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CUTTING AND PASTING OF MORSE FUNCTIONS 

DOMINIK J. WRAZIDLO 

Institute of Mathematics for Industry, Kyushu University 

ABSTRACT. Cobordism groups of various types of Morse functions have been studied 
separately by several authors including Ikegami, Kalmar, Saeki, Yamamoto, and the 
author. In this article, we propose a conceptually new approach for studying cobor-
dism groups of several types of Morse functions within a single unifying framework. Our 
method is crucially based on certain cutting and pasting relations for manifolds that have 
been used before to define SKK-groups of manifolds. We provide an explicit isomor-
phism between the cobordism group of Morse functions and SKK-groups. Moreover, 
we sketch an application of our framework to cobordism theory for Morse functions with 
boundary, and raise some problems for future study concerning Morse functions with 
index constraints and circle-valued Morse functions. 

1. INTRODUCTION 

The purpose of this paper is to discuss a structural connection between cobordism 

groups of Morse functions on the one hand, and SKK-groups of manifolds on the other 

hand. Conceptually, we combine Morse theory with the cutting and pasting relations for 

manifolds that appear in the definition of SK K-groups. We expect that our approach 

allows to study cobordism groups of various types of Morse functions within one unifying 

framework. Details and further applications will be worked out in [27]. 

In general, cobordism groups of differentiable maps with prescribed types of singularities 

can almost always be studied by means of stable homotopy theory. The topic originates 

from Rene Thom's study of smooth oriented cobordism groups of manifolds [23]. Consid-

ering manifolds and cobordisms to be embedded into Euclidean space, Thom was able to 

study cobordism groups of manifolds by means of the Pontrjagin-Thom construction. In 

[15], Rimanyi-Szucs used a sort of Pontrjagin-Thom construction to derive fundamental 

results for the cobordism theory of differentiable maps with certain prescribed types of 

singularities. Their results have been further extended by several authors including Ando 

[1], Kalmar [9], Sadykov [17], and Szucs [22]. 

2010 Mathematics Subject Classification. 57R45, 57R90, 57R60, 57R65, 58K15, 57R56. 
Key words and phrases. Morse function, cobordism of smooth maps, SKK-group. 
This is a survey article based on the author's conference talk at the RIMS Symposium "Re-

search on topology and differential geometry using singularity theory of differentiable maps" 
(Dec. 4 to Dec. 7, 2018). 



37

Given a real-valued function h: U→ 股 definedon an n-manifold, a critical point x of 

h is called non-degenerate if there is a chart of U centered at x in which h takes the form 

(1.1) (x1, ... , Xn) rt h(x) -Xi -.. ・-x; + x『~1 十・・・＋点．

In this paper, by a Morse function on a closed smooth manifold we mean a smooth real-

valued function which has only non-degenerate singularities. A precise definition of the 

notion of cobordism of Morse functions involves the notion of fold maps, and will be 

given in Definition 2.1. For studying cobordism groups of Morse functions it seems most 

convenient to use more geometric-topological methods like Stein factorization and Levine's 

cusp elimination technique. In the following, let us discuss existing results concerning the 

study of cobordism groups of various types of Morse functions. 

(a) Saeki [18] has studied the cobordism group of so-called special generic functions, 

namely Morse functions with only minima and maxima as their critical points. In 

dimension 6 and higher, these groups turn out to be isomorphic to the groups of 

h-cobordism classes of oriented homotopy spheres (see [12]). In [24], the author has 

imposed more general index constraints that allow Morse functions to have critical 

points of certain indefinite indices apart from minima and maxima, and the author has 

studied cobordism groups of such "constrained" Morse functions. As an interesting 

consequence, it follows that exotic Kervaire spheres are distinguished from other exotic 

spheres as elements of these groups in infinitely many dimensions (see also [25]). 

(b) In 2004, Ikegami [3] determined the complete structure of cobordism groups Mn  

（ふ） of Morse functions on (un-)oriented n-manifolds for any n 2'. 1. This generalized 

previous results of Ikegami-Saeki [4] for Morse functions on oriented surfaces, and 

of Kalmar [8] for Morse functions on unoriented surfaces. We point out that in the 

oriented version of Ikegami's structure theorem (see Theorem 2.3), the Kervaire semi-

characteristic [14] appears in dimensions of the form n = 4k + l. 

(c) In [5], Ikegami-Saeki extended the work oflkegami [3] to cover the case of circle-valued 

Morse functions. As an application to target oriented topological types of generic map 

germs (股四0)→（記0),m 2'. 2, they identify an invariant given by the sum of signs 

associated to the cusps of a suitable stable perturbation. 

(d) Later, Saeki-Yamamoto [19, 20, 21] introduced several notions of cobordism for Morse 

functions on manifolds with boundary (see Section 5.2), and computed the so-called 

admissible cobordism group of Morse functions on surfaces by means of the coho-

mology of the universal complex of singular fibers, and a combinatorial argument 

using labeled Reeb graphs. Recently, Yamamoto [28] has used similar techniques 

to compute the fold cobordism group of Morse functions on surfaces. In Section 5, 

we will indicate how the perspective taken in this paper leads to the computation 

of higher-dimensional admissible cobordism groups of Morse functions on manifolds 

with boundary (see [26]). We expect our method to be applicable as well to the 

computation of higher-dimensional fold cobordism groups (see Theorem 5.7). 
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The purpose of this paper is to discuss a new structural connection between cobordism 

groups of Morse functions on the one hand, and so-called SK K-groups of manifolds on 

the other hand. For simplicity, we focus on the case that all manifolds are oriented, while 

a version of our results for unoriented manifolds could be derived in a similar way. 

Historically, the concept of SK K-groups was motivated by the observation of Jiinich [6, 

7] that the index of elliptic operators behaves invariant under a natural cutting and pasting 

operation on manifolds. This operation cuts a closed n-manifold along a submanifold :E 

of codimension 1 with trivial normal bundle, and pastes back together the two resulting 

copies of :E in the boundary by means of some gluing automorphism :E→ :E. The resulting 
abstract notion of SK-invariants (from German嘔chneidenund ,Kleben" = "cutting and 
pasting") was studied systematically in [11] by viewing SK-invariants as homomorphisms 

on a universal SK-group SKn with values in some abelian group. As a generalization, the 

notion of SKK-invariants (from German "SK-Kontrollierbar" = "SK-controllable") and 
the corresponding universal SKK-group SKKn incorporate a correction term that may 

depend on the gluing automorphism L→ L. In dimensions of the form n = 4k + 1, the 

Kervaire semi-characteristic [14] turns out to be an SK K-invariant, and appears in fact in 

the structure theorem for the SKK-group (see Theorem 3.4). We observe that Ikegami's 

structure theorem for the cobordism group of Morse functions on oriented manifolds (see 

Theorem 2.3) involves the Kervaire semi-characteristic as well, which suggests a structural 

connection between the groups Mn  and SKKn, In [27], we construct an isomorphism 

that clarifies the precise relation. Let us present this isomorphism in the following. 

For a Morse function f : M → 艮 onan oriented closed n-manifold M, we denote by 

叫f)the number of critical points off of index i. Moreover, we setμi(f) = Vn-i(f)-vi(f), 
and define the integer 

(1.2) ~(M, f) 
vo(f) + .. ・ 十株(!), n = 2k + 1, ~{い(!) + a(M);:x(M)'n~2k. 

Note that when n争0mod 4, the integer~(M, f) depends only on the numbers Vi (f) 
because x(M) =江贔(-1)切(f)and O'(M) = 0. However, when n三 0mod 4, then there 

is an additional dependence in (1.2) on the signature O'(M), which is required to make 

~(M, f) an integer. 

Theorem 1.1 (W. [27], 2018). There is an isomorphism of groups 

Mn---=-+ SKKn①四(n-1)/2」'

[f:M→ 恥］→ ([M] +~(M, f)・[S門，μo(f),・ ・ ・, μL(n-1)/2」-1U)).

Our Theorem 1.1 provides a specific isomorphism that is not directly obtained by 

combining Ikegami's structure theorem for Mn  (see Theorem 2.3) with the structure 

theorem for SK Kn (see Theorem 3.4). In fact, note that CJ(M), the signature of M, does 

not appear in those structure theorems. 
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Our proof of Theorem 1.1, which will be outlined in Section 4, combines many parts 

of the proofs of the original structure theorems, but there will be several new aspects. 

For instance, the signature of manifolds will appear as a cobordism invariant in the con-

struction of the homomorphism Mn→ SK Kn. Moreover, the proof of injectivity of this 

homomorphism will be crucially based on our method of cutting and pasting of Morse 

functions (see Theorem 4.4). Our result turns out to be useful in that it can serve as a 

model for studying many different variants of cobordism groups of Morse functions, as 

described in Section 5. 

Furthermore, we point out that our approach has the potential to pave the way to 

directions for future study as follows. A natural generalization of the topic is to raise 

the dimension of the target space of smooth maps. Thus, one future goal will consist 

in studying cobordism theory for fold maps into higher dimensional target spaces by 

means of our approach. For instance, recent work of Kalmar [10] clarifies the structure 

of cobordism groups of fold maps into the plane. In view of our framework proposed in 

Section 5, it then seems natural to search for a structure that substitutes the concept of 

SK K-groups in the case of higher target dimensions. Such higher analogs of SK K-groups 

might then be related to certain extended topological quantum field theories (TQFTs) in 

a similar way as SK K-invariants are related to so-called invertible TQFTs by the short 

exact sequence derived in [16]. 
The paper is organized as follows. In Section 2 we discuss Ikegami's structure result for 

oriented cobordism groups of Morse functions. In Section 3 we review the definition of 

SK K-groups based on the concept of cutting and pasting of manifolds, and discuss the 

structure result of SK K-groups in Theorem 3.4. The proof of our Theorem 1.1 is outlined 

in Section 4. Finally, in Section 5, we propose in an informal way a unifying framework for 

studying cobordism groups of various types of Morse functions, and illustrate our ideas 

by means of our results concerning Morse functions on compact manifolds with boundary. 

All manifolds and maps between manifolds considered in this note will be differentiable 

of class C00. For a closed oriented n-manifold Mn, the manifold with opposite orientation 

will be denoted by -Mり

Acknowledgements. The author is grateful to Professor Osamu Saeki for invaluable 

comments and discussions. 
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(Postdoctoral Fellowships for Research in Japan (Standard)). 

2. COBORDISM GROUPS OF MORSE FUNCTIONS 

We start by introducing the fundamental notion of a cobordism of Morse functions. 

Definition 2.1 (cobordism of Morse functions). Two Morse functions Jo: Mo→ 股 and

Ji: M1→ 股 onoriented closed n-manifolds Mi。andM1 are cobordant (see Figure 1) if 

• there exists a cobordism wn+l from Mi。toM1, i.e., W is an oriented compact 

manifold with boundary Mi。LJ-M1, and 
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• there exists a map F: W → [O, 1] x尺 whichhas only fold points as its singular 

points, where by a fold point we mean a critical point x E W of F for which F 

takes in suitable charts centered at x and F(x), respectively, the form 

(2.1) (xo,x1,---,Xn)→ (xo, -xr -... -x; + x;+l + ... + x;), 

and there exist collar neighborhoods [O, c) x Mi。C W of Afi。cWand (1 -

c, 1] X M1 CW  of M1 CW  such that Fl[o,c)xM。=id[o,c) xfo and Fl(l-c,l]xM1 = 
id(l-1o,l] xfi・

Remark 2.2. It is a basic fact from Morse theory that for every non-degenerate critical 

point x of some real-valued function h: U→ 賊， theinteger i E { 0, ... , n} that appears in 

the standard quadratic form x 2 
― l―・・・一

2 2 
X・十X・

2 • 
i i+l +・ ・ ・+ xn m (1.1) is independent of the 

choice of the coordinate chart, and is called the (Morse) index of h at x. Similarly, for 

every fold point x of a map F: W → 記 theinteger max{i, n -l -i} E {「n/21... ,n} 

that derives from the standard quadratic form -xr -... -x; + X恥 +···+x~in(2.1)
is independent of the choice of the coordinate charts, and is called the (absolute) index 

of F at x. Compared to the index of a non-degenerate critical point, the indeterminacy 

between the indices i and n -l -i of a fold point comes from the fact that in order to 

produce the normal form we are allowed to choose coordinate charts both in the domain 

centered at the fold point x, and in the codomain centered at the image point F(x). 

A map F: W → [0, l] x股 withonly fold singularities as in Definition 2.1 is called 

a fold map. If F behaves near the boundary of W as required by Definition 2.1, then 

it is well-known that the singular set S(F) C W of the fold map F is a 1-dimensional 

submanifold which is closed as a subset, and F restricts to an immersion S(F)→ 配 (see

Figure 1). The absolute index of fold points (see Remark 2.2) is constant along fold lines, 

i.e., components of S(F). 

M。

Jo↓ 
乙二

FIGURE 1. Example of a cobordism from Jo: S1→ 良 toJi : 51 LJ 51→ 艮
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It can be checked that the notion of cobordism in the sense of Definition 2.1 determines 

an equivalence relation on the set of all Morse functions on oriented closed n-manifolds. 

Let Mn denote the set of equivalence classes [f: M → 艮]represented by Morse functions 

on oriented closed n-manifolds. Disjoint union "LJ" induces a group law on the set Mn as 

follows. The identity element is represented by unique map 0→ 恥 andthe inverse of a 

class [f: M → 町isrepresented by -f : -M → 恥 x→-f(x), where -Mn denotes the 

manifold M equipped with the opposite orientation. We call叫 theoriented cobordism 

group of Morse functions (on closed n-manifolds}. 

Let us discuss Ikegami's structure result [3] for the cobordism group Mn- For this 

purpose, recall that for a Morse function f: Mn→ 股 onan oriented closed n-manifold 

M we denote the number of critical points off of index i by vi(!), and set 

μ、iU)= vn-iU) -vi(!) (= vi(-!) -vi(!)). 

Let噂0 denote the smooth oriented cobordism group of dimension n. We shall need a 

torsion group defined by 

,. ~{~/2, n三 1(mod4), 

n季1(mod4). 

Moreover, using the Kervaire semi-characteristic [14], we define r(M, f) E ln by 

2k 2k 

r(M4k+1, f)三と叫）＋どdimHi(M4k+1;Q) (mod2). 

i=O i=O 

Theorem 2.3 (Ikegami [3], 2004). There is an isomorphism of groups 

Mn竺心°疇Ln/2」① Jn, 

[f:M→ 艮］→ ([M], μo(f), ・ ・ ・, μLn/2J-1U), r(M, !)). 

3. CUTTING AND PASTING OF MANIFOLDS; SKK-GROVPS 

The material of this section is taken from the manuscript [11], where U. Karras, M. 

Kreck, W.D. Neumann, and E. Ossa study the concepts of SK-groups and SKK-groups 

in a systematic way. 

Let us introduce the fundamental notion of SK K-relation on n-manifolds. 

Definition 3.1 (SK K-relation). Two closed oriented n-manifolds X and Y are called 
SKK 

SKK-related, and we write X — • Y (see Figure 2) if there exist compact oriented n-

manifolds M, M', N, N'with boundaries 8M = 8N and 8M'= 8N', and orientation 

preserving diffeomorphisms cp: 8M→ 8M'and心： 8N→ 8N'such that 

X = (M U'P -M')旦(NuゅーN')'
Y= (Muゅ—M') 旦 (NU'P -N'). 
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FIGURE 2. SKK-related oriented n-manifolds X and Y. 

Let洲 ndenote the set of oriented diffeomorphism classes of closed oriented n-manifolds. 

We regard訊 asan abelian semigroup via [M] + [N] = [M LJ N] and O = [0]. 
While the SK K-relation on皿 givenby Definition 3.1 is obviously symmetric, it 

might not be an equivalence relation. Nevertheless, we can use the SK K-relation to de-

fine an equivalence relation "'SKK via stabilization as follows. Given tow closed oriented 

n-manifolds Mand N, we say [M] "'SKK [N] if there exist closed oriented n-manifolds X 
SKK 

and Y such that X → Y and [M] + [X] = [N] + [Y] in皿.Then, it is straightforward 

to check that "~sKK" is an equivalence relation on 91tn, and the quotient 91tn/ "'SKK in-

herits an abelian semigroup structure from皿.We define SK Kn to be the Grothendieck 

group of 91tn/ "'SKK・In particular, note that an element of SK Kn is not always repre-

sented by a manifold, but can in general be written as a difference [M] -[N]. 

Example 3.2. It follows from the construction of SK Kn that Mn represents O E SK Kn 
SKK 

(that is, [M] "'SKK [0]) if and only if there exist X and Y such that X ---+ Y and 

MLJX竺 Y.For instance, Figure 3 shows explicitly why the torus M = T2 represents 
0 E SKK2. On the other hand, the structure result for SK Kn below (see Theorem 3.4) 

implies that S2 represents a generator of SK K2~Z. 

／ー・,
ヽ

に
¥._一／

•一.., 

旦
／ ＼ 
にてごこ
り

＼ ／ 
， 

/―¥ 
に
~j 

SKK —• c~)E• 

ロ
ニ
〗
□

LJ 

FIGURE 3. The surface X = LJ!=l炉 isSK K-related to the surface T2 LJ X. 

Remark 3.3. Note that (in contrast to cobordism groups) the inverse of an element [M] E 

SK Kn is not necessarily represented by -M  (M with the reversed orientation). However, 

the structure result for SK Kn below (see Theorem 3.4) implies that -[M] = [-M] +m・ 
[S門forsome m E Z. 
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Next, let us state the structure result for SK Kn, in which the cyclic group 

(3.1) 
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appears. 

Theorem 3.4 (J釦nich,Karras-Kreck-Neumann-Ossa [11]). There is a split exact sequence 

of abelian groups 

0→ ln~SKKnL 直°→ 0, 

where a maps 1 E Z and IE Z/2 to [S門， andf3([M]) = [M]. 

Moreover, a splitting of a is induced by 

[M]→ F二；~a二t゜::~:::;,:•,,, of M, : : ~i二〗：
half of Euler characteristic of M, n三 2(mod4). 

Remark 3.5. Note that there is an unoriented version SKK;; of SKKn, and the corre-

sponding structure result is based on the cyclic group 

I~~{~' n = 0 (mod2), 

n三 1(mod2). 

Namely, there is a split exact sequence of abelian groups 

0→ 1;: ~SKK;{ L n~ → 0, 

and for n even, a splitting of a is induced by the Euler characteristic. 

4. SKETCH OF PROOF OF THEOREM 1.1 

Let us start with the construction of the rnap 

Mn→ SKKn, [f: M →股］→ [M] + I:(M, f)・[S咋

The following lemma shows that the above assignment is well-defined. Since the group 

laws on Mn and SK Kn are both induced by disjoint union, "LJ", it then follows auto-

matically that our map is a group homomorphism. 

Lemma 4.1. If the Morse functions Jo: Mo→ 罠 andJi: M1→ 民 arecobordant, then 

[Mo]+~(Mo, Jo)・[S門=[M1] +~(M1, Ji)・[S門 ESKKn. 
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Proof. Fix a cobordism F: W → [O, 1] x股 fromJo to Ji with the properties stated in 

Definition 2.1. Without loss of generality, we may assume that pr[o,l] oF: W → [O, 1] is 

a Morse function with exactly one critical point, say of index i. Note that by classical 

Morse theory, Wis the trace of the surgery on an embedding 3i-l x nn-i+l c Mo. Then, 

in order to compare the summands in SK Kn that are induced by Jo and Ji, we show the 

following observations: 

(1) [M1] = [Mo]+ (-l)i・[S門．

We omit the proof, which is based on the methods used in the manuscript [11], and 

is independent of singularity theory. 

Remark 4.2. For later reference, we remark that 2・[S門=0 whenever n is odd. In 

fact, this follows by taking i = n + 1, M。=sn, and M1 = 0 in (1). 

(2) I:(M1, Ji)・[S門=I:(M。,Jo)・[S門ー (-l)i・[S門．

In order to show this claim, we observe first that the non-degenerate critical point of 

pr[0,1] oF of index i can arise in the ways (a) and (b) illustrated in Figure 4. 

i -1 

n-i + 1 

n-i  

”し

FIGURE 4. Morse critical points of pr[o,l] oF of index i can arise from fold 

points of F that have either absolute index m訟{i -1, n -i + 1} when i > 0 

(case (a)), or absolute index max{i,n} (case (b)). 

Then, we can check the claim by examining the definition of~(M, f) (see (1.2)) in 
the following two cases: 

• If n = 2k + 1, then~(M, f) = vo(f) +・・・十 vk(f).In this case, it is not hard to 

show by means of Figure 4 that~(M1, Ji) =~(Mo, Jo)土1in either of the cases 

(a) and (b). Then, the claim follows in view of Remark 4.2. 

び(M)-x(M)• If n = 2k, then~(M, f) =μk-1(!) + 2 . We note thatμ い (Jo)= 

μk-i(fi). Moreover, we have CJ(Mo) = CJ(M1) because the signature is an oriented 

cobordism invariant. Finally, it is not hard to check in either of the cases (a) and 

(b) that x(Mリ =x(Mo)+2•(-l)i.

This completes the proof of our lemma. 口
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Surjectivity of our homomorphism Mn→ SKK贔 zl(n-1)/2」isimplied by the following 
lemma. 

Lemma 4.3. If[M] E SK Kn and ao, ... , al(n-1)/2」_1 E Z, then there is a Morse function 

f:M→ 罠 suchthat~(M, J)• [S門=0 andμj (!) = aゎJ= o, ... , l(n -1)/2」-1. 

Proof. The main idea is to construct f from some initially chosen Morse function g: M → 
股 bycreating new pairs of critical points with successive indices. Firstly, we can adjust 

μo (g) = Vn (g) -vo (g) to ao by creating new pairs of critical points of indices 0, 1 or n-1, n. 

Next, we adjustμi(g) = Vn-1(g)―叫g)to a 1 by creating new pairs of critical points of 

indices 1, 2 or n-2, n-1. (This does not affect our previous achievement thatμo(g) = ao.) 

This process can be repeated until we haveμj(g) = aj, j = 0, ... , l(n-1)/2」-1. Finally, 

in the case n = 2k + 1, we can create a critical point pair of indices k, k + 1 to modify 

株 (g)if necessary to make~(M,g) = vo(g) +• • • 十株(g)even (compare Remark 4.2). 

In the case n = 2k, we can create additional critical point pairs of indices k -1, k and 

k, k + 1 to adjustμ い (g)=―叫(M);x(M)in such a way that~(M,g) = 0. ロ

The proof of injectivity of our homomorphism Mn→ SKKn① z L (n-1 l ;2」willrequire 

the following 

Theorem 4.4 (cutting and pasting of Morse functions). Given closed oriented n-manifolds 
SKK 

X and Y such that X --+ Y (see Definition 3.1), there exist Morse functions gx: X→ 股
and gy: Y→ 尺 thatare cobordant in the sense of Definition 2.1. 

Proof. By Definition 3.1, we can use the obvious terminology to write 

X=(M心—M{) LJ (M2 U,j; ー M仇

Y=(M心—M{) LJ (M2 U'P -Mり．

We fix collars aMi x [O, c) c Mi, i = 1, 2, and extend the projections aMi x [O, c)→ [O, c) 
to Morse functions 9i : Mi→ [O, oo). Similarly, we fix collars aMf x [O, c) C Mf, i = 1, 2, 

and extend the projections aM{ x [O, c)→ [O, E) to Morse functions外： MI→ [O, oo). 
As indicated in Figure 5, we are then able to construct in the sense of Definition 2.1 a 

nullcobordism of 

(gi U,j; -g1) L」(g1U'P -gi) L」(giUa -g;) L」(g;U'P -g2) L」(g2U,j; -g;) L」(g;Ua -gi), 

and the claim follows. ロ

In order to show injectivity of our map Mn→ SKKn① zl(n-1)/2」,let us suppose 

that the Morse function f : M → 股 satisfies[M] +~(M, J)• [S門 =0 in SKKn, and 

μo(J) =・ ・ ・=μl(n-1)/2」_1(!) = 0. In particular, there exist integers a, b~0 and closed 
SKK 

oriented n-mamfolds X and Y such that X → Y (see Definition 3.1) and 

b 

M孔」snLJX竺 LJsnuy
i=l i=l 
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FIGURE 5. Construction of a cobordism of Morse functions via the method 

of cutting and p邸 tingof Morse functions. 

Using the previous diffeomorphism as well as the fact that the standard height function 

sn→ 股 isnulleobordant in Mn, we eonclude from Theorem 4.4 that there exist Morse 

funetions 
a 

g:M孔」snLJX→尺，
i=l 

h:X→恥

which are cobordant in the sense of Definition 2.1. If F: W → [0, l] x股 denotesa 

cobordism from g to h, we extend W to a nullcobordism V of M by gluing it together 

with a cylinder X x [O, 1] along X LJ -X, and with LJ~=l nn+l along LJ~=l sn. There is 
no obstruction to extending F to a generic map G: V→ [0, l] x尺.Finally, by exploiting 

the assumptionμo(f) -・ ・ ・ — µl(n-1)/2」_1 (f) = 0, we are able to eliminate all cusps of 
G by means of Levine's cusp elimination technique [13]. 

This completes our outline of the proof of Theorem 1.1. 

5. ENVISIONING A UNIFYING APPROACH 

In the previous sections, we focused on the cobordism relation for Morse functions on 

oriented closed manifolds (Definition 2.1), and studied the precise connection to cutting 

and pasting relations on manifolds (Definition 3.1). The purpose of the present section 

is to envision in an informal way a framework which provides a unified perspective on 

cobordism relations for various types of Morse functions from the same viewpoint. In 

Section 5.1, we outline our framework for studying cobordism theory of Morse functions 

of any given type. In conclusion, we discuss in Section 5.2 the author's recent computation 

of cobordism groups of Morse functions on manifolds with boundary (see [26, 27]). 

5.1. A unifying framework. We propose the following steps for studying the struc-

ture of cobordism groups of Morse functions of a given type. Let us consider a class'T 

of certain Morse functions on closed (un-)oriented manifolds for which an appropriate 

cobordism relation is defined (as a modification Definition 3.1). We denote the resulting 
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n-dimensional cobordism group of Morse functions of class T by M'f:, For instance, T 

could be the class of special generic functions (see [18]) or, more generally, the class of 

k-constrained Morse functions as studied in [24]. Next, we modify the cutting and pasting 

relation of Definition 3.1 in order to reflect the properties of Morse functions in the class 

T, but without using singularity theory. For example, when Tis the class of k-constrained 

Morse functions, one might have to incorporate into the cutting and pasting relation of 

Definition 3.1 suitable connectedness assumptions on M, M', N, N', that depend on the 

parameter k. The resulting n-dimensional SK K-group corresponding to the modified 

gluing and pasting relations will be denoted by SK K!, Now, the "correct" choice of 

cutting and pasting relations will enable us to define a structure map 

M'[→ SKK[. 

This map turns out to be surjective (in all known cases), but we might not expect it to 

be injective in general. Instead, there should exist a homomorphism 

M'[; → A'[; 

to some abelian group Al: that extracts further singularity theoretic invariants from'T-

cobordism classes in such a way that the pair of both homomorphisms taken together 

yields indeed an isomorphism 

M'[竺 SKK[EBA'[. 

When 7 is the class of all Morse functions on oriented closed manifolds, we note that 

M'[; =的 andSKK[ = SK Kn, and read off from Theorem 1.1 that A'[;= zl(n-l)/2J. 

In Section 5.2 below we will discuss how our framework applies to cobordism theory of 

Morse functions on compact manifolds with boundary (compare Problem 5.6). We leave it 

as open problems to study other classes of Morse functions mentioned in the introduction. 

Problem 5.1. Suppose that'T is the class of all special generic functions on oriented 

closed manifolds. We suggest to modify the cutting and pasting relation of Definition 3.1 

by requiring that each of the manifolds M, M', N, N'is diffeomorphic to D匹 Doesthe 

associated SKK-group SKK[ admit a homomorphism M'[; → SK K[? If so, it seems 

plausible that this is an isomorphism, and therefore, that A'[;= 0. Then, the main result 

of [18] would imply that SKK[ 竺 ~n for n~6, where~n denotes the group of oriented 
homotopy n-spheres up to h-cobordism. 

Problem 5.2. Suppose that'T is the class of all circle-valued Morse functions as con-

sidered in [5]. Find a modification of the cutting and pasting relation of Definition 3.1 

such that the associated SKK-group SKK[ admits a homomorphism M'[; → SKK[, 
and study its properties. 

Problem 5.3. Study the analog of problem Problem 5.2 for the class'T of k-constrained 

Morse functions (see [24]). 
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Remark 5.4 (orientations). Suppose that our class T of Morse functions does not interact 
with orientations of the underlying manifolds. Then, we can switch between the oriented 

and the unoriented versions of cobordism groups of Morse functions of class T by adapting 
the cutting and pasting relations appropriately. While the oriented and the unoriented 

versions of the resulting SK K-groups can have different structures, we point out that 

the task of computing them is independent of singularity theory. On the other hand, the 

singularity theoretic invariants encoded in the map M';; → A';; will not be affected. 

5.2. Morse functions on manifolds with boundary. As an application, let us explain 

how the framework of Section 5.1 applies to cusp and fold cobordism relations of Morse 

functions on compact manifolds possibly with boundary. In the following, we will focus 

on the case that the underlying manifolds are oriented. The case of unoriented manifolds 

is then covered by Remark 5.4. 

Fix an integer n ::::: 2. L砒 Mnden゚tea⑳ mpaは m抑面H 匹函blyw礼hb⑳叫町

By a Morse function on M we mean a function f: M → 股 whichis a submersion in a 

neighborhood of 8M, and such that the critical points of both f and JlaM are all non-

degenerate (see Figure 6). The concept of cobordant Morse functions (see Definition 2.1) 

股

x1 ↓ 
dム（町）

I 
f 

如。(vo)
R 

＇ xo 

FIGURE 6. Illustration of a Morse function f: M → 股ona compact surface 

with boundary induced by the height function in配.The critical points of 

f laM are xo and x1. Using the indicated inward pointing tangent vectors 

vo E Tx0M and v1 E Tx,M, we see that町(xo)= +1 and町(x1)= -1. 

has been adapted to manifolds possibly with boundary by Saeki-Yamamoto [21] as follows. 

Definition 5.5. Two Morse functions Jo: Mo→罠 andJi: M1→ 恥 oncompact mani-

folds possibly with boundary Mi。,M1 are cusp cobordant (resp. fold cobordant) if 

• there exists a cobordisrn (W応 1,V) (with corners) from Mi。toM1, that is, W 

is a compact oriented (n + 1)-manifold with corners such that 8W = Mi。UaMo
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V U-aM1 -M1, where Mo, -M1 and V are oriented codimension O submanifolds 

of 8W such that Mi。nM1 = 0, v n Mi。=8Mi。andV n M1 = 8M1, vn is an 

oriented cobordism from 8Mi。to8M1, and W has corners precisely along 8V, 

• there exists a map F: W → [0, l] x股 suchthat F and Flaw¥(MoLJMi) have only 

fold points and cusps (resp. only fold points) as singular points, where recall that 

the local normal form of a cusp is given by the map germ (野m+l,o)→（記0),

(xo, Xl, ...'Xm)→ (xo, xox1 + xf -x~-· ・ ・ —叶+X]+l +・ ・ ・+ X7,,), 

• Fis a submersion in a neighborhood of 8W ¥ (Mi。LJM1), and 

• there exist collars (with corners) [ 0, c) x Mi。cWof Mi。CWand (1-c, l] x M1 C 

W of M1 CW  such that Fl[o,c)xM。=id[o,c) xfo and Fl(l-c,l]xM, = id(l-c,1] xfi. 

It can be checked that cobordisrn in the sense of Definition 5.5 determines an equivalence 

relation on the set of all Morse functions on compact oriented n-rnanifolds possibly with 

boundary. Let M~,cusp (resp. M~,fold) denote the resulting sets of equivalence classes. 
As usual, disjoint union "LJ" induces a group law on these sets. The following problem 

has been posed by Saeki-Yarnarnoto in [21]. While they use a definition of cobordisrn 

that is slightly different from Definition 5.5 in that they make additional C00 stability 

assumptions on the maps, the resulting cobordism groups turn out to be isomorphic. 

Problem 5.6 (Saeki-Yamamoto, 2018). Study cusp and fold cobordism groups of Morse 
8,cusp 8 fold . —8,cusp —-8,fold 

functions Mn  and Mn', as well as their unoriented versions M andM n n 

ー 8,cusp
Previously, it has been shown by Saeki-Yamamoto [21] that M2 竺 Z/2,and by 

―8,fold 
Yamamoto [28] that M2 竺 Z立鐸/2.

Let us indicate how the framework of Section 5.1 can be applied to compute Mn 8,fold 

for n > 2. We modify the cutting and pasting relation of Definition 3.1 by allowing the 

manifolds M, M', N, N'to have corners. By augmentation of the arguments in [11], we 
8,fold can then show that SK Kn~I喜In-l (see (3.1)) by identifying a generator of In with 

[S門， anda generator of In-l with [D叶 (Notethat cobordism groups of manifolds with 

boundary紅 etrivial.) The definition of~(M, f) (see (1.2)) c紅 riesover to Morse functions 

f:M→ JR on manifolds possibly with bound紅 y.We construct the homomorphism 

Wn : M~,fold • SKK~,fold, [f: M → 尺］→ [M] +~(M, f)·[S門十 ~(8M, JlaM)・[か］．

Let us introduce some more notation for Morse functions f: M → 股 definedon n-

manifolds possibly with boundary. Following [2], we assign to every critical point x of the 

Morse function JlaM a sign町(x)E {土1}(see Figure 6) that is uniquely determined by 

requiring that for an inward pointing tangent vector v E TxM the tangent vector 

町(x)・dfx(v)E Tf(x)戦＝艮
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points into the positive direction of the real axis. In fact, this sign depends only on 

the germ [!] of f near fJM. Let st(!) C S(f laM) denote the subset of those critical 

points x of the Morse function flaM of index i for which町(x)= + 1. We also define 

vt(f) = #釘(!),and囚(!)=吋(-!)—庁(-!).

Theorem 5.7 (W. [27], 2018). For n > 2, there is a group isomoryhism 

M~,fold --=+ SK K~,fold 年岱，fold = SK K~,fold ①四(n-1)/2」〶 zl(n-2)/2」① Z 「n/21,

[f:M→ 罠］→ （叫fl,μL(n-1)/2」(!),μL(n-2)/2」UlaM),μfn;27 (!)), 

where we make use of the vector notationμ 炉(g)= (亭(g),...'μ 贔(g)).

Problem 5.8. Prove the analog of Theorem 5. 7 for n = 2. Then, proceed as suggested in 
-8,fold 

Remark 5.4 to reproduce the isomoryhism M2 竺 Z印 詞Z/2due to Yamamoto [28]. 

I f l f 
―8,fold 

n particular, give an explicit ormu a or the invariant M2 → Z/2. 

After d. 1scovermg the singularity theoretic invariants → 8,fold 8,fold 
M n ふ ofTheorem 5.7, 

the author was able to answer Problem 5.6 for M~,cusp (as well as for 苅~,cusp in view of 

Remark 5.4) as follows. For Morse functions f: M → 良 definedon compact n-manifolds 

possibly with boundary we define in analogy with Euler characteristic formulas the integer 

n-l 

x+u) = L(一l)i.vt(f). 

i=O 

Theorem 5.9 (W. [26], 2018). Assigning to Morse functions f: Mn→ 罠 oncompact 

叩 entedn-manifolds possibly with boundary the integers x(M) -x+(J), we obtain 

叫 =P-"'-,{Z/2, 
Z, 
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