

d
FL(v)-w= e - L(v + ew),

where v,w € T,Q and FL(v)-w indicates the derivative of L at v along the fiber T, in the direction
w. Notice that the map FL : TQ — T*Q is fiber-preserving over @ and it maps the fiber T,Q to
the fiber Ty'Q. Thus, the Legendre transform FL : TQ — 1@ is locally represented by

Pl = (0.5 ).

where p := g—f € T;Q denotes the momentum variable in mechanics. When a given Lagrangian
L :TQ — R is hyperregular, the map FL : T'Q) — T*Q is to be a diffeomorphism.

Lagrangian forms on tangent bundles. Let L :T(Q — R be a hyperregular Lagrangian. Let
mq : T*Q — @ be the cotangent bundle projection. The cotangent bundle T*Q naturally has the

canonical one-form © defined by, for each o € T;Q,
®(aq) cWe, = <qu., Taqﬂ'Q(waq» s
where wa, € To, T*Q and the canonical symplectic structure is given by
Q= -do.

In local coordinates (q!,...,q") for ¢ € Q and (¢*, ..., q", p1, ..., pn) for (¢,p) € T*Q, one has © =

pidg’ and the canonical symplectic structure is represented by Q = dg* A dp;.



By using the Legendre transform FL : TQ — T*(Q, we can define an induced one-form ©p on

TQ, called the Lagrangian one-form, by
O = (FL)"6,
and also define the induced symplectic structure Qy, on T'Q, called the Lagrangian two-form, by
Qr = (FL)*Q.
Since 2 = —dO holds and the exterior derivative d commutes with the pull-back, it reads
Qp =—-dOr.
Note that the Lagrangian one-form ©r, on T'Q holds, for v, € T'Q,
OL(vg) - wy, = <FL(Uq)7T’Uq7—Q(qu)>7
where w,, € T,, TQ, and 7q : TQ — Q is the tangent bundle projection.

1

Local expressions. Using local coordinates (¢', ..., ¢"

;oo™ for (q,v) € TQ, the coordinate

expression of O, may be represented by

oL
= —dq*
goi 4

Or,

and hence Q7 = —d© may be locally denoted by

Q= %dqi Adg + &J;Lv - dq® A dul.
The induced bundle map QbL TTQ — T*TQ associated with the Lagrangian two-form 2p is
represented by the skew-symmetric matrix as
PL L L
QbL _| Ovi 8qi82L8vi3qj OvtovI

In the above, since we assume that L is hyperregular, the Hessian is nonsingular, i.e.,

02L
det (W) 70

and therefore 27, is nondegenerate.

215



216

Lagrangian systems. In this paragraph, we shall make a brief review on the Lagrangian system

in the context of the Lagrangian symplectic structure. Let us see how the intrinsic Euler-Lagrange

equations can be formulated in the context of the Lagrangian two-form on the tangent bundle.
Let us define an energy Ey, on TQ by, for u = (¢q,v) € TQ,

Er(u) = (FL(u),u) — L(u).
Let X1, be a vector field on T'Q) and if X, satisfies the condition
Qr(u)(Xp(u),w) =dEL(u) -w (3)

for all w € TQ and w € T, TQ, then Xp, is said to be a Lagrangian vector field or a Lagrangian
system for L (see also Abraham and Marsden [1978]).

From the condition (3), we get an intrinsic Euler-Lagrange equations for the Lagrangian
system:
ix, Qr =dE;. (4)
Since we assume that the Lagrangian L is hyperregular, the Lagrangian vector field X on T'Q is
uniquely determined by

Xp = (QbL) "dEy. (5)

Energy conservation. Let u(t), t € [t1, 2] be the integral curve of the Lagrangian vector field

X on TQ. Then, the energy Ep, is conserved such that

L By u(t)) = dBL (u(t)) - Xp (u(t))

dt
= Qg (u(t) (X (u®), X1 (u(?)))
=0,

where the skew-symmetric property of €, is employed.

Local expressions of Euler-Lagrange equations on 7'Q). In finite dimensions, using local

coordinates (¢*,v?) for u = (¢, v) € TQ, the local expression of the energy Er, may be given by
Eu(d ) = St — 1,0

and the differential of E7, may be given by

OEL

aqt

0ET,

i
vt ',

dE, = dg' +

where

0B, _ 9’L ; 9L OB, _ 0°L

dq¢t  0qiovI v oq’ vt Ovidvd




The Lagrangian vector field X may be locally denoted by

.7 8 3
X =4 e T pu

and hence
1x, QL

(e LN o L o + PL_ 3\ goi
[\ oviogt  ovidg T Buigui 4 Dvidws 1 ’
Then, it follows from equation (4) that one has
(62L 2L )qi )

_— -t =0 - —
Iidqt  Ovidg OvidvI OqiovI aq’
O*L . 0°L

J = - T jo
Oviovd 4 Ovidvi v

Since the Lagrangian L is hyperregular, i.e., det [%] # 0, it immediately follows that one

gets the local expressions of the Euler-Lagrange equations on 7'Q) as

R

vidvd dt — Ovidg 4 oqt’ )
. (6)

dg' ot

at

which are lifted from the Euler-Lagrange equations on @ in (2). Then, the Lagrangian vector field
X1, is uniquely determined by the Lagrangian L as

(LY (P 00

dt — \ Ovidvi Oidgk 4 ogi )’ (7)
dg" _ ;

ik

Second-order vector field. Recall 7g : TQ — Q; (¢,v) + ¢ is the tangent bundle projection
and let g : TTQ — TQ; (¢.v,4,0) — (g,v) be also the canonical projection. Let us define a
submanifold of T7'Q) by

TPQ = {w € TTQ | Tro(w) = Trq(w)},
where T'7q : TTQ — TQ; (¢,v,q4,0) — (g,¢) is the tangent map of 7¢. Hence, it follows that, for
an element

w = (q7 v? q7 /[}) E TTQ7

if it is an element of the submanifold T Q ¢ TTQ, then it satisfies the second-order condition

v =q.
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So, we call T Q a second-order submanifold of TTQ.
If a vector field X on T'Q satisfics T'7g o X = id, then X is called the second-order vector field,
which is defined as X : TQ — T Q; (¢.q) — (¢,¢,q). Hence, it is obvious that the Lagrangian

vector field X, in (7) is second-order because

S (LN 2L s, OL
=\ ogiog agiogc T T o )

Let (g(t), ¢(t)) be an integral curve of Xz and ¢(t) = 7¢ o (¢(¢), ¢(t)) is a base integral curve of

(¢(t),¢(t)). The integral curve of Xy, can be uniquely determined by the base integral curve ¢(t)

with a given initial condition in T'Q).

2 Dirac structures on tangent bundles

In this section, we shall introduce an induced Dirac structure on the tangent bundle from a given
distribution on @) and Lagrangian L. In particular, we shall assume that L is hyperregular. In this

case, we can develop the Lagrange-Dirac dynamical system on 7'Q).

Dirac structures. Recall the definition of a Dirac structure, see Courant and Weinstein [1988].
Let V be a vector space, let (-,-) be the natural paring between V and its dual space V*, and
consider the symmetric paring on V @ V* defined by

«(Uv a)7 (1_}7 d)» = (Oc, 1_}> + <5‘7 1)),

for (v,a),(0,&) € V@& V*. A linear Dirac structure on V is a subspace D C V @& V* such that
D = D, where the subspace Dt is orthogonal to D relative to the pairing ((, ).

Let P be a smooth manifold and let TP @& T™ P denote the Pontryagin bundle over P, defined as
the direct sum of the tangent and cotangent bundle of P. In this paper, we shall call a subbundle
D Cc TP&T*P a Dirac structure on P, if D(z) is a linear Dirac structure on the vector space T, P
at each point x € P.

In mechanics, the most important Dirac structure is an induced Dirac structure on the cotangent
bundle T*@Q, which is defined by the canonical symplectic structure Q on 7*@Q and a given constraint
distribution Ag on @ as in Yoshimura and Marsden [2006a]. Such an induced Dirac structure plays
an essential role in formulating the dynamics of nonholonomic mechanics, electric circuits, fluids
as well as nonequilibrium thermodynamic systems in the context of implicit Lagrangian systems,
which may allow the cases of degenerate Lagrangians as shown in Yoshimura and Marsden [2007,
2009]; Gay-Balmaz and Yoshimura [2015, 2018].

In this paper, we primarily focus on an induced Dirac structure on the tangent bundle 7'Q) and its

associated Lagrange-Dirac dynamical system on T'Q), where the given Lagrangian is hyperregular.



Nonholonomic constraints. Now let us consider the case in which nonholonomic constraints

are given. Let Ag be a constraint distribution on @ given by
Aq(q) =={(q,v) €TQ | (w'(q),v4) =0, r =1,...;m <n},

where w”(¢) = w!(q)dq® are given r-constraint one-forms on Q. If for any vector fields X,Y € X(Q)

with values in Ag), the condition
(X(a):Y(a)] € Agla)

holds for each ¢ € @, then the constraint distribution Ag C T'Q is integrable in the sense of
Frobenius and the given distribution is holonomic since there exists a submanifold N C @ such
that, for each ¢ € @,

T,N = Ag(q).

In this paper, we consider the general case in which the constraint distribution A¢ is nonintegrable,

namely, nonholonomic.

Lagrangian Dirac structure on the tangent bundle. Let L be a regular Lagrangian on 7'Q)
and ©7 = (FL)*© is the Lagrangian one-form, where © is the canonical symplectic structure on
T*@ as before. Recall that given a regular distribution Ag on @, the lifted distribution C on T'Q
is defined by

C=(Tre) ' (Aq),

which is locally given by, for each (¢,v) € TQ,

Clq,v) = {(q,v,0¢,0v) € T(4,)TQ | (¢,9q) € Ag(q)} -

Then, we can define an induced Dirac structure Dy, C TTQ®T*T'Q on T'Q) from the distribution
Ag and the Lagrangian L by, for each u = (¢,v) € TQ,

Dr(u) = {(w.a) € T,TQ x T;TQ | w € C(u),
and (o, 6u) = Qp (u)(w, éu), for all du € C(u)}, (8)

where we recall Q7 = —d©p, is the Lagrangian two-form.

Note that this Dirac structure Dy is dependent on the given Lagrangian L on T'Q. In other
words, the Dirac structure Dy, is not naturally attributed with the tangent bundle, but is induced
from a given distribution A and a given Lagrangian L. In other words, the induced Dirac structure
Dy, on the tangent bundle T'Q) can be induced from the Dirac structure Dr-g on the cotangent
bundle by the Legendre transform. In this sense, let us specifically call Dy a Lagrangian Dirac

structure on TQ.
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Lagrange-Dirac systems on the tangent bundle. Associated to the Lagrangian L on T'Q),

we can define the energy Ep on T'Q by, for u € Q,
Epr(u) = (FL(u),u) — L(u).

Given Ep, and Dy, a curve u(t) € TQ is a solution of the Lagrange-Dirac system if it satisfies

the condition
(a(t), dEr(u(t))) € Dr(u(t)). (9)

It follows from the condition (9) that we get the intrinsic Lagrange-d’Alembert equations
on TQ:
140 (uo(t)) — dEL(uo(t)) € C(uo)®,

UU(f) € C(’ug).
By computations using local coordinates (¢*,v?) for u € TQ, we can obtain the local expression of
the Lagrange-d’Alembert equations on TQ:
0’L dv’ 9’°L .. OL

- - — - - ¢ — — = )\7- ’
oviovd dt + oioqI 4 oq* Wi
dq’ g (10)
a

wi(q)¢" = 0.

Energy balance equation. Along a solution curve u(t) = (¢(t),v(t)) € TQ of the Lagrange-

Dirac system on 7'Q in (9), the energy balance equation holds as:
1p (q(t),v(t)) =0
— v =0.
dt \q 5

3 Examples

Lagrangian systems with nonholonomic constraints. We illustrate our theory with an ex-
ample of the mechanical system in which the Lagrangian L on T'Q) has the form of kinetic minus
potential energy as

L(g,v) =T(g,v) — U(q),

where U(q) denotes the potential energy defined on an n-dimensional configuration manifold @
and T'(q,v) = $M;;(q)v'v? the kinetic energy with an n x n mass matrix M;; whose elements are
dependent on ¢ € Q. Further we assume that det M;;(¢) # 0 at each ¢. From the given Lagrangian

L(q,v), we have the energy as

1 o
Ei(g,v) = 5Mi(a)o's! + U(q).



Suppose that we have nonholonomic constraints Ag C T'Q given by

Ao(q) ={(g,v) eTQ | (w"(q),vg) =0, r=1,...,m < n},

where w"(q) = wl'(¢)dq" are given r-constraint one-forms on @. Then, we can define the induced
Lagrangian Dirac structure Dy, on TQ as in (8).

By direct computations, it follows from the condition for a curve u(t) = (¢'(t),v*(t)) in TQ
(a(t), dEL(u(t)) € Dr(u(t))
that we can obtain the Euler-Lagrange equations on 7'Q) by using Lagrange multipliers A, as

dvi M, LOMj .k :

Yodt + Oqk T3 Oq* Oqt
dq’ i
b B—y
dt
w;i(q)q = 0.

Planar linkage mechanisms. We show an example of holonomic mechanical systems, i.c., a
planar linkage mechanism as in Fig.1. The planar linkage is consisted of three rigid links with four
ideal pin joints, where we assume that there is no friction at the joints and also that there exists

the gravitational acceleration ¢ along the negative direction of y-axis. The configuration manifold

Figure 1: Rigid planar linkage mechanism

of the planar linkage mechanism is denoted by @ = R? x S1 x R? x S! x R? x S!, whose local

coordinates are given by ¢ = (x1,y1, 01, x2, Y2, 02, 23,3, 03) for each ¢ € Q. The linkage mechanism
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has a set of holonomic constraints given by

[ —zy + 1y cos by i
—y1 + [y sinfy
—29 + 211 cos b1 + Iy cos b
—yo + 2ly sin by + lo sin Oy
—x3 + l3cos63 + d
—y3 + l3sin 03
211 cos B + 215 cos by — 2l3cos bz —d
211 sin 0y + 25 sin B — 213 sin f3

In the above, ¢ = (¢, ...,¢™)T, where each ¢(g)" is a function on Q. Define the Lagrangian on T'Q
by using v = (Vg , Uy, s Vo, , Vs, Vys, V9s s Vag, Vys, Vog) € T4 Q as

3 3
1 . 1
L(g,v) = E 5mi(%"2 + Uyq»z) + E 511'1)07»2 - U(q),

i=1 i=1

where m; and I; denote the mass and the moment of inertia of the i-the link respectively and where
3
Ulq) = > i1 migyi-
Then, the dynamics of the planar linkage mechanism may be represented by the Lagrangian

systems with holonomic constraints on 7'Q) as

L OU 0"
M o7 = ——— + ==\,
7Y a¢t  Oq
§ =1
¢"(q) =0

where the mass matrix is M = diag(m17m1,m1l12/37mz,mg,mglgz/?),mg.,mg,mglgg/?)).

4 Conclusions

In this paper, first we have reviewed conventional Hamilton’s principle in mechanics to formulate
the Euler-Lagrange equations. Then, we have seen the geometry of the tangent bundle 7'Q), in
which the Lagrangian forms are induced on 7'Q) from the canonical forms on the cotangent bundle
via the Legendre transform. In particular, for the case in which a given Lagrangian is regular, we
can develop the Lagrangian system on 7'Q). Second, we have introduced an induced Dirac structure
Dr, on T'Q), which is called Lagrangian Dirac structure, from a given distribution Ag and a regular
Lagrangian L on T'Q). We have shown that the solution curve of the Lagrange-Dirac system satisfies
the generalized Lagrange-d’Alembert equations. We have illustrated our theory with examples of a

nonholonomic mechanical system and a rigid planar linkage mechanism with holonomic constraints.
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