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Abstract 

Kostka numbers K沖 arenon-negative integers indexed by two partitions入andμ.They equal to the 
number of semistandard tableaux of shape入andweightμ. Also they equal to the number of K-hives with 
boundary edge label determined by入andμ.Their basic property is K入"=K畑(μ)for any element a of 
the symmetric group. This is proved by constructing a bijection called the Bender-Knuth transformation 
between semistandard tableaux. In this paper, we give a perspective of the Bender-Knuth transformation 
through the hive model. 

1 Introduction 

Kostka numbers are important and classical numbers in combinatorics and representation theory. Let 

入bea partition of n E N andμbe a composition of n which is a partition not assuming the decreasing 

order. In combinatorics, Kostka number K入μequalsto the number of semistandard tableaux of shape 

入andweightμ. Also, when one expresses the Schur function s入 asa linear combination of monomial 

symmetric function m Kostka numbers appear as the coefficients so that s入=~μ, k入μ叫， where入isa 

partition of n and the sum is over all partitionsμ. In representation theory, Kostka numbers appear as a 

multiplicity of irreducible representations. More precisely, let S入beSpecht modules which are irreducible 

modules of the symmetric group and M入bethe permutation module. Then we have Mµ= 〶豆心入µ外

A fundamental property of Kostka number is that K>,μ= K知(μ)holds for any element u of the 

symmetric group. In fact, this is shown by constructing a bijection between semistandard tableaux. The 

bijection is called the Bender-Knuth transformation [2] which was also used to prove the Littlewood-

Richardson rule [12]. 
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On the other hand, the hive model was introduced by A.Knutoson and T.Tao [9]. It is a triangular 

graph like (2). If a hive's boundary edge label is determined and the hive satisfies some conditions, then 

it is called K-hive. And we see that a K-hive 1-1 corresponds to a semistandard tableau. Hence, Kostka 

number equals to the number of some K-hives. 

In this paper, we give a perspective of the Bender-Knuth transformation from the hive model, namely, 

we construct a bijection between K-hives corresponding to the Bender-Knuth transformation. 

2 Definitions 

2.1 Kostka number and related notation 

In this section, we will define Kostka numbers and explain the Bender-Knuth transformation. Through-

out this paper, 6n is the symmetric group of degree n . 

Definition 1 

入＝ （入1,... , 入k)is called a partition of n E N if it satisfies入iE Z;,o(i = 1, ... ,k), 入1+・・・＋入k=n  

and >..1 2・ ・ ・2入k.Also, each入iis called a pa廿. We denote the sum of all parts by I入I-If入satisfies

conditions入iE Z;,o andふ＋・・・十入k= n (but not necessarilyふミ・・・ミふ） then it is called a 

composition. 

We define an action of 6n on compositions as follows. Letμ= (μ1, ... , μk) be a composition of n. 

Then, forび E6n, u・ 入：＝（入r;(l),... , 入r;(k))-

Definition 2 

Let入＝（ふ，．．．，ふ） be a partition of n. The Young diagram of shape入isan array of n boxes having k 

left-justified rows with row i containing入iboxes for 1 ::; i ::; k. 

Example 1 

Ifn = 3, partitions of3 are (3), (2, 1), (1, 1, 1). Then the corresponding Young diagram are respectively 

ITIJ EP LJ・

A Young diagram can be filled with a number per box. 

Definition 3 

Let入＝（入1,...'入り bea partition of n andμ= (μ1, ... , μs) be a composition of n. T is a semistandar-d 

tableau of shape入andweightμif it is an array obtained by丘llingin the boxes with positive integers 

such that the number of i's'in Tisμ,, its rows weakly increase and its columns strictly increase. 

Definition 4 

Let入＝（入1,...'入k)be a partition of n andμ= (μ1, ... , μs) be a composition of n. Kostka number-K入μ

is de且nedas the number of semistandard tableaux of shape入andweightμ, namely 

k入μ={ Semistandard tablueaux of shape入andweightμ} 
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Example 2 

Let入=(3, 2) andμ= (2, 1, 2). Then Semistandard tableallJ(of shape入andweightμare 

凸凸
Then Kost細 numbersK入μ=K(3,2),(2,l,2) = 2. 

Also, we take another weightμ'= (2, 2, 1) (= (2 3)・μ),that is we consider the samistandard tableaux 

of shape入=(3, 2) and weightμ'= (2, 2, 1). Then they are 

屈州
ThusK研=K(3,2),(2,2,l) = 2. 

This example is not a special case. The following proposition shows this property of Kostka numbers. 

Proposition 5 ([2], [11]) 

Let入bea partition of n andμbe a composition of n. Then for all a E 6n we have K入μ=K板(μ)・

Proof We will construct a bijection between semistandard tableaux of shape入andweight Jl and 

semistandard tableaux of shape入andweight a(μ). It suffices to show the proposition in the case 

び =(ii+l).

Take a semistandard tableau T of shape入andweightμ. First, we fix blocks which are pairs i and 

i + 1 in each column. We call the pairs fixed and all other occurrences of i or i + 1 free. In each row, 

switch the number of free i's and i + l's, more precisely if the row consists of k free i's followed by l free 

i + l's then replace them by l free i's followed by k free i + l's. Clearly, this is a bijection and the map 

yields a semistandard tableau. The map is called the the Bender-Knuth transformation. 1 

Example 3 

We give an example of the Bender-Knuth transformation. Suppose入=(4,3), μ=  (1,3,2,1) and 

び=(1, 2). Then a(μ) = (3, 1, 2, 1). The left of (1) is a semistandard tableau of shape入andweightμ, 

and the right of (1) is a semistandard tableau corresponding to the left of (1) by the the Bender-Knuth 

transformation. We can see that its shape is入andits weight is a(μ). 

帽屈 (1) 

Recall weightμcontrols the multiplicity of entries. We can check switching 1 and 2. 

2.2 Hive 

Now we introduce the hive model, see [1] and [7]. 

Definition 6 

In the ve廿exrepresentation, An n-hive graph is a labelling of an vertices of equilateral triangular graph. 
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The following is the example of 4-hive graph in the vertex representation. 

a03 

／ ＼  
ao2 a13 

/ " / " ao1 a12 a23 

/ " / " / " aoo au a22 a33 

A hive graph h邸 threedifferent type rhombus (3) which are called the elementa内/rhombus. 

a 

／＼  
a — b b C b― a 

"-I "- ＼／  /¥/  
C― d d d― C 

left-learning upright right-learning 

Also, for the elementary rhombus (3) the rhombus inequality takes the following form (4). 

b+c 2'. a+ d. 

(2) 

(3) 

(4) 

A hive graph has other expressions which are very useful. The edge rep冗 sentationis a labelling of 

all edges of a hive graph satisfying triangular conditions 1 = a+  /3 for elementary triangles (6) and 

betweenness condition (7). If n = 4, hive graph in the edge representation is below 

Elementary triangles is below. 

Also, betweenness conditions are: 

＾ 匈 3 813 

K "/13→ 
0<02 /312 0<13 823 

K 712 丑 123→
匈 1 f3u 0<12 /322 0<23 /333 
← ;ll V ;22 V ;33→ 

／ ← 1→ 
a (3 /3 a 

← 1→ ／ヽ

(5) 

(6) 

°'i-1,j-1 ::>: 年j::>: °'i-1,j, /3ij ::>: /3i,j-1 ::>: /3i+1,j, "/i,j-1 ::>: "/ij ::>: "/i+l,j (7) 

We can change the vertex representation to the edge representation in the following manner. In each 

edge between neighbouring vertices labelled a and b, edge label determined by means of the difference 

b -a if bis on the right of a. In the illustration of the edge representation (5), parameters°'ij, /3ij, "/ij 

is defined by°'ii = aij -ai j -1, 九 =aij -ai-1か冗=aij -ai-11-1-

In the edge representation, the rhombus inequality takes the form of a::>:'Y, f3 ::>: ,5 in the labelling of 

below (8). 

°' 

~ ~ ~ 
(8) 
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To introduce another expression of the hive graph, we introduce some notations. For three different 

elementary rhombi (9) 

初

/3i,J-~ 三+l,J

布+l,J :~~: 
宵j

°'i-1,j-~ ビ万'1

布，j-1

(9) 

we define parameters Lij, Uij and R;j by 

L;i = /3i,j-1 -/3;+1,i ='Yii―"fi+l,J, 

Uii =°'ii -°'i-1,i =恥ー /3i,j-1,

Rii =伍-1,j-1-°'ij ='Yi,j-1 -'Yij・ 

(10) 

(11) 

(12) 

They are called the gradient of the corresponding left-leaning, upright and right-leaning rhombi, respec-

tively. Note that we can see L;j =江―:~U;,k 一こい Ui+l,k ・
A gradient representation is a labelling of boundary edges and gradients of giving the gradients of one 

or other of its three sets of right-leaning, upright or left-leaning elementary rhombi. 

a3 f31 a3 f31 

°'2 /32 °'2 /32 
L12 R13 

a, /33 
L23 £13 R12 R23 

"/1 "/2 "/3 "/1 "(2 "/3 "/1 ,2 "/3 
(13) 

In a gradient representation, the rhombus inequalities change to Lij 2: 0, U匂 2:0, 脱 2:0, respectively. 

Now we define K-hive which is a hive graph satisfying some condition. As will be seen, it 1-1 corre-

sponds to a semistandard tableau. If vertexes of a hive graph are integers we call it integer-hive gmph. 

Definition 7 

Let入bea partition with l(入)<:'. n andμbe a composition with l(μ) <:'. n, also I入I= lμI. In the vertex 

representation, a K-hive is an integer hive graph satisfying the rhombus inequality (4) for left-leaning 

and upright (but not right-learning) with boundary edge labels determined by a。,=0 (i=O, ... ,n), 

ai, =μ1 + ... +μ, (i = 1, ... ,n), a,n =入1+ ... 十入, (i = 1, ... , n). We denote by 1-l(入,μ) the set of 

K-hives with boundary edge labels determined by入andμ.

If n = 4, K-hives take the right form of (14) also in the edge representation it takes the left form of (14). 

゜
゜ ゜゜ ゜゜

|入I=lμI 
μ1 μ1 +μ2 μ1 μ2 μ3 

(14) 
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Example 4 

If入=(2, 2, 1) andμ= (2, 1, 2), the left of (15) is a example of K-hive with boundary edge label 

determined by入andμ.Also, in the edge representation, we have the right of (15). 

5
 

＼
 

4
 

＼

／

 

2

3

 

＼

／

＼

 

0

2

 

/

¥

/

 

0

2

 

／

＼

 ゜／ 
゜

ヘ
0 2 

ペー 2~
0 2 0 2 

ペー 2 天 2~
0 2 0 1 1 1 

← 2'-./ 1'-./ 2→ 
(15) 

3 Relationship between Kostka numbers and hives 

In this section, we show that the number of semistandard tableaux of shape入andweightμequal to 

the number of K-hive with boundary edge label determined by入andμ.Also, we explain the gradient 

representations in detail. We will start with the following Lemma. 

Lemma 8 

如＝入iーと囚 =/1,i一 Lu如

i<k i>k 

Proof We take a K-hive H and consider the semistandard tableau T corresponding to H. Since 

T ・1s sem1standard entries o f ith row of T are grater than i. Then 入，=~i:<,k Uik. Thus we get 

如＝入,-~i<k Uik• Also Since T is semistandard again, the entries i is in from the top to the ith row, 

namelyぃ＝区陀iUki・Then we get Uii =μi一区k>iUki・ I 

Proposition 9 

Let入bea partition andμbe a composition of n with l (入），l(μ)<::: n. Then we have K入μ=#1i(入，μ).

Proof To prove it, we construct a bijection between semistandard tableaux of shape入andweight 

μand K-hives with boundary edge labels determined by入andμ.We define a map from tableau T to a 

hive graph H by 

U;j = the number of j in ith row (16) 

and adding boundary edge label入andμ.Also, the inverse map is constructed in the following manner. 

入andμdetermineshape and weight respectively. We can find entries of ith row as follows. From i + 1 

ton can be seen directly from Uij (i < j~n). Since Tis semistandard, the entries of ith row is greater 

than i. Thus, it suffices to find the number of i, this is Lemma 8. Then, we arrange the entries in the 

weakly incre邸 ingorder from left to right. 

Then, we have only to show that the map from T to H is a map from semistandard tableaux to 

K-hives and its inverse is a map from K-hives to semistandard tableaux. Recall that U,j implies the 

number of j in ith row and 

J-1 

Lij = Lui,k一 Lui+l,k
k=l k=l 

= (# of entries~j -1 in row i) -(# of entriesさjin row i + 1). 
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Take T and the image H of the map, we show H is a K-hive, namely H satisfies rhombus inequality for 

left-learning and upright. By definition, U;j 2 0. Since T is semistandard, Lり 20. 

Conversely, take K-hive H and the image T of the inverse map. Since Uり 20, each row of T contains 

non-negative numbers of each distinct entry. Also since Lij 2 0, the number of entries in ith row above 

j's in i + 1th row is less than j. Then T is semistandard. 

4 Bender-Knuth transformation from a perspective of hives 

Now we give a perspective of the Bender-Knuth transformation from the hive model, namely, we give 

another proof of Proposition 5. Concretely, our aim is to construct a bijection between hives. Consider 

the situation such邸：

Proposition 9 

叶一
2
 

2
 

Proposition 51 I Our aim 

Proposition 9 

叶一
2 1 2 

(17) 

In the Bender-Knuth transformation, it is constructed by swapping the number of entries in each row 

aftcr fixing somc blocks. To rcproducc this bijcction, wc will start by idcntifying thc numbcr of fixcd 

blocks from a K-hive. 

Take u = (s s + 1) E <5n and we consider the ith and i + 1th rows which have fixed blocks. Now 

possible situations for positions of s and s + l are: 

三 Iロニ E] I I 1s+/ I I I 

We call them type 1, type 2, type 3 and type 4 from left to right. The number of boxes up to a first fixed 

box is江―:,i仰＝江ョ如1,kin type 1 and type 2 and江―:,iU;k in type 3 and type 4, respectively. 

On the other hand, the number of boxes up to a last fixed box is LいU;k=Lにiui+l,k in type 1 and 

type 3 and区::'.:iU; 十l,kin type 2 and type 4, respectively. Now we denote by FJi+1 the number of fixed 

boxes between the ith row and i + 1th row. If there is a fixed boxes between the ith row and i + 1th row, 
then FJi+l can be expressed byとにiu, 十1,k-江―:,iUik・Otherwise, FJi+l is defined as 0. 
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Definition 10 

Setび =(s, s + 1) E 6n. Let L;j, U;j and R;j be gradients of a H(入，μ)E如）（入，μ)and Lら， U[1and 

Rらbegradients of a H'(入，μ')E Ji(n)(入，μ).Then the map¢: 砂（入，μ)→ 印（い(μ))is defined as 

follows: µ':=び •µand
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(18) 

Our main result is as follows. 

Theorem 11 

c/>: 11,(n)(入，μ)→ 砂）い(μ))is an involution. 

Proof Clearly, c/> is an involution, so we will check only the well-definedness, namely H(入，μ)is just a 

K-hive. By definition,μ'= u(μ). Then it suffices to show that H'(入，μ)satisfies the rhombus inequality 

for upright and left-le皿 ing.We have 

s+l s-1 

Uし=U;,s+l + F;,i+l―窮―1,i= ui,s+1 + F;•i+l -(区U;,kー区U;-1,k) (19) 

k=l k=l 
s-1 s 

= Fi••+1 + L U;-1,k -L い=F;•i+l + Li-1,s 2': 0 (20) 
k=l k=l 

Similarly, we can get U;,s+l 2': 0. Also 

J-1 J 

Lij =区U臼ー区UI+1,k
k=l k=l 

(21) 

J-1 

= L い +uし+ULs+l -(t ui+l,k + U:+1,s + U:+1,s+1) (22) 
kfcs,s+l kfcs,s+l 

J-1 J 

=L叫—区Uf+1,k 戸 0 (23) 
k=l k=l 

Thus H'(入，μ')is a K-hive 

Here let us calculate an involution¢in detail. 

Example 5 

Suppose that入=(3,2,0), μ= (2,2, 1) and a= (23) E釣.Take the left of (24), then the corresponding 

K-hive is the right of (24). 

0M2  oA_1い

゜ ゜ ゜ ゜2
 

2
 

2
 

2
 

(24) 

where FJ2 = 0, F;3 = 0, U伍=U13 = 0, U{3 = U12 = 1, U匂=U22 =入2-U23 = 1. We can see that it 

agrees with (17). 



146

5 Conclusion 

We gave a perspective of the Bender-Knuth transformation through the hive model (11). More 

precisely, we constructed a bijection between K-hives. We have dealt with K-hives which are the hive 

models corresponding to semistandard tableaux. On the other hand, the hive is related not only Kostka 

numbers but also Littlewood-Richardson coefficients. It is called LR-hive. There is a relationship between 

Kostka numbers and Littlewood-Richardson coefficients. If the relationship is described using the hive 

model, we may get a good understanding of the relationship and the hive model. 
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