Some remarks on the relative polar variety and the Brasselet number *

Hellen Santana

Introduction

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be an analytic function defined in a neighborhood of the origin and Σf the critical locus of f. The Milnor fiber $F_{f,0}$ is given by $f^{-1}(\delta) \cap B_{\epsilon}$, where δ is a regular value of $f, 0 < |\delta| \ll \epsilon \ll 1$. In [15], Milnor proved that, if f has an isolated singularity, $F_{f,0}$ has the homotopy type of a wedge of $\mu(f)$ spheres of dimension n - 1, where $\mu(f)$ is the Milnor number of f. Also, $\mu(f)$ is the number of Morse points in a Morsefication of f in a neighborhood of the origin.

In [6], Hamm generalized Milnor's results for complete intersections with isolated singularity $F = (f_1, \ldots, f_k) : (\mathbb{C}^n, 0) \to (\mathbb{C}^k, 0), 1 < k < n$, proving that the Milnor fiber $F^{-1}(\delta) \cap B_{\epsilon}, 0 < |\delta| \ll \epsilon \ll 1$, has the homotopy type of a wedge of $\mu(F)$ spheres of dimension n - k. In this context, Lê [7] and Greuel [5] proved that $\mu(F) + \mu(F') = \dim_{\mathbb{C}} \left(\frac{\mathcal{O}_{\mathbb{C}^n,0}}{I} \right)$, where $F' : (\mathbb{C}^n, 0) \to (\mathbb{C}^{k-1}, 0)$ is the map with components f_1, \ldots, f_{k-1} and I is the ideal generated by f_1, \ldots, f_{k-1} and the $(k \times k) - \min s \frac{\partial(f_1, \ldots, f_k)}{\partial(x_{i_1}, \ldots, x_{i_k})}$. Notice that the number $\dim_{\mathbb{C}} \left(\frac{\mathcal{O}_{\mathbb{C}^n,0}}{I} \right)$ is the number of critical points of a Morsefication of f_k appearing on the Milnor fibre of F'.

If f is defined over a complex analytic space X and f has an isolated singularity at the origin, a generalization for the Milnor number is the Euler obstruction of the function f, introduced in [2], by Brasselet, Massey, Parameswaran and Seade. In [17], Seade, Tibăr and Verjovsky proved that, up to sign, this number is the number of Morse critical points of a stratified Morsefication of f appearing in the regular part of X.

In a more general context, if f is defined over a complex analytic space X equipped with a good stratification \mathcal{V} of X relative to f (see Definition 2.1) and the function f does not have isolated singularity at the origin, a way to describe the generalized Milnor fiber $X \cap f^{-1}(\delta) \cap B_{\epsilon}$ is to use the Brasselet number of f at the origin, $B_{f,X}(0)$, introduced by Dutertre and Grulha, in [3], and that generalizes the Milnor number to this more general setting and the local Euler obstruction, introduced by MacPherson, in [10], in his proof for the Deligne-Grothendieck conjecture. In [3], the authors presented several formulas to compute Brasselet numbers couting number of stratified Morse critical points. For example, they present a Lê-Greuel type formula for the Brasselet number: if $g : X \to \mathbb{C}$ is prepolar with respect to \mathcal{V} at the origin (see Definition 2.4) and $0 < |\delta| \ll \epsilon \ll 1$, then

^{*}Research partially supported by FAPESP - Brazil, Grants 2015/25191-9 and 2017/18543-1.

Key-words: Brasselet number, relative polar variety, local Euler obstruction, stratified Morse critical points

$$B_{f,X}(0) - B_{f,X^g}(0) = (-1)^{d-1} n_q,$$

where n_q is the number of Morse critical points of a partial Morsefication of $g|_{X \cap f^{-1}(\delta) \cap B_e}$ appearing in the regular part of X, and $X^g = X \cap \{g = 0\}$.

They also proved results about the topology of functions with isolated singularity defined over an analytic complex Whitney stratified variety X. If X is equidimensional, let $f, g : X \to \mathbb{C}$ be analytic functions with isolated singularity at the origin such that g is prepolar at the origin with respect to the good stratification induced by f (see (1)) and f is prepolar at the origin with respect to the good stratification induced by g, then

$$B_{f,X}(0) - B_{g,X}(0) = (-1)^{d-1}(n_q - m_q).$$

where $X^f = X \cap \{f = 0\}$, n_q is the number of Morse critical points of a Morsefication of $g|_{X \cap f^{-1}(\delta) \cap B_{\epsilon}}$ appearing in the regular part of X and m_q is the number of Morse critical points of a Morsefication of $f|_{X \cap g^{-1}(\delta) \cap B_{\epsilon}}$ appearing in the regular part of X, for $0 < |\delta| \ll \epsilon \ll 1$.

Computing these numbers of stratified Morse critical points is directly connected to relative polar varieties. Consider l a linear form in \mathbb{C}^n , \mathcal{W} a Whitney stratification of an open subset U of X, $\{W_i \setminus \{l = 0\}, W_i \cap \{l = 0\} \setminus \{0\}, \{0\}\}$ the good stratification of U induced by l and a function-germ $g : (U, 0) \to (\mathbb{C}, 0)$. If l sufficiently generic, the relative polar variety (curve) $\Gamma_{g,l}$ defined by Lê and Teissier, in [8], coincides with the relative polar curve defined by Massey, in [12], and with the relative polar varieties, defined by Massey, in [14] (see [11] and [13]). Each of these polar varieties are useful not only to compute polar multiplicities ([9]) and intersection numbers ([14]), but also to describe critical loci of pair of functions defined over X ([12], [3]), which is the approach we are interested the most.

In this work, we use relative polar varieties to compute a number of stratified Morse critical points of a specific type of Morsefication of a function-germ, aiming to obtain informations about the Brasselet number of this germ.

1 Local Euler obstruction and Euler obstruction of a function

We begin presenting the local Euler obstruction, a singular invariant defined by MacPherson and used as one of the main tools in his proof for the Deligne-Grothendieck conjecture about the existence and uniqueness of Chern classes for singular varities.

Let $(X, 0) \subset (\mathbb{C}^n, 0)$ be an equidimensional reduced complex analytic germ of dimension d in a open set $U \subset \mathbb{C}^n$. Consider a complex analytic Whitney stratification $\mathcal{V} = \{V_\lambda\}$ of U adapted to X such that $\{0\}$ is a stratum. We choose a small representative of (X, 0), denoted by X, such that 0 belongs to the closure of all strata. We write $X = \bigcup_{i=0}^{q} V_i$, where $V_0 = \{0\}$ and $V_q = X_{reg}$, where X_{reg} is the regular part of X. We suppose that $V_0, V_1, \ldots, V_{q-1}$ are connected and that the analytic sets $\overline{V_0}, \overline{V_1}, \ldots, \overline{V_q}$ are reduced. We write $d_i = dim(V_i), i \in \{1, \ldots, q\}$. Note that $d_q = d$.

Let G(d, N) be the Grassmannian manifold, $x \in X_{reg}$ and consider the Gauss map $\phi : X_{reg} \to U \times G(d, N)$ given by $x \mapsto (x, T_x(X_{reg}))$.

Definition 1.1. The closure of the image of the Gauss map ϕ in $U \times G(d, N)$, denoted by \hat{X} , is called **Nash modification** of X. It is a complex analytic space endowed with an analytic projection map $\nu : \tilde{X} \to X$.

Consider the extension of the tautological bundle \mathcal{T} over $U \times G(d, N)$. Since $\tilde{X} \subset U \times G(d, N)$, we consider \tilde{T} the restriction of \mathcal{T} to \tilde{X} , called the **Nash bundle**, and $\pi : \tilde{T} \to \tilde{X}$ the projection of this bundle.

In this context, denoting by φ the natural projection of $U \times G(d, N)$ at U, we have the following diagram:

Considering $||z|| = \sqrt{z_1\overline{z_1} + \cdots + z_N\overline{z_N}}$, the 1-differential form $w = d||z||^2$ over \mathbb{C}^N defines a section in $T^*\mathbb{C}^N$ and its pullback φ^*w is a 1- form over $U \times G(d, N)$. Denote by \tilde{w} the restriction of φ^*w over \tilde{X} , which is a section of the dual bundle \tilde{T}^* .

Choose ϵ small enough for \tilde{w} be a non zero section over $\nu^{-1}(z), 0 < ||z|| \leq \epsilon$, let B_{ϵ} be the closed ball with center at the origin with radius ϵ and denote:

- 1. $Obs(\tilde{T}^*, \tilde{w}) \in \mathbb{H}^{2d}(\nu^{-1}(B_{\epsilon}), \nu^{-1}(S_{\epsilon}), \mathbb{Z})$ as the obstruction for extending \tilde{T} from $\nu^{-1}(S_{\epsilon})$ to $\nu^{-1}(B_{\epsilon})$;
- 2. $O_{\nu^{-1}(B_{\epsilon}),\nu^{-1}(S_{\epsilon})}$ as the fundamental class in $\mathbb{H}_{2d}(\nu^{-1}(B_{\epsilon}),\nu^{-1}(S_{\epsilon}),\mathbb{Z})$.

Definition 1.2. The local Euler obstruction of X at 0, $Eu_X(0)$, is given by the evaluation

$$Eu_X(0) = \langle Obs(T^*, \tilde{w}), O_{\nu^{-1}(B_{\epsilon}), \nu^{-1}(S_{\epsilon})} \rangle.$$

In [1], Brasselet, Lê and Seade proved a formula to make the calculation of the Euler obstruction easier.

Theorem 1.3. (Theorem 3.1 of [1]) Let (X, 0) and \mathcal{V} be given as before, then for each generic linear form l, there exists ϵ_0 such that for any ϵ with $0 < \epsilon < \epsilon_0$ and $\delta \neq 0$ sufficiently small, the Euler obstruction of (X, 0) is equal to

$$Eu_X(0) = \sum_{i=1}^q \chi(V_i \cap B_\epsilon \cap l^{-1}(\delta)).Eu_X(V_i),$$

where χ is the Euler characteristic, $Eu_X(V_i)$ is the Euler obstruction of X at a point of V_i , i = 1, ..., q and $0 < |\delta| \ll \epsilon \ll 1$.

Let us give the definition of another invariant introduced by Brasselet, Massey, Parameswaran and Seade in [2]. Let $f : X \to \mathbb{C}$ be a holomorphic function with isolated singularity at the origin given by the restriction of a holomorphic function $F : U \to \mathbb{C}$ and denote by $\overline{\nabla}F(x)$ the conjugate of the gradient vector field of F in $x \in U$,

$$\overline{\nabla}F(x) := \left(\overline{\frac{\partial F}{\partial x_1}}, \dots, \overline{\frac{\partial F}{\partial x_n}}\right).$$

60

Since f has an isolated singularity at the origin, for all $x \in X \setminus \{0\}$, the projection $\hat{\zeta}_i(x)$ of $\overline{\nabla}F(x)$ over $T_x(V_i(x))$ is non-zero, where $V_i(x)$ is a stratum containing x. Using this projection, the authors constructed, in [2], a stratified vector field over X, denoted by $\overline{\nabla}f(x)$. Let $\tilde{\zeta}$ be the lifting of $\overline{\nabla}f(x)$ as a section of the Nash bundle \tilde{T} over \tilde{X} , without singularity over $\nu^{-1}(X \cap S_{\epsilon})$.

Let $\mathcal{O}(\tilde{\zeta}) \in \mathbb{H}^{2n}(\nu^{-1}(X \cap B_{\epsilon}), \nu^{-1}(X \cap S_{\epsilon}))$ be the obstruction cocycle for extending $\tilde{\zeta}$ as a non zero section of \tilde{T} inside $\nu^{-1}(X \cap B_{\epsilon})$.

Definition 1.4. The local Euler obstruction of the function $f, Eu_{f,X}(0)$ is the evaluation of $\mathcal{O}(\tilde{\zeta})$ on the fundamental class $[\nu^{-1}(X \cap B_{\epsilon}), \nu^{-1}(X \cap S_{\epsilon})]$.

The next theorem compares the Euler obstruction of a space X with the Euler obstruction of function defined over X.

Theorem 1.5. (Theorem 3.1 of [2]) Let (X, 0) and \mathcal{V} be given as before and let $f: (X, 0) \to (\mathbb{C}, 0)$ be a function with an isolated singularity at 0. For $0 < |\delta| \ll \epsilon \ll 1$, we have

$$Eu_{f,X}(0) = Eu_X(0) - \sum_{i=1}^{q} \chi(V_i \cap B_{\epsilon} \cap f^{-1}(\delta)) \cdot Eu_X(V_i)$$

In [17], Seade, Tibăr and Verjovsky proved that the Euler obstruction of a function f is also related to the number of Morse critical points of a Morsefication of f. Before we state their result, let us see the definition of a general point.

Definition 1.6. Let $(X, 0) \subset (U, 0)$ be a germ of complex analytic space in \mathbb{C}^n equipped with a Whitney stratification and let $f : (X, 0) \to (\mathbb{C}, 0)$ be an analytic function, given by the restriction of an analytic function $F : (U, 0) \to (\mathbb{C}, 0)$. Then 0 is said to be a **generic point** of f if the hyperplane $Ker(d_0F)$ is transverse in \mathbb{C}^n to all limit of tangent spaces $\lim_{n\to\infty} T_{x_n}(V_\alpha)$, for all V_α and sequence of points $x_n \in V_\alpha$ converging to 0.

Now, let us see the definition of a Morsefication of a function.

Definition 1.7. A function $f : (X, 0) \to (\mathbb{C}, 0)$ is said to be **Morse stratified** if for all strata V_{α} , with $dimV_{\alpha} \ge 1, 0$ is a generic point of the restriction $f|_{V_{\alpha}}$ and for $V_0 = \{0\}, 0$ is a Morse point of $f|_{V_0}$.

A stratified Morsefication of a germ of analytic function $f : (X, 0) \to (\mathbb{C}, 0)$ is a deformation \tilde{f} of f such that \tilde{f} is Morse stratified.

Proposition 1.8. (Proposition 2.3 of [17]) Let $f : (X, 0) \to (\mathbb{C}, 0)$ be a germ of analytic function with isolated singularity at the origin. Then,

$$Eu_{f,X}(0) = (-1)^d n_{reg},$$

where n_{req} is the number of Morse points in X_{req} in a stratified Morsefication of f.

In the case where we have a function with several number of isolated critical points, one can be interested in a deformation of this function which is a Morsefication around each one of these singularities. This is what Dutertre and Gruha called a partial Morsefication.

Definition 1.9. A partial Morsefication of $g : f^{-1}(\delta) \cap X \cap B_{\epsilon} \to \mathbb{C}$ is a function $\tilde{g} : f^{-1}(\delta) \cap X \cap B_{\epsilon} \to \mathbb{C}$ (not necessarily holomorphic) which is a local Morsefication of all isolated critical points of g in $f^{-1}(\delta) \cap X \cap \{g \neq 0\} \cap B_{\epsilon}$ and which coincides with g outside a small neighborhood of these critical points.

2 Brasselet number

We present now the two most important tools in this work: the relative polar variety, defined by Massey in [12], and the Brasselet number, introduced by Dutertre and Grulha in [3]. We also present formulas proved by Dutertre and Grulha to compute Brasselet numbers by counting numbers of stratified Morse critical points.

Let X be a reduced complex analytic space (not necessarily equidimensional) of dimension d in an open set $U \subseteq \mathbb{C}^n$ and let $f : (X, 0) \to (\mathbb{C}, 0)$ be an analytic map. We write $V(f) = f^{-1}(0)$.

Definition 2.1. A good stratification of X relative to f is a stratification \mathcal{V} of X which is adapted to V(f) such that $\{V_{\lambda} \in \mathcal{V}, V_{\lambda} \nsubseteq V(f)\}$ is a Whitney stratification of $X \setminus V(f)$ and such that for any pair $(V_{\lambda}, V_{\gamma})$ such that $V_{\lambda} \nsubseteq V(f)$ and $V_{\gamma} \subseteq V(f)$, the (a_f) -Thom condition is satisfied, that is, if $p \in V_{\gamma}$ and $p_i \in V_{\lambda}$ are such that $p_i \to p$ and $T_{p_i}V(f|_{V_{\lambda}} - f|_{V_{\lambda}}(p_i))$ converges to some \mathcal{T} , then $T_pV_{\gamma} \subseteq \mathcal{T}$.

If $f: X \to \mathbb{C}$ has a stratified isolated critical point and \mathcal{V} is a Whitney stratification of X, then

$$\{V_{\lambda} \setminus X^{f}, V_{\lambda} \cap X^{f} \setminus \{0\}, \{0\}, V_{\lambda} \in \mathcal{V}\}$$
(1)

is a good stratification of X relative to f, called the good stratification induced by f.

Definition 2.2. The critical locus of f relative to \mathcal{V} , $\Sigma_{\mathcal{V}} f$, is given by the union

$$\Sigma_{\mathcal{V}}f = \bigcup_{V_{\lambda} \in \mathcal{V}} \Sigma(f|_{V_{\lambda}}).$$

Definition 2.3. If $\mathcal{V} = \{V_{\lambda}\}$ is a stratification of X, the symmetric relative polar variety of f and g with respect to \mathcal{V} , $\tilde{\Gamma}_{f,g}(\mathcal{V})$, is the union $\cup_{\lambda} \tilde{\Gamma}_{f,g}(V_{\lambda})$, where $\Gamma_{f,g}(V_{\lambda})$ denotes the closure in X of the critical locus of $(f,g)|_{V_{\lambda}\setminus (X^{f}\cup X^{g})}, X^{f} = X \cap \{f = 0\}$ and $X^{g} = X \cap \{g = 0\}$.

Definition 2.4. Let \mathcal{V} be a good stratification of X relative to a function $f : (X, 0) \to (\mathbb{C}, 0)$. A function $g : (X, 0) \to (\mathbb{C}, 0)$ is **prepolar with respect to** \mathcal{V} **at the origin** if the origin is a stratified isolated critical point, that is, 0 is an isolated point of $\Sigma_{\mathcal{V}}g$.

Definition 2.5. A function $g : (X, 0) \to (\mathbb{C}, 0)$ is tractable at the origin with respect to a good stratification \mathcal{V} of X relative to $f : (X, 0) \to (\mathbb{C}, 0)$ if $\dim_0 \tilde{\Gamma}^1_{f,g}(\mathcal{V}) \leq 1$ and, for all strata $V_{\alpha} \subseteq X^f$, $g|_{V_{\alpha}}$ has no critical points in a neighbourhood of the origin except perhaps at the origin itself.

Another concept useful for this work is the notion of constructible functions. Consider a Whitney stratification $\mathcal{W} = \{W_1, \dots, W_q\}$ of X such that each stratum W_i is connected.

Definition 2.6. A constructible function with respect to the stratification \mathcal{W} of X is a function $\beta: X \to \mathbb{Z}$ which is constant on each stratum W_i , that is, there exist integers t_1, \ldots, t_q , such that $\beta = \sum_{i=1}^{q} t_i \cdot 1_{W_i}$, where 1_{W_i} is the characteristic function of W_i .

Definition 2.7. The Euler characteristic $\chi(X,\beta)$ of a constructible function $\beta : X \to \mathbb{Z}$ with respect to the stratification \mathcal{W} of X, given by $\beta = \sum_{i=1}^{q} t_i \cdot 1_{W_i}$, is defined by $\chi(X,\beta) = \sum_{i=1}^{q} t_i \cdot \chi(W_i)$.

Before we state Dutertre and Grulha results, we need to introduce some definitions about normal Morse data. We cite as main references [4] and [18]. The first concept we present is the complex link, an object analogous to the Milnor fibre, important in the study of complex stratified Morse theory.

Let V be a stratum of the stratification \mathcal{V} of X and let x be a point of V. Let $g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be an analytic complex function-germ such that the differential form Dg(x) is not a degenerate covector of \mathcal{V} at x. Let N be a normal slice to V at x, that is, N is a closed complex submanifold of \mathbb{C}^n which is transversal to V at x and $N \cap V = \{x\}$.

Definition 2.8. Let B_{ϵ} be the closed ball of radius ϵ centered at x. The complex link l_V of V is defined by $l_V = X \cap N \cap B_{\epsilon} \cap \{g = \delta\}$, where $0 < |\delta| \ll \epsilon \ll 1$.

The normal Morse datum NMD(V) of V is the pair of spaces

$$NMD(V) = (X \cap N \cap B_{\epsilon}, X \cap N \cap B_{\epsilon} \cap \{g = \delta\}).$$

In Part II, section 2.3 of [4], the authors explained why this two notions are independent of all choices made.

Definition 2.9. Let $\beta : X \to \mathbb{Z}$ be a constructible function with respect to the stratification \mathcal{V} . Its normal Morse index $\eta(V, \beta)$ along V is defined by

$$\eta(V,\beta) = \chi(NMD(V),\beta) = \chi(X \cap N \cap B_{\epsilon},\beta) - \chi(l_V,\beta).$$

In the case where the constructible function is the local Euler obstruction, the following identities are valid ([18], page 34):

$$\eta(V', Eu_{\overline{V}}) = 1$$
, if $V' = V$ and $\eta(V', Eu_{\overline{V}}) = 0$, if $V' \neq V$.

We present now the definition of the Brasselet number and the main theorems of [3], used as inspiration for this work.

Let $f : (X, 0) \to (\mathbb{C}, 0)$ be a complex analytic function germ and let \mathcal{V} be a good stratification of X relative to f. We denote by V_1, \ldots, V_q the strata of \mathcal{V} that are not contained in $\{f = 0\}$ and we assume that V_1, \ldots, V_{q-1} are connected and that $V_q = X_{reg} \setminus \{f = 0\}$. Note that V_q could be not connected.

Definition 2.10. Suppose that X is equidimensional. Let \mathcal{V} be a good stratification of X relative to f. The **Brasselet number** of f at the origin, $B_{f,X}(0)$, is defined by

$$B_{f,X}(0) = \sum_{i=1}^{q} \chi(V_i \cap f^{-1}(\delta) \cap B_{\epsilon}) E u_X(V_i),$$

where $0 < |\delta| \ll \epsilon \ll 1$.

Remark: If V_q^i is a connected component of V_q , $Eu_X(V_q^i) = 1$.

Notice that if f has a stratified isolated singularity at the origin, then $B_{f,X}(0) = Eu_X(0) - Eu_{f,X}(0)$ (see Theorem 1.5).

In [3], Dutertre and Grulha proved interesting formulas describing the topological relation between the Brasselet number and a number of certain critical points of a special type of deformation of functions. Let us now present some of these results.

Let $g: (X,0) \to (\mathbb{C},0)$ be a complex analytic function which is tractable at the origin with respect to \mathcal{V} relative to f. Then $\tilde{\Gamma}_{f,g}$ is a complex analytic curve and for $0 < |\delta| \ll 1$ the critical points of $g|_{f^{-1}(\delta)\cap X}$ in B_{ϵ} lying outside $\{g=0\}$ are isolated. Let \tilde{g} be a partial Morsefication of $g: f^{-1}(\delta) \cap X \cap B_{\epsilon} \to \mathbb{C}$ and, for each $i \in \{1, \ldots, q\}$, let n_i be the number of stratified Morse critical points of \tilde{g} appearing on $V_i \cap f^{-1}(\delta) \cap \{g \neq 0\} \cap B_{\epsilon}$. **Theorem 2.11.** (*Theorem 4.2 of [3]*) Let $\beta : X \to \mathbb{Z}$ be a constructible function with respect to the stratification \mathcal{V} . Suppose that $g : (X, 0) \to (\mathbb{C}, 0)$ is a complex analytic function tractable at the origin with respect to \mathcal{V} relative to f. For $0 < |\delta| \ll \epsilon \ll 1$, we have

$$\chi(X \cap f^{-1}(\delta) \cap B_{\epsilon}, \beta) - \chi(X \cap g^{-1}(0) \cap f^{-1}(\delta) \cap B_{\epsilon}, \beta) = \sum_{i=1}^{q} (-1)^{d_i - 1} n_i \eta(V_i, \beta).$$

In the case that $\beta = Eu_X$, the last theorem implies the following.

Corollary 2.12. (Corollary 4.3 of [3]) Suppose that X is equidimensional and that g is tractable at the origin with respect to V relative to f. For $0 < |\delta| \ll \epsilon \ll 1$, we have

$$\chi(X \cap f^{-1}(\delta) \cap B_{\epsilon}, Eu_X) - \chi(X \cap g^{-1}(0) \cap f^{-1}(\delta) \cap B_{\epsilon}, Eu_X) = (-1)^{d-1}n_q$$

If one supposes, in addition, that g is prepolar, a consequence of this result is a Lê-Greuel type formula for the Brasselet number.

Theorem 2.13. (*Theorem 4.4 of [3]*) Suppose that X is equidimensional and that g is prepolar with respect to V at the origin. For $0 < |\delta| \ll \epsilon \ll 1$, we have

$$B_{f,X}(0) - B_{f,X^g}(0) = (-1)^{d-1} n_q,$$

where n_q is the number of stratified Morse critical points on the top stratum $V_q \cap f^{-1}(\delta) \cap B_{\epsilon}$ appearing in a Morsefication of $g: X \cap f^{-1}(\delta) \cap B_{\epsilon} \to \mathbb{C}$.

In [3], the authors also related the topology of the generalized Minor fibres of f and g and some number of Morse points.

Theorem 2.14. Suppose that g (resp. f) is prepolar with respect to the good stratification induced by f (resp. g) at the origin. Let $\beta : X \to \mathbb{Z}$ be a constructible function with respect to the Whitney stratification \mathcal{V} . For $0 < |\delta| \ll \epsilon \ll 1$,

$$\chi(X \cap f^{-1}(\delta) \cap B_{\epsilon}, \beta) - \chi(X \cap g^{-1}(\delta) \cap B_{\epsilon}, \beta) = \sum_{i=1}^{q} (-1)^{d_{i}-1} (n_{i} - m_{i}) \eta(V_{i}, \beta)$$

where n_i (resp. m_i) is the number of stratified Morse critical points on the stratum $V_i \cap f^{-1}(\delta) \cap B_{\epsilon}$ (resp. $V_i \cap g^{-1}(\delta) \cap B_{\epsilon}$) appearing in a Morsefication of $g: X \cap f^{-1}(\delta) \cap B_{\epsilon} \to \mathbb{C}$ (resp. $f: X \cap g^{-1}(\delta) \cap B_{\epsilon} \to \mathbb{C}$).

In the case where $\beta = Eu_X$, the last theorem implies the following result.

Corollary 2.15. Suppose that X is equidimensional and that g (resp. f) is prepolar with respect to the good stratification induced by f (resp. g) at the origin. Then

$$B_{f,X}(0) - B_{g,X}(0) = (-1)^{d-1}(n_q - m_q),$$

where n_q (resp. m_q) is the number of stratified Morse critical points on the top stratum $V_q \cap f^{-1}(\delta) \cap B_{\epsilon}$ (resp. $V_q \cap g^{-1}(\delta) \cap B_{\epsilon}$) appearing in a Morsefication of $g: X \cap f^{-1}(\delta) \cap B_{\epsilon} \to \mathbb{C}$ (resp. $f: X \cap g^{-1}(\delta) \cap B_{\epsilon} \to \mathbb{C}$).

3 Brasselet numbers and empty relative polar varieties

In this final section, we present relations between Brasselet numbers of two function-germs in the case where the relative polar variety associated to these germs is empty.

Let (X, 0) be a complex analytic space with ambient space $U \subset \mathbb{C}^n$. Let $f, g : (X, 0) \to (\mathbb{C}, 0)$ be germs of holomorphic functions and let \mathcal{V} be a good stratification of U relative to f. Suppose that $\Sigma_{\mathcal{V}}g \cap \{f = 0\} = \{0\}$. We aim to obtain information about the Brasselet number of f and the Brasselet number of g in the case where the relative polar variety $\Gamma_{f,g}(\mathcal{V})$ is empty.

We begin with a description of two relevant subsets of the relative polar variety $\Gamma_{f,q}(\mathcal{V})$.

Proposition 3.1. The stratified critical set $\Sigma_{\mathcal{V}}g$ of g and the symmetric relative polar variety $\tilde{\Gamma}_{f,g}(\mathcal{V})$ are subsets of $\Gamma_{f,g}(\mathcal{V})$.

Proof. If $x \in \Sigma_{\mathcal{V}}g, d_x \tilde{g}|_{V_{\alpha}} = 0$, for a stratum $V_{\alpha} \in \mathcal{V}$ containing x and an analytic extension \tilde{g} of g in a neighborhood of x. If $V_{\alpha} \subset \{f = 0\}$, then x = 0, since $\Sigma_{\mathcal{V}}g \cap \{f = 0\} = \{0\}$. If $V_{\alpha} \subset X \setminus \{f = 0\}$,

$$rk(d_x \tilde{f}|_{V_{\alpha}}, d_x \tilde{g}|_{V_{\alpha}}) \le 1,$$

where \tilde{f} is an analytic extension of f in a neighborhood of x, that is $x \in \Sigma(f,g)|_{V_{\alpha}} = \Sigma(f,g)|_{V_{\alpha} \setminus \{f=0\}}$. Therefore, $x \in \Gamma_{f,g}(\mathcal{V}_{\alpha})$.

Furthermore, $\tilde{\Gamma}_{f,g}(V_{\alpha})$ is given by components of $\Gamma_{f,g}(V_{\alpha})$ no contained in $\{g = 0\}$, that is, $\tilde{\Gamma}_{f,g}(V_{\alpha}) = \overline{\Gamma_{f,g}(V_{\alpha}) \setminus \{g = 0\}} \subseteq \Gamma_{f,g}(V_{\alpha})$. Therefore,

$$\widetilde{\Gamma}_{f,g}(\mathcal{V}) \cup \Sigma_{\mathcal{V}}g \subseteq \Gamma_{f,g}(\mathcal{V}).$$

Using this proposition, we obtain the following useful information about the behavior of q with respect to the stratification \mathcal{V} .

Corollary 3.2. If $\Gamma_{f,g}(\mathcal{V})$ is empty, then g is prepolar at the origin with respect to the good stratification \mathcal{V} of X relative by f.

Proof. By Proposition 3.1, if $\Gamma_{f,g}(\mathcal{V})$ is empty, $\Sigma_{\mathcal{V}}g$ is empty, that is, g has no stratified critical point with respect to \mathcal{V} .

Let n_i be the number of stratified Morse critical points of a Morsefication of $g: X \cap f^{-1}(\delta) \cap B_{\epsilon} \to \mathbb{C}$ in $V_i \cap f^{-1}(\delta) \cap \{g \neq 0\} \cap B_{\epsilon}$, for each $i \in \{1, \ldots, q\}$. The next proposition uses the relative polar variety $\Gamma_{f,q}(\mathcal{V})$ for counting the numbers n_i .

Proposition 3.3. If $\Gamma_{f,g}(\mathcal{V})$ is empty, then $n_i = 0$, for all $i \in \{1, \ldots, q\}$.

Proof. Let V_i be a stratum of \mathcal{V} and x be a critical point of $g|_{V_i \cap f^{-1}(\delta) \cap B_{\epsilon}}$. Then, if \tilde{f} and \tilde{g} are analytic extensions of f and g in a neighborhood of x, respectively, $x \in V_i \cap f^{-1}(\delta) \cap B_{\epsilon}$ and $rk(d_x \tilde{f}|_{V_i}, d_x \tilde{g}|_{V_i}) \leq 1$, that is,

$$x \in \left(V_i \cap f^{-1}(\delta) \cap B_{\epsilon}\right) \cap \left(\Sigma_{\mathcal{V}} f \cup \Sigma_{\mathcal{V}} g \cup \widetilde{\Gamma}_{f,q}(\mathcal{V})\right).$$

By Proposition 1.3 of [12], $\Sigma_{\mathcal{V}} f \subset \{f = 0\}$. Therefore,

$$\Sigma g|_{V_i \cap f^{-1}(\delta) \cap B_{\epsilon}} = V_i \cap f^{-1}(\delta) \cap B_{\epsilon} \cap \left(\tilde{\Gamma}_{f,g}(V_i) \cup \Sigma g|_{V_i}\right) \subseteq V_i \cap f^{-1}(\delta) \cap B_{\epsilon} \cap \Gamma_{f,g}(V_i).$$

Since $\Gamma_{f,g}(\mathcal{V})$ is empty, by Proposition 3.1, $\Sigma g|_{V_i \cap f^{-1}(\delta) \cap B_{\epsilon}}$ is empty. Therefore, $n_i = 0$, for all $i \in \{1, \ldots, q\}$.

In [3], Dutertre and Grulha proved a Lê-Greuel type formula for the Brasselet number, with which it is possible count the number of stratified Morse critical points using Brasselet numbers. We apply their result to obtain a relation between Brasselet number in the setting we already know the number of Morse points. First let us show a more general result.

Corollary 3.4. If $\beta : X \to \mathbb{Z}$ is a constructible function with respect to the good stratification \mathcal{V} of X relative to f and $\Gamma_{f,q}(\mathcal{V})$ is empty, then

$$\chi(X \cap f^{-1}(\delta) \cap B_{\epsilon}, \beta) = \chi(X \cap \{g = 0\} \cap f^{-1}(\delta) \cap B_{\epsilon}, \beta).$$

Proof. By Corollary 3.2, since $\Gamma_{f,g}(\mathcal{V})$ is empty, g is prepolar at the origin with respect to \mathcal{V} and, by Proposition 1.12 of [12], tractable at the origin with respect to \mathcal{V} . Then, by Theorem 4.2 of [3], we obtain

$$\chi(X \cap f^{-1}(\delta) \cap B_{\epsilon}, \beta) = \chi(X \cap \{g = 0\} \cap f^{-1}(\delta) \cap B_{\epsilon}, \beta) + \sum_{i=1}^{q} (-1)^{d-1} n_i \eta(V_i, \beta),$$

where n_i is the number of stratified Morse critical points of a Morsefication of $g|_{V_i \cap f^{-1}(\delta) \cap B_{\epsilon}}$ appearing in $V_i \cap f^{-1}(\delta) \cap B_{\epsilon}$. Using again that $\Gamma_{f,g}(\mathcal{V})$ is empty, $n_i = 0$, for all $i \in \{1, \ldots, q\}$ and we conclude the equality.

If the constructible function β is giving by the local Euler obstruction, one obtains a relation between Brasselet numbers.

Corollary 3.5. If X is equidimensional and $\Gamma_{f,q}(\mathcal{V})$ is empty, then $B_{f,X}(0) = B_{f,X^g}(0)$.

Proof. By Theorem 4.4 of [3], $B_{f,X}(0) = B_{f,X^g}(0) + (-1)^{d-1}n_q$, where n_q is the number of stratified Morse criticalpoints of a Morsefication of $g|_{X \cap f^{-1}(\delta) \cap B_{\epsilon}}$ appearing on $V_q \cap f^{-1}(\delta) \cap B_{\epsilon}$. Since $\Gamma_{f,g}(\mathcal{V})$ is empty, n_q is zero and the equality holds.

When f is a generic linear form on \mathbb{C}^n , $B_{f,X}(0) = Eu_X(0)$ and $B_{f,X^g}(0) = Eu_{X^g}(0)$. Therefore, Corollary 3.5 implies the following consequence.

Corollary 3.6. If X is equidimensional and $\Gamma_{f,g}(\mathcal{V})$ is empty, then $Eu_X(0) = Eu_{X^g}(0)$.

When both f and g has isolated singularity at the origin, Dutertre and Grulha proved several formulas about the Brasselet numbers of f and g. Using this formulas, one can obtain further information about these numbers if $\Gamma_{f,g}(\mathcal{V})$ is empty. If that is the case, then g is prepolar at the origin with respect to the good stratification \mathcal{V} of X induced by f, given as a refinement of a Whitney stratification $\mathcal{W} = \{W_i\}_i$ of X. By Corollary 6.1 of [3], f is prepolar at the origin with respect to the good stratification $\overline{\mathcal{V}}$ induced by g, also given by a refinement of \mathcal{W} . Applying Proposition 1.12 of [12], we obtain that $\Gamma_{f,g}(\mathcal{V}) = \tilde{\Gamma}_{f,g}(\mathcal{V})$ and $\Gamma_{g,f}(\overline{\mathcal{V}}) = \tilde{\Gamma}_{g,f}(\overline{\mathcal{V}})$. But

$$\widetilde{\Gamma}_{f,g}(\mathcal{V}) = \bigcup_{V_i \in \mathcal{V}} \overline{\Sigma(f,g)}|_{V_i \setminus \{f=0\} \cup \{g=0\})}$$

$$= \bigcup_{W_i \in \mathcal{W}} \overline{\Sigma(f,g)}|_{(W_i \setminus \{f=0\}) \setminus \{g=0\}}$$

$$= \bigcup_{W_i \in \overline{\mathcal{W}}} \overline{\Sigma(f,g)}|_{(W_i \setminus \{g=0\}) \setminus \{f=0\}}$$

$$= \bigcup_{\overline{V_i} \in \overline{\mathcal{V}}} \overline{\Sigma(f,g)}|_{\overline{V_i} \setminus (\{g=0\} \cup \{f=0\})}$$

$$= \widetilde{\Gamma}_{g,f}(\overline{\mathcal{V}}).$$

Therefore, these four polar varieties are equal. Using this description, one concludes the following.

Proposition 3.7. If $\beta : X \to \mathbb{Z}$ is a constructible function with respect to the Whitney stratification \mathcal{W} and $\Gamma_{f,g}(\mathcal{V})$ is empty, where \mathcal{V} is the good stratification of X induced by f, then

$$\chi(X \cap f^{-1}(\delta) \cap B_{\epsilon}, \beta) = \chi(X \cap g^{-1}(\delta) \cap B_{\epsilon}, \beta).$$

Proof. Since $\Gamma_{f,g}(\mathcal{V})$ is empty, g is prepolar at the origin with respect to \mathcal{V} . Then, f is prepolar at the origin with respect to the good stratification $\overline{\mathcal{V}}$ induced by g. By Theorem 6.4 of [3],

$$\chi(X \cap f^{-1}(\delta) \cap B_{\epsilon}, \beta) = \chi(X \cap g^{-1}(\delta) \cap B_{\epsilon}, \beta)$$

+
$$\sum_{i=1}^{q} (-1)^{d_{i}-1} (n_{i} - m_{i}) \eta(W_{i}, \beta)$$

where d_i denotes the dimension of $W_i \in \mathcal{W}$. By Proposition 3.4, if m_i is the number of stratified Morse critical points of a Morsefication of $f|_{X\cap g^{-1}(\delta)\cap B_{\epsilon}}$ appearing on $V_i \cap g^{-1}(\delta) \cap \{f \neq 0\} \cap B_{\epsilon}$, for each $i \in \{1, \ldots, q\}$, since $\Gamma_{f,g}(\mathcal{V})$ is empty, $\Gamma_{f,g}(\overline{\mathcal{V}})$ is empty and $m_i = 0$. Since the number n_i of stratified Morse critical points of a Morsefication of $g|_{X\cap f^{-1}(\delta)\cap B_{\epsilon}}$ in $V_i \cap f^{-1}(\delta) \cap \{g \neq 0\} \cap B_{\epsilon}$ is zero, for each $i \in \{1, \ldots, q\}$, the equality is proved.

Corollary 3.8. If X is equidimensional and $\Gamma_{f,g}(\mathcal{V})$ is empty, then $B_{g,X}(0) = B_{f,X}(0)$.

Proof. Since $\Gamma_{f,g}(\mathcal{V})$ is empty, g (resp. f) is prepolar with respect to the good stratification of X induced by f (resp. g). Applying Corollary 6.5 of [3], we obtain $B_{f,X}(0) = B_{g,X}(0) + (-1)^{d-1}(n_q - m_q)$, where n_q (resp. m_q) is the number of stratified Morse critical points of a Morsefication of $g|_{X \cap f^{-1}(\delta) \cap B_{\epsilon}}$ (resp. $f|_{X \cap g^{-1}(\delta) \cap B_{\epsilon}}$) appearing on the top stratum $V_q \cap f^{-1}(\delta) \cap B_{\epsilon}$ (resp. $V_q \cap g^{-1}(\delta) \cap B_{\epsilon}$). Using again that $\Gamma_{f,g}(\mathcal{V})$ is empty, we have that $n_q = m_q = 0$, what leads to the equality.

Acknowledgements

The author thank the financial support from FAPESP-Brazil, Grants 2015/25191-9 and 2017/18543-1. This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

- [1] BRASSELET, J.P., LÊ, D.T., SEADE, J., Euler obstruction and indices of vector fields, Topology, v.39, (2000), p. 1193-1208.
- [2] BRASSELET, J-P., MASSEY, D., PARAMESWARAN, AJ. AND SEADE, J. *Euler obstruction and defects of functions on singular varieties, Journal of the London Mathematical Society*, Cambridge University Press, 70, n.1, (2004), p. 59-76.
- [3] DUTERTRE, N., GRULHA JR., N.G., *Lê-Greuel type formula for the Euler obstruction and applications*, Adv. Math. 251 (2014), p. 127-146.
- [4] GORESKY, M. AND MACPHERSON, R. Stratified Morse theory, Springer, v. 40, n. 1, (1988).
- [5] GREUEL, G-M. Der Gauβ-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Mathematische Annalen, Springer, v. 214, n. 3, (1975), p. 235-266.
- [6] HAMM, H. Lokale topologische Eigenschaften komplexer Räume, Mathematische Annalen, v.191, n.3, (1971), p. 235-252.
- [7] LÊ, D.T. Calcul Du Nombre de Milnor D'und Singularité Isolée D'intersection Compléte, Centre de Mathematiques de l'Ecole Polytechnique,(1973).
- [8] LÊ D. T., TEISSIER, B. Variétés polaires locales et classes de Chern des variétés singulieres, Annals of Mathematics, 114, No 3, (1981), p.457-491.
- [9] LOESER, F., Formules intégrales pour certains invariants locaux des espaces analytiques complexes, Comment. Math. Helv. 59(2)(1984) p. 204-225.
- [10] MACPHERSON, R. *Chern classes for singular algebraic varieties*, Annals of Mathematics, JSTOR, (1974), p. 423-432.
- [11] MASSEY, D. Enriched Relative Polar Curves and Discriminants, (2006).
- [12] MASSEY, D., Hypercohomology of Milnor Fibers, Topology, 35 (1996), no. 4 p. 969-1003.
- [13] MASSEY, D. IPA-deformations of functions on affine space, Hokkaido Math. J. 47 (2018), no. 3, 655-676.
- [14] MASSEY, D. Numerical control over complex analytic singularities, American Mathematical Soc., (2003).
- [15] MILNOR, W. J., *Singular Points of Complex Hypersurfaces*, Annals of Mathematics Studies, **25**, New Jersey, (1968).
- [16] MILNOR, W. J., *Morse Theory Based on lecture notes by M. Spivak and R. Wells*, Annals of Mathematics Studies, **51**, New Jersey, (1963).

- [17] SEADE, J., TIBĂR, M. AND VERJOVSKY, A. *Milnor numbers and Euler obstruction, Bulletin of the Brazilian Mathematical Society*, Springer, v. 36, n. 2, (2005), p. 275-283.
- [18] SCHÜRMANN, J. AND TIBAR, M. Index formula for MacPherson cycles of affine algebraic varieties, BTohoku Mathematical Journal, Second Series, Mathematical Institute, Tohoku University, v. 62, n. 1, (2010), p. 29-44.

Hellen Monção de Carvalho Santana Institute of Mathematics and Computer Science - University of São Paulo. São Carlos. Brazil email: hellenmcarvalho@hotmail.com