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Some remarks on the relative polar variety and
the Brasselet number *

Hellen Santana

Introduction

Let f : (C",0) — (C,0) be an analytic function defined in a neighborhood of the origin and
¥ f the critical locus of f. The Milnor fiber F is given by f~*(d) N B, where ¢ is a regular
value of f,0 < [§| < ¢ < 1. In [15], Milnor proved that, if f has an isolated singularity,
FY o has the homotopy type of a wedge of p( f) spheres of dimension n — 1, where pu(f) is
the Milnor number of f. Also, x(f) is the number of Morse points in a Morsefication of f in
a neighborhood of the origin.

In [6], Hamm generalized Milnor’s results for complete intersections with isolated sin-
gularity F' = (fy,..., fr) : (C",0) = (C*,0),1 < k < n, proving that the Milnor fiber
F~Y(0)NB.,0 < |§] < € < 1, has the homotopy type of a wedge of yi(F') spheres of dimen-

sion n — k. In this context, L& [7] and Greuel [5] proved that ju(F') + p(F') = dimge (@) ,

where F' : (C",0) — (C*1,0) is the map with components fi,..., fr_; and I is the
ideal generated by f1,..., fr_1 and the (k x k)— minors H Notice that the num-

Lo,
ber dim¢ (%) is the number of critical points of a Morsefication of f; appearing on the

Milnor fibre of F".

If f is defined over a complex analytic space X and f has an isolated singularity at the
origin, a generalization for the Milnor number is the Euler obstruction of the function f,
introduced in [2], by Brasselet, Massey, Parameswaran and Seade. In [17], Seade, Tibar and
Verjovsky proved that, up to sign, this number is the number of Morse critical points of a
stratified Morsefication of f appearing in the regular part of X.

In a more general context, if f is defined over a complex analytic space X equipped
with a good stratification V of X relative to f (see Definition 2.1) and the function f does
not have isolated singularity at the origin, a way to describe the generalized Milnor fiber
X N f71(0) N B, is to use the Brasselet number of f at the origin, By x(0), introduced by
Dutertre and Grulha, in [3], and that generalizes the Milnor number to this more general
setting and the local Euler obstruction, introduced by MacPherson, in [10], in his proof
for the Deligne-Grothendieck conjecture. In [3], the authors presented several formulas to
compute Brasselet numbers couting number of stratified Morse critical points. For example,
they present a Lé-Greuel type formula for the Brasselet number: if g : X — C is prepolar
with respect to ) at the origin (see Definition 2.4) and 0 < |§] < € < 1, then
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Byx(0) = Byxs(0) = (=1)""'ng,

where n, is the number of Morse critical points of a partial Morsefication of g|xn-1(5)n5.
appearing in the regular part of X, and X9 = X N {g = 0}.

They also proved results about the topology of functions with isolated singularity defined
over an analytic complex Whitney stratified variety X. If X is equidimensional, let f, g :
X — C be analytic functions with isolated singularity at the origin such that ¢ is prepolar at
the origin with respect to the good stratification induced by f (see (1)) and f is prepolar at
the origin with respect to the good stratification induced by g, then

By x(0) = Byx(0) = (=1)""!(ng — my).

where X/ = X N {f = 0}, n, is the number of Morse critical points of a Morsefication of
9| xnf-1(s)np. appearing in the regular part of X and m,, is the number of Morse critical points
of a Morsefication of f|xn,-1(s)np, appearing in the regular part of X, for 0 < [0| < e < 1.

Computing these numbers of stratified Morse critical points is directly connected to rel-
ative polar varieties. Consider [ a linear form in C", YW a Whitney stratification of an open
subset U of X, {W; \ {l = 0}, W; n{l = 0} \ {0}, {0}} the good stratification of U in-
duced by [ and a function-germ ¢ : (U,0) — (C,0). If [ sufficiently generic, the relative
polar variety (curve) I'g ; defined by L€ and Teissier, in [8], coincides with the relative polar
curve defined by Massey, in [12], and with the relative polar varieties, defined by Massey, in
[14] (see [11] and [13]). Each of these polar varieties are useful not only to compute polar
multiplicities ([9]) and intersection numbers ([14]), but also to describe critical loci of pair
of functions defined over X ([12], [3]), which is the approach we are interested the most.

In this work, we use relative polar varieties to compute a number of stratified Morse
critical points of a specific type of Morsefication of a function-germ, aiming to obtain infor-
mations about the Brasselet number of this germ.

1 Local Euler obstruction and Euler obstruction of a func-
tion

We begin presenting the local Euler obstruction, a singular invariant defined by MacPherson
and used as one of the main tools in his proof for the Deligne-Grothendieck conjecture about
the existence and uniqueness of Chern classes for singular varities.

Let (X,0) C (C™,0) be an equidimensional reduced complex analytic germ of dimen-
sion d in a open set U C C™. Consider a complex analytic Whitney stratification V = {V,}
of U adapted to X such that {0} is a stratum. We choose a small representative of (X, 0),
denoted by X, such that 0 belongs to the closure of all strata. We write X = U!_,Vj,
where Vo = {0} and V;, = X4, where X, is the regular part of X. We suppose that
Vo, Vi, ..., V1 are connected and that the analytic sets Vo, Vi, . . ., V; are reduced. We write
d; = dim(V;), i € {1,...,q}. Note that d, = d.

Let G(d, N) be the Grassmannian manifold, z € X, and consider the Gauss map
¢ Xpeg = U x G(d,N) givenby x — (2, T, (X,eq))-

Definition 1.1. The closure of the image of the Gauss map ¢ in U x G(d, N), denoted by X,
is called Nash modification of X. It is a complex analytic space endowed with an analytic
projection map v : X — X.
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Consider the extension of the tautological bundle 7 over U x G(d,N). Since
X c U x G(d,N), we consider T the restriction of 7 to X , called the Nash bundle,
andm: T — X the projection of this bundle.

In this context, denoting by ¢ the natural projection of U x G/(d, N) at U, we have the
following diagram:

~:

T

|

——U X G(d,N)

|+

Ucch

B
-

<

<
-

b

Considering ||z|| = /2121 + - - + 2nZn, the 1-differential form w = d||z||* over CV
defines a section in 7*C and its pullback p*w is a 1- form over U x G(d, N). Denote by w
the restriction of p*w over X , which is a section of the dual bundle T*.

Choose € small enough for w be a non zero section over v~ '(z),0 < ||z|| < ¢, let B, be
the closed ball with center at the origin with radius € and denote:

1. Obs(T*,w) € H>(v'(B,),r '(S.),Z) as the obstruction for extending 7" from
vH(Se) to v (By);

2. O,-1(p,)-1(s,) as the fundamental class in Haq(v~*(B.), v *(S.), Z).
Definition 1.2. The local Euler obstruction of X at 0, Eux(0), is given by the evaluation
EUX (0) = <Ob$(T*, TIJ)/ Ol/’l(BE),l/’l(Sc)>-

In [1], Brasselet, L& and Seade proved a formula to make the calculation of the Euler
obstruction easier.

Theorem 1.3. (Theorem 3.1 of [1]) Let (X,0) and V be given as before, then for each
generic linear form 1, there exists €y such that for any e with 0 < € < ¢y and § # 0 sufficiently
small, the Euler obstruction of (X, 0) is equal to

Bux(0) = 3° (Vi B, 01 (0)- Bux (1),

i=1
where X is the Euler characteristic, Eux(V;) is the Euler obstruction of X at a point of
Viyi=1,...,qand 0 < || < e < 1.

Let us give the definition of another invariant introduced by Brasselet, Massey, Parameswaran

and Seade in [2]. Let f : X — C be a holomorphic function with isolated singularity at the
origin given by the restriction of a holomorphic function ' : U — C and denote by V F(x)
the conjugate of the gradient vector field of F'inx € U,
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Since f has an isolated singularity at the origin, for all z € X \ {0}, the projection
(;(x) of VF(x) over T, (V;(z)) is non-zero, where V;(z) is a stratum containing z. Using
this projection, the authors constructed, in [2], a stratified vector field over X, denoted by
Vf(z). Let ¢ be the lifting of V() as a section of the Nash bundle T over X, without
singularity over v~ 1(X N S,).

Let O(C) € H>* (v~ (X N B.), v~ (X N S,)) be the obstruction cocycle for extending ¢
as a non zero section of 7" inside v~ (X N B.).

Definition 1.4. The local Euler obstruction of the function f, Fu; x(0) is the evaluation
of O(¢) on the fundamental class [v~1(X N B.), v H(X N S,)].

The next theorem compares the Euler obstruction of a space X with the Euler obstruction
of function defined over X.

Theorem 1.5. (Theorem 3.1 of [2]) Let (X,0) and V be given as before and let
f:(X,0) = (C,0) be a function with an isolated singularity at 0. For 0 < |0] < € < 1,
we have

Eusx(0) = Bux(0) — Z Y(Vin BN f746)). Eux (V).

In [17], Seade, Tibar and Verjovsky proved that the Euler obstruction of a function f is
also related to the number of Morse critical points of a Morsefication of f. Before we state
their result, let us see the definition of a general point.

Definition 1.6. Let (X,0) C (U,0) be a germ of complex analytic space in C" equipped
with a Whitney stratification and let f : (X,0) — (C,0) be an analytic function, given by
the restriction of an analytic function F' : (U,0) — (C,0). Then 0 is said to be a generic
point of f if the hyperplane Ker(dyF') is transverse in C" to all limit of tangent spaces
lim,, oo Ty, (Va), for all V,, and sequence of points x,, € V,, converging to 0.

Now, let us see the definition of a Morsefication of a function.

Definition 1.7. A function f : (X,0) — (C,0) is said to be Morse stratified if for all strata
Vi, with dimV,, > 1,0 is a generic point of the restriction f|y, and for V; = {0}, O is a
Morse point of f|y;.

A stratified Morsefication of a germ of analytic function f : (X,0) — (C,0) is a defor-
mation f of f such that f is Morse stratified.

Proposition 1.8. (Proposition 2.3 of [17]) Let f : (X,0) — (C,0) be a germ of analytic
Sfunction with isolated singularity at the origin. Then,

Buyx(0) = (=1)yey,
where 1,4 is the number of Morse points in X,., in a stratified Morsefication of f.

In the case where we have a function with several number of isolated critical points, one
can be interested in a deformation of this function which is a Morsefication around each one
of these singularities. This is what Dutertre and Grulha called a partial Morsefication.

Definition 1.9. A partial Morsefication of g : f (6) N X N B, — C is a function § :
F74d) N X N B, — C (not necessarily holomorphic) which is a local Morsefication of all
isolated critical points of g in f~1(§)N X N{g # 0} N B, and which coincides with g outside
a small neighborhood of these critical points.
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2 Brasselet number

We present now the two most important tools in this work: the relative polar variety, defined
by Massey in [12], and the Brasselet number, introduced by Dutertre and Grulha in [3].
We also present formulas proved by Dutertre and Grulha to compute Brasselet numbers by
counting numbers of stratified Morse critical points.

Let X be a reduced complex analytic space (not necessarily equidimensional) of dimen-
sion d in an open set U C C" and let f : (X,0) — (C,0) be an analytic map. We write

V(f)=f710).

Definition 2.1. A good stratification of X relative to f is a stratification V of X which is
adapted to V'(f) such that {V}, € V,Vy € V(f)} is a Whitney stratification of X \ V/(f) and
such that for any pair (Vy, V) such that Vy, ¢ V/(f) and V,, C V/(f), the (a;)-Thom condition
is satisfied, that is, if p € V,, and p; € V), are such that p; — p and T,V (f|v, — f|v, (p:))
converges to some 7, then T,V C T

If f: X — C has a stratified isolated critical point and V is a Whitney stratification of
X, then
(WA X7, N X7\ {0}, {0}, v, € V} (1)

is a good stratification of X relative to f, called the good stratification induced by f.

Definition 2.2. The critical locus of f relative to ), ¥y, f, is given by the union

Svf = 2(flw)-

Vyev

Definition 2.3. If VV = {V)} is a stratification of X, the symmetric relative polar variety
of f and g with respect to V, I'; ,(V), is the union U,I'; ,(V)), where I';,(V) denotes
the closure in X of the critical locus of (f, g)|v,\(xruxs), X! = X N{f = 0} and X¥ =
X n{g=0}.

Definition 2.4. Let V be a good stratification of X relative to a function f : (X,0) — (C,0).
A function ¢ : (X,0) — (C,0) is prepolar with respect to ) at the origin if the origin is a
stratified isolated critical point, that is, 0 is an isolated point of ¥y,g.

Definition 2.5. A function g : (X,0) — (C, 0) is tractable at the origin with respect to a
good stratification V of X relative to f : (X,0) — (C,0) if dimy f‘}, ,(V) < 1 and, for all
strata V,, € X7/, g|y,, has no critical points in a neighbourhood of the origin except perhaps
at the origin itself.

Another concept useful for this work is the notion of constructible functions. Consider a
Whitney stratification W = {W;, ..., W,} of X such that each stratum W; is connected.

Definition 2.6. A constructible function with respect to the stratification ¥V of X is a func-
tion 5 : X — Z which is constant on each stratum WV}, that is, there exist integers ¢4, ..., 1,
such that 7 = Z?=1 t;.1yw,, where 1y, is the characteristic function of WW;.

Definition 2.7. The Euler characteristic x (X, 5) of a constructible function 8 : X — Z with
respect to the stratification W of X, given by f = > | t;.1y,, is defined by x(X, 3) =
T tix(Wy).
i=1ti i



Before we state Dutertre and Grulha results, we need to introduce some definitions about
normal Morse data. We cite as main references [4] and [18]. The first concept we present is
the complex link, an object analogous to the Milnor fibre, important in the study of complex
stratified Morse theory.

Let V be a stratum of the stratification }V of X and let x be a point of V. Let
g : (C",0) — (C,0) be an analytic complex function-germ such that the differential form
Dg(x) is not a degenerate covector of V at . Let N be a normal slice to V" at z, that is, N is
a closed complex submanifold of C" which is transversal to V atz and NNV = {z}.

Definition 2.8. Let B, be the closed ball of radius ¢ centered at x. The complex link [y of
Visdefinedby ly = XN NNB.N{g=0}, where 0 < || < e < 1.
The normal Morse datum N M D (V') of V' is the pair of spaces

NMD{V)=(XNNNB,XNNNB.N{g=73}).

In Part II, section 2.3 of [4], the authors explained why this two notions are independent
of all choices made.

Definition 2.9. Let 5 : X — Z be a constructible function with respect to the stratification
V. Its normal Morse index 7(V, 3) along V' is defined by

n(V,B8) = x(NMD(V), 5) = x(XN NN B, B) — x(lv, B).

In the case where the constructible function is the local Euler obstruction, the following
identities are valid ([18], page 34):

n(V', Euy) = 1,if V! = Vand n(V’, Euy) = 0,if V! # V.

We present now the definition of the Brasselet number and the main theorems of [3], used
as inspiration for this work.

Let f : (X,0) — (C,0) be a complex analytic function germ and let V be a good strati-
fication of X relative to f. We denote by Vi, ...,V the strata of V that are not contained in
{f = 0} and we assume that Vij,...,V, ; are connected and that V, =
Xreg \ {f = 0}. Note that V,, could be not connected.

Definition 2.10. Suppose that X is equidimensional. Let } be a good stratification of X
relative to f. The Brasselet number of f at the origin, By x(0), is defined by

By x(0) = 32 x(Vin f71(0) N B Eux(Vi),
where 0 < |§| < e < 1.

Remark: If V; is a connected component of V,, Eux (V,) = 1.

Notice that if f has a stratified isolated singularity at the origin, then
B x(0) = Eux(0) — Euy x(0) (see Theorem 1.5).

In [3], Dutertre and Grulha proved interesting formulas describing the topological rela-
tion between the Brasselet number and a number of certain critical points of a special type
of deformation of functions. Let us now present some of these results.

Let g : (X,0) — (C,0) be a complex analytic function which is tractable at the origin
with respect to V relative to f. Then r f.¢ 1s @ complex analytic curve and for 0 < |§] < 1
the critical points of g|;-1(5~x in B. lying outside {g = 0} are isolated. Let § be a partial
Morsefication of g : /1% n X n B. — C and, for each
i € {1,...,q}, let n; be the number of stratified Morse critical points of § appearing on
Vinf7(0)n{g # 0} N B..
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Theorem 2.11. (Theorem 4.2 of [3]) Let 3 : X — 7 be a constructible function with respect
fo the stratification V. Suppose that g : (X,0) — (C,0) is a complex analytic function
tractable at the origin with respect to V relative to f. For 0 < |§| < € < 1, we have

X(X N f7HE) N Be, B) = x(X Ng™H(0) N f71(0) N Be, B) = 320, (=) nan(Vi, B).
In the case that 5 = Fuy, the last theorem implies the following.

Corollary 2.12. (Corollary 4.3 of [3]) Suppose that X is equidimensional and that g is
tractable at the origin with respect to V relative to f. For 0 < |§] < € < 1, we have

X(X N 70) N B, Bux) = x(X N7 (0) 1 f71(6) 1 Be, Bux) = (~1)*n,,

If one supposes, in addition, that g is prepolar, a consequence of this result is a Lé-Greuel
type formula for the Brasselet number.

Theorem 2.13. (Theorem 4.4 of [3]) Suppose that X is equidimensional and that g is pre-
polar with respect to V at the origin. For 0 < || < € < 1, we have

By x(0) = Bf.xs(0) = (=1)4""n,,

where n, is the number of stratified Morse critical points on the top stratum V, N f~(5) N B,
appearing in a Morsefication of g : X N f1(§) N B, — C.

In [3], the authors also related the topology of the generalized Minor fibres of f and g
and some number of Morse points.

Theorem 2.14. Suppose that g (resp. f) is prepolar with respect to the good stratification
induced by f (resp. g) at the origin. Let 3 : X — Z be a constructible function with respect
to the Whitney stratification V. For 0 < |§] < e < 1,

XX N )N B, ) = x(XNg ' (6) N Be, B) = >0 (=1)%(ny — my)n(Vi, B),

where n; (resp. m;) is the number of stratified Morse critical points on the stratum
Vi n f7Y0) N B, (resp. Vi N g '(8) N B.) appearing in a Morsefication of
g: XNf o) NB.— C(resp. f: XNg(6)N B, — C).

In the case where 3 = Fux, the last theorem implies the following result.

Corollary 2.15. Suppose that X is equidimensional and that g (resp. f) is prepolar with
respect to the good stratification induced by f (resp. g) at the origin. Then

By x(0) = Byx(0) = (=1)""(ng — my),

where ng (resp. mg) is the number of stratified Morse critical points on the top stratum
Vy N f7H0) N Be (resp.  Vy N g *(0) N B.) appearing in a Morsefication of
g: XNfHo)NB:.— Cresp. f: XNg (6N B, — C).



3 Brasselet numbers and empty relative polar varieties

In this final section, we present relations between Brasselet numbers of two function-germs
in the case where the relative polar variety associated to these germs is empty.

Let (X, 0) be a complex analytic space with ambient space U C C". Let f, g : (X,0) —
(C,0) be germs of holomorphic functions and let V be a good stratification of U relative to
/- Suppose that ¥y,g N {f = 0} = {0}. We aim to obtain information about the Brasselet
number of f and the Brasselet number of ¢ in the case where the relative polar variety ' ,(V)
is empty.

We begin with a description of two relevant subsets of the relative polar variety I'; ; (V).

Proposition 3.1. The stratified critical set 3y, of g and the symmetric relative polar variety
Iy 4(V) are subsets of 'y 4(V).

Proof. If x € 3y,g,d,g|y, = 0, for a stratum V,, € V containing = and an analytic extension
g of g in a neighborhood of x. If V,, C {f = 0}, then x = 0, since g N {f =0} = {0}. If
Vo CX\{f =0},

rk(dy flv., deglv,) < 1,

where f is an analytic extension of f in a neighborhood of z, that is z € S(f, )y, =
E(f, 9)Ivar(s=03- Therefore, z € I'y(Va).

Furthermore, I'; ;(V,,) is given by components of I'; ,(V;,) no contained in {g = 0}, that
is, Tf,(Va) = Ts,4(Va) \ {g = 0} C '} 4(V,,.) Therefore,

[yy(V)USyg CTyy(V).

O
Using this proposition, we obtain the following useful information about the behavior of
g with respect to the stratification V.

Corollary 3.2. If 'y ,(V) is empty, then g is prepolar at the origin with respect to the good
stratification V of X relative by f.

Proof. By Proposition 3.1, if I'; ,(V) is empty, ¥y¢ is empty, that is, g has no stratified
critical point with respect to V. 0

Let n; be the number of stratified Morse critical points of a Morsefication of
g: XnfronNnB, - CinV,n f1(6)N{g # 0} N B, foreach i € {1,...,q}.
The next proposition uses the relative polar variety I'; ; (V) for counting the numbers n;.

Proposition 3.3. IfI'; (V) is empty, then n; = 0, foralli € {1,...,q}.

Proof. Let V; be a stratum of VV and x be a critical point of g|y;;-1(s5np.. Then, if f and g
are analytic extensions of f and g in a neighborhood of z, respectively, z € Vi N f “10)N B,
and rk(d, f|v,, d.glv,) < 1, that s,

€ (V;inf(6)NB) N (ZvfUSpgUTL;,(V)).

By Proposition 1.3 of [12], Xy, f C {f = 0}. Therefore,
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Sglvnr-1ns. = VN f70) N B0 (Frg(V) USgly) € Vin £71(68) N BT y(Vi).

Since I'y ;(V) is empty, by Proposition 3.1, X gy, -1 (s)n5. is empty . Therefore, n; = 0,
foralli € {1,...,q}. O

In [3], Dutertre and Grulha proved a Lé-Greuel type formula for the Brasselet number,
with which it is possible count the number of stratified Morse critical points using Brasselet
numbers. We apply their result to obtain a relation between Brasselet number in the setting
we already know the number of Morse points. First let us show a more general result.

Corollary 3.4. If 5 : X — Z is a constructible function with respect to the good stratifica-
tion'V of X relative to f and I'; ,(V) is empty, then

XX NN B, B) =x(XN{g=0}nf"(0)NB,f).

Proof. By Corollary 3.2, since I'; ,()) is empty, g is prepolar at the origin with respect to V
and, by Proposition 1.12 of [12], tractable at the origin with respect to V. Then, by Theorem
4.2 of [3], we obtain

q

X(X OO N B, B) = x(X N {g =0} f7(6) N B, B) + Y (=) nan(Vi, B),

i=1

where n; is the number of stratified Morse critical points of a Morsefication of [y, s-1()n5.
appearing in V;Nf ' (§)N B,. Using again that '; ,(V) is empty, n; = 0, foralli € {1,...,q}
and we conclude the equality. O

If the constructible function /3 is giving by the local Euler obstruction, one obtains a
relation between Brasselet numbers.

Corollary 3.5. If X is equidimensional and Iy ,(V) is empty, then By x(0) = By x4(0).

Proof. By Theorem 4.4 of [3], By x(0) = By x4(0) + (—1)*"'n,, where n, is the number of
stratified Morse criticalpoints of a Morsefication of g|xns1(5np.  appearing on
V, N f74(8) N Be. Since 'y ,(V) is empty, n, is zero and the equality holds. O

When f is a generic linear form on C", By x(0) = Fux(0) and By x+(0) = Euxs(0).
Therefore, Corollary 3.5 implies the following consequence.

Corollary 3.6. If X is equidimensional and T'; ,(V) is empty, then Eux(0) = Euxq(0).

When both f and ¢ has isolated singularity at the origin, Dutertre and Grulha proved
several formulas about the Brasselet numbers of f and g. Using this formulas, one can obtain
further information about these numbers if I';,(V) is empty. If that is the case, then g is
prepolar at the origin with respect to the good stratification } of X induced by f, given as
a refinement of a Whitney stratification W = {W;}; of X. By Corollary 6.1 of [3], f is
prepolar at the origin with respect to the good stratification V' induced by g, also given by a



refinement of WW. Applying Proposition 1.12 of [12], we obtain that I'; ,(V) = T;,(V) and

Fgﬁf(V) = ng(V). But

Tr,(V) = |J=(f9)

Viey

= U 2 9lwair=oie=o
W;ew

= U = 9lwatg=onir=op
wi;ew

= U= 9k qemoroy—on
Viev

= Fy,f(v)-

Vi\({f=0}u{g=0})

Therefore, these four polar varieties are equal. Using this description, one concludes the
following.

Proposition 3.7. If 3 : X — Z is a constructible function with respect to the Whitney
stratification VW and Uy 4(V) is empty, where V is the good stratification of X induced by f,
then

X(X N fH) N B, B) =x(XNg ()N B, f).

Proof. Since I'; (V) is empty, g is prepolar at the origin with respect to V. Then, f is
prepolar at the origin with respect to the good stratification V induced by ¢. By Theorem 6.4
of [3],

X(XNfro)NB,B) = x(XNg (&) NB,A)
+ > (=D (s — ma)n(Wi, B),

i=1

where d; denotes the dimension of IW; € WW. By Proposition 3.4, if m; is the number of strati-
fied Morse critical points of a Morsefication of f|xng 150z appearing on
Ving t(0) N {f # 0} N B, foreach i € {1,...,q}, since I';,(V) is empty, ' (V) is
empty and m; = 0. Since the number n; of stratified Morse critical points of a Morsefication
of glxnf-15)ns. in V; N fH(8) N{g # 0} N B. is zero, for each i € {1,..., ¢}, the equality
is proved. O

Corollary 3.8. If X is equidimensional and 'y ,(V) is empty, then B, x(0) = B x(0).

Proof. Since I'; (V) is empty, ¢ (resp. f) is prepolar wih respect to the good stratifica-
tion of X induced by f (resp. ¢). Applying Corollary 6.5 of [3], we obtain By x(0) =
B, x(0) + (=1)*"Y(n, — m,), where n, (resp. m,) is the number of stratified Morse critical
points of a Morsefication of g|xns-1(s)np. (tesp. f|xng-1(s)np.) appearing on the top stratum
V, N f74(0) N B (resp. V, N g~ *(0) N B,). Using again that I'; ,(V) is empty, we have that
nqe = mg = 0, what leads to the equality. g
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