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Abstract

In this paper we consider the Gel'fand problem with non-local
term Av + Ae¥/ [e’dz = 0 on n-dimensional bounded domain £
with Dirichlet boundary condition. If it is star-shaped, then we have
an upper bound of A for the existence of the solution. We also have
infinitely many bendings in X of the connected component of the so-
lutionset in A—vifQisaballand 3<n <9.

1 Introduction

We counsider the following Gel’fand problem with non-local term:

1
v=>0 on 012, (1)

{ —Av=XrSe i@
where A is a positive constant and (2 is a bounded domain in R™ with smooth
boundary 9€2. We define the solution set C and the section of C cut by A > 0
by

C = {(A\,v) | v =v(z) is a classical solution to (1) for A > 0}.

and
¢* = {v e CH@W) N C@) | v = v(a) solves (1)},



respectively. The first theorem is concerned with the star-shaped domain, so
that = - v > 0 holds for each z € 8Q). The second one is concerned with the
unit ball.

Theorem 1 If ) is star-shaped with respect to the origin, then there is an
upper bound of A for the eristence of the solution to (1). Thus we have
X € (0,+00) such that C* # @ and C*> = 0 for 0 < A < X and XA > ],
respectively. Moreover Cy is unbounded in A — v plane, and §C* = 1 for
0 < A K 1, where Cy stands for the connected component of C satisfying
(0,0) € Co.

Theorem 2 If Q is the unit ball B = {z € R" | |z] < 1} then C is a one-
dimensional open manifold parametrized as

C ={(A(s),v(-,8)) | 0 < s < 400}
with the endpoints (0,0) and the weak solution (2wy,2 log li—l) , 80 that
lim (A(s),v(-,s)) = (0,0)

and

lim (A(s),v(-, ))—(2wn,2log| I)

st+o0

in Rx C(B) and R x W2%P(B) for p € [1,n/2), respectively, where w, denotes
the (n — 1) dimensional volume of the unit ball in R*. If3 < n < 9,
then C bends infinitely many times in A\. Thus there is a sequence {sy}
labeled by k = 1,2, with0 < 83 < 83 < +++ < 8 < --- such that s €
[S2k—1, Sak] — A(S) and s € [sox, Saxs1] M A(S) decreasing and increasing,
respectively. Furthermore, it holds that

A(s2) < A(sg) < -+ < A(82k) < A(S2k42) <+ < 2wy
< o <L )\(Szk+1) < )\(82)5_1) <L L )\(33) < A(Sl)

and there are infinitely many solutions to (1) for A = 2w, in particular.
If n > 10, on the other hand, then no bending occurs to C and hence s €
[0,00) = A(s) is increasing and each A € (0,2wy) takes a unigue solution to

(1).

Next we study the spectral and related properties of the following lin-
earized problem of (1):

PRt I |
g+ ApSod - AT = —pp im0 )
=0 : on 9.

45



46

Let us denote by ¢ = i(A,v) and i = ip()\,v) the number of negative
eigenvalues of (3) and that for radially symmetric eigenfunctions to (3), re-
spectively. We call these numbers Morse index and radial Morse index at
(A,v) € C, respectively.

Theorem 3 Under the circumstances described in the previous theorem, if
3 <n <9 then it holds thati = i = k on the arc Ty Ty 41 of C fork =0,1,--.,
where Ty, = (A(s),v(sk)) with sp = 0. Ifn > 10, on the other hand, it always
holds that 1 = ip = 0.

In §2, we treat the star-shaped domain and prove Theorem 1. We omit
the proof of Theorems 2 and 3. See [8] and [9] for detail.

2 Star-shaped domain

Throughout the present section, {2 denotes the general star-shaped domain
with respect to the origin in R" for n > 3 provided with the smooth boundary
01}, and v stands for the outer unit normal vector.

Proof of Theorem 1: It follows from McGough [7] that the star-shaped
) takes & > 0 such that the solution of

—Av=o0€e’ in
{ v=0 on A0 (3)

with a constant ¢ > 0 is unique for 0 < o < &. However, any solution
v =v(z) to (1) solves (3) with

A A
=" <
Joerdz ~ |0

because of its positivity, where |Q] denotes the volume of Q. Therefore, the
solution to (1) is unique for 0 < A < X\ = #|Q|. Hence we can prove the
uniqueness result.

To have an upper bound A we apply the Pohozaev identity [10].
Unboundedness of the component Cy follows from the standard degree argu-
ment similarly to [12] and [13]. O

The first eigenvalue of (2), denoted by u;(A,v), is positive around the
trivial solution (A,v) = (0,0) similarly to (3). Therefore, it generates a
branch in C. This branch continues as far as p;(A,v) > 0 and because we



have an upper bound for C, # @ if Q is star-shaped, only two possibilities arise
then. That is, there is a one-dimensional manifold contained in C starting
from (A,v) = (0,0) denoted by

C={(As),v(+8)) | 0 <5 < 50},

and we have either that lim, ., (A(s),v(+,8)) = (A*,v*) € C exists in R X
C(QY) with ’
p(A*,v*) =0,

or else that limsup,_,, ||v(:,8)||,, = +oo. For simplicity, we say that C
is closed and open in the former and the latter cases, respectively. Those
notions are kept, if there is an upper bound of A for the existence of the
solution to (1), and then the alternatives between openness and closedness
of C given above, arise. In any case, the connected component Cy mentioned
in Theorem 1 contains this C. We now describe its spectral properties.

Proposition 1 If (A\*,v*) € C satisfies pa(X*,v*) > py (A*,v*) = 0, with
p1(A*,v*) = 0 admiting the eigenfunction ¢* > 0, then C is locally one-
dimensional manifold parametrized as

C* = {(Ms),v(s)) | || < 6}

with (A(0),v(0)) = (A\*,v*). Here us(X\*,v*) denotes the second eigenvalue
of (2) at (A\,v) = (A*,v*). Furthermore, C* bends to the left with respect
to A at (A*,v*), so that A(s) < X* holds for 0 < |s| < & and the map-
pings s € (—4,0] — A(s) and s € [0,8) > A(s) are increasing and de-
creasing, respectively. Finally, u; (A(s),v(s)) changes sign at s = 0, say,
tp1 (A(s),v(8)) > 0 according as —d < £s < 0.

Proof: Given (A*,v*) € C with u;(A*,v*) = 0, let the linearized opera-

tor, the left-hand side of (2) with (A,v) = (A*,v*) be A*. Then, from the

assumption we have Ker(A*) = (¢*) with ¢* = ¢*(z) € H§(Q) \ {0} positive
in ). Now, we take the nonlinear operator ‘

* »
e? +s¢*+w

B(s,0,0) = AW" + 56" +w) + (N +0) g
Q

defined for s € R, 0 € R, and w € Y, where

Y= {w € C*(N) | wlpq =0, Lwd)*dm:O}.
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It is obvious that ®(0,0,0) = 0 and the linearized operator

v* v* R
®,.,(0,0,0) = ( € /ﬁli d“’) : x = C0)
Y

is an isomorphism by ¢* > 0. Because classical solution to (1) near (A*,v*) is
identified with zero of ®, the implicit function theorem then guarantees a C2-
family {(A(s),v(s)) | |s| < so} of classical solutions satisfying (A(0),v(0)) =
(A*,v*), where so > 0. It also follows from the standard perturbation theory
([4]) that the linearized operator around this (A(s),v(s)) takes the simple
eigenvalue u(s) and the eigenfucntion ¢(s) with C? dependence in s such
that ((0), #(0)) = (0,¢*) so that (2) is valid to

(A0, 1, 0) = (A(s),v(s), (), (s))

for |s| < so.
Differentiating with respect to s, we have from (1) that
Joe
Av—i—/\f +)\f =Y )‘(f vdz)ze =0 in§ (4)
v=0 on 0N.

Then, subtracting (2) from (4) with s = 0 multiplied by © and ¢* respec-
tively, we get that
Jo€¥ ¢*dz

Joerdx

and hence A(0) = 0 holds true. This implies 9(0) € Ker A* by (4), and we
can assume that ©(0) = ¢* without loss of generality, because (/.\(O),I'J(O))
does not vanish from the implicit function theorem.

Differentiating (4) once more and putting s = 0, we have

A(0) —0,

ev fn e”¢*da: ev¢*2
Ab+ A - A Vb Aee———
ot Joevdz (Jo e”d:c)ze + Joevdz
A2 o €9dT ue ) ing (5)

Joe'dz " (fevdz)?

with ¥ = 0 on 0Q. Then, subtracting (5) from (2) multiplied by ¢* and 4,
respectively, we obtain that

fQ e’ d)"dz
v dx

x {3er g pergids (e 9 dn) faev'¢*3dw}.

M(0)

(Jo " dz)’ (Joe dz)® Joevtdz



Letting ﬁd—% = du, we have
Q

—A;E—Q)- [oan=s[ oan [ ¢au—2([ san) - sﬁ) ¢ dp
=3 [ g*du- {/qu*zd#— (/Qqs*du)z} +([#dn) - [#2du<o

with the equality only when ¢* is a constant. This is impossible, and we get
that A(0) < 0. :

To complete the proof, we differentiate (2) and obtain

. e”¢*2 f969¢*d.‘12 o 4 6”(& f e"¢*2da: .
M Mea T e MmO

fn ”¢d:c (fne”qb*d:r) Joe'Ptde , . ..
(fne”d-”’) 2 (Ja evd“’) ¢ 'Wa v=he n e

with ¢ = 0 on 8Q by putting s = 0. Integrating (6) multiplied by ¢* we have

“(0)"¢'*”2 /¢'3dﬂ—3/;l¢'dﬂ'/s;¢*2dl‘+2(/Q¢*dll')3,

similarly. The proof is complete. O
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