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ON UNIFORM K-STABILITY OF PAIRS FOR ALGEBRAIC CURVES

Naoto Yotsutani
Faculty of Education, Kagawa University

Abstract. In this note, we shall consider uniform K -stability of pairs, which is recently detected by G.
Tian [Til8] and is originally studied by S. Paul [Paul2]. As a consequence, we show that the rational
normal curve of degree d > 2 is either uniformly K -stable or strictly K -semistable with respect to the
standard torus action.

1. INTRODUCTION

The concept of uniform K -stability originates the paper by Székelyhidi [Sz€06] in order to deal
with the existence problem on a constant scalar curvature Kihler (cscK) metric in a given Kihler class
[w] of a compact Kéhler manifold (X, w). This notion was deeply investigated by many researchers
as in [Der16, BHJ17]. Meanwhile, it is crucial to see the asymptotic behavior of the K -energy map
vy : Ho — R when we discuss about existence of cscK metric, say the coercivity or boundedness of
v, [Hisal6, Paul2, Paul3]. The current philosophy is that one can restrict attention to the subspace of
Bergman metrics (which is a Hermitian metric that can be defined as the pull back of Fubini-Study met-
ric associated to the projective embedding X < P ) in H,, to detect the coercivity and boundedness
of v, because of Tian’s density theorem and the partial C-estimate.

Eventually it was conjectured that the /K -energy bounds and coercivity along Bergman potential
could be controlled by an appropriate notion of Mumford’s GIT stability. This speculation was justified
by S.Paul in his paper [Paul2, Paul3] building upon work of Tian [Ti97] and Gelfand-Kapranov-
Zelevinsky [GKZ94]. Paul’s formulation fits better with Mumford’s GIT stability than (original) K-
stability in [Ti97, Dona02], so to called stability of pairs. Very recently, this notion was developed by
Tian in [Ti18] and he introduced the concept of uniform K -stability of pairs. In particular, it was shown
that K -stability of pairs implies that uniform K-stability of pairs (cf. Theorem 2.5). This guarantees
that K -stability of pairs is stronger concept than uniform K -stability of pairs. However, we don’t know
which smooth projective variety would be uniformly K -stable of pairs so far, by direct computation
even in 1-dimensional algebraic curve case.

The aim of this note is to study the uniform K -stability of pairs on the rational normal curve of
degree d > 2. Namely the main theorem in this article is the following.

Theorem 1.1. Let P' — X; C P? be the rational normal curve of degree d > 2, which is given by the

d-th Veronese embedding (See Section 4). Let Rx and Ax be the X -resultant and the X -discriminant

respectively. Setting v = Rieg(AX) and w = A(;(Cg(RX)

N (w) with respect to the standard torus

" 0
H = < SL(d+1,C).
tqg—1

0 (to-tg_1)~"

Then the inclusion N (v) C Ny (w) always holds (Proposition 4.1). In particular

, we consider the weight polytopes Ny (v) and
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o Ifdist(ONw (v), ONy (w)) > 0, then X — P4 is uniformly K -stable with respect to H-action.

o If dist(ONg (v), ONg(w)) = 0, then X — P4 is strictly K-semistable with respect to H-
action.

This article is organized as follows. In Section 2, we define (uniform) K -stability of pairs for given
nonzero vectors v € V' \ {0} and w € W \ {0} where V and W are finite dimensional rational
representations of a reductive group G. We also introduce some key theorems due to Paul and Tian
which we will use later on. In Section 3, we define the X -resultant and the X -(hyper)discriminant
which will play a crucial role to discuss on asymptotic of the K -energy. Section 4 is devoted to a
brief review of X -resultants/discriminants for polynomials in one variable (see [GKZ94, Chapter 12]).
Section 5 gives the proof of Theorem 1.1. A concrete example is dealt in the final section. We compute
explicitly the X -resultant/discriminant and their weight polytopes for the quadric curve in P? by using
the secondary polytope.

2. STABILITY OF PAIRS

2.1. Representation Theory. Let G be the special linear group SL(/N + 1, C) and (V] p) be a rational
G-representation with v € V'\ {0 }. Recall that V' is said to be rational if for any v € V' \ {0} and
a € VV (the dual vector space),

Pap:G—C  pau(0):=alp(o)-v)
is a regular function on G, that is,
@au € C[G] := affine coordinate ring of G.
Let 7" be a maximal algebraic torus of G. We denote the character lattice of 7" by
My, := Homy(T,C*) = ZV.

Then the dual lattice Nz = Homy(C*,T') is identified with the set of one parameter subgroups
A : C* — T'. Note that the duality is given by

(. )Nz x Mg —Z,  x(\(t) =t
As usual, we set
Mg := My @, R = RN and Ng := Nz @z R.

Denoting the image of A in N by [, we see that [ is an integral linear functional on Mp. Furthermore,
V' decomposes into eigenvalue subspaces under the action of 7" such as:

V= @ Vs Vi={veV|pt) - v=x({) v, teT}
x€Supp(V')
where Supp(V') denotes the support of V' which is defined by
Supp(V) :={xe Mz |V, #0}.
Definition 2.1. Letv € V' \ { 0} be a nonzero vector in V with
v = Z Uy, vy € Vy.
XEM7,
The weight polytope of v (with respect to T-action) is the lattice polytope in M defined by
Np(v) :=Conv{yx e My |vy,#0},

where Conv A denotes the convex hull of a finite set of points A.
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Let GL(N + 1,C) be the vector space of square matrices of size N + 1. By the action of matrix
multiplication, GL(N + 1,C) can be regarded as a G-representation:

GxGL(N+1,C) — GL(N +1,C) (0,A) — o - A.
Denoting I € GL(N + 1, C) to be the identity operator, we define the standard simplex Q y by
Qn == Np(I) C Mg = RY.
Note that @)y is full-dimensional convex polytope containing the origin in its interior. Using the stan-
dard simplex @), we define the degree of V' as
deg(V) :=min{k € Zso | N(v) CkQn forallv e V\ {0} }.
Definition 2.2. Let V' be a rational representation of G, and let A be a one parameter subgroup in 7'

which is a maximal algebraic torus of G. We define the weight wy(v) of Aonv € V'\ {0} by
wx(v) := min Iy(z) =min{ (x,\) | x € supp(v) }.
XEN (v)

Alternatively w) (v) is determined as the unique integer satisfying

lim ¢\t = vy # 0
[t|—0

where v is the nonzero limitin V.
Definition 2.3. Let V' and W be (finite dimensional) complex rational representations of G' with
nonzero vectors v € V' \ {0} andw € W\ {0}
(1) The pair (v, w) is K -semistable if wy(w) < wy(v) for any one parameter subgroup A in G.
(2) (v,w) is K-stable if it is K-semistable and wy(w) < wy(v) whenever the one parameter
subgroup A satisfying deg(V )wy (I) < wy(v).
(3) (v,w) is said to be uniformly K-stable if there is an integer m > 0 such that for any one
parameter subgroup A in GG, we have the inequality
m(w(v) — wa(w)) > wa(v) — deg(V)wa(1).

The following Hilbert-Mumford criterion for stability of pairs was discovered by Paul [Paul3] and
Tian [Til8].

Theorem 2.4 (Hilbert-Mumford Criterion). The relationship between stability of pairs and weight
polytopes is described as follows. In the table below, P + @) denotes the Minkowski summation of two
polytopes P and Q).

Stability of pairs (v, w) Weight polytopes

K -semistable Nr(v) € Np(w) for all
maximal torus 7' < G

Im € Zsg such that
1 1
uniformly K-stable (1 - E) Nr(v) + . deg(V)Qn C Nr(w)

for all maximal torus 7" < G

The main theorem in [Ti18] is the following:

Theorem 2.5 (Tian). If (v, w) is K -stable, then it is uniformly K -stable.



2.2. A Kempf-Ness type functional. For any complex vector space V with v € V' \ {0}, let us
denote the line through v by [v] € P(V'). Then if V and W are two finite dimensional rational complex
representations of G withv € V '\ {0} and w € W \ {0} respectively, we consider the projective
orbits given by
Opw =G - [(v,w)] CP(Va W), O, =G [(v,0)] CP(V®{0}).
We equip V and W with Hermitian norms || ||. The energy of pair p,,, is a Kempf-Ness type functional
defined by
Pow(0) :=1og|lo - w||? —log || - v||?, oeG.

Then we recall the following fact:
Proposition 2.6. [Paul3, Proposition 4.4] p, 4, is bounded from below if and only if
2.1) Opy N0, =0
where O, O, denote the Zariski closures of each orbit.

The definition of K -semistability due to Paul [Paul2, Paul2a, Paul3] originates from the following
fact.
Theorem 2.7 (Paul). The pair (v, w) is K-semistable if and only if Oy, N O, = .
Proof. Note that “only if ” part is clear. Hence it suffices to show that if (v, w) is K-semistable, then
(2.1) holds. In order to prove this, suppose (v, w) is K-semistable. Then (v, w) is either

(a) K-stable, or
(b) strictly K -semistable.

In the case where (a): Since (v, w) is K-stable, obviously (2.1) holds by definition. Hence our problem
can be reduced to show the following statement: ([
Claim 2.8. If (v, w) is strictly KX -semistable, then (2.1) holds

Proof of Claim 2.8. We use the contradiction. Suppose that (v, w) is strictly /-semistable and

(2.2) G- v, w]NG-[v,0] #0
holds. Let Z := P(V & { 0 }) be a G-invariant closed subset in P(V @& W). Since G - [v,0] C Z, there
is an element z € Z N G - [v, w] by our assumption (2.2). Setting x := [v, w], we apply Theorem 5.6

in [BHJ17] to z. Then there is a one parameter subgroup A in G such that

lim A\(t) -z =2¢€ Z.
[t|—0

On the other hand, by definition of w)(+), we have
lim A(t) -z = lim A(t)([v, w]) = ll'rn ==\ () ([0, w]).
t

[t|—0 [t|—0 |—0
The last equality implies that wy (v) — wy(w) < 0 but this contradicts to strict K -semistablity. O

Recall that the Hilbert-Schmidt norm of a matrix A = (a;;) is a matrix norm defined by

[Allgs = A /Za?j'
j

Theorem 2.9. [Til8, Theorem 1.4] If (v, w) is K -stable, then there is a positive integer m € Z~ and
uniform constant C' such that

Then we have

mpy (o) > deg(V)log o]l —loglo@)| ~C.  forall o € G.

Example 2.10 (Relationship with the classical GIT stability). In order to clarify the relationship be-
tween stability of pairs and Hilbert-Mumford stability, we consider the case where V' = C is the one
dimensional trivial representation and v = 1:
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Hilbert-Mumford (GIT) stability Stability of pairs

0¢G w OpyNOy =10

w)y (w) < 0 for any wy(w) —wy(v) <0

degeneration A of G for any degeneration A of G

For each maximal torus For each maximal torus
T < G, 0€e NT(UJ) T < G, NT(U) - NT(w)
G-w=G -wand Im € Zug sit

G, is finite (14ee(V) @ ™ w™+1) is K-semistable

2.3. Support functions on weight polytopes. Finally we introduce the key lemma of stability of
pairs due to Tian for later use. Let v € V be a nonzero vector of a finite dimensional rational G-
representation V. We fix a maximal torus 7' < (. Recall that the support function h, : Ng — R of
the weight polytope A7 (v) is the convex function defined as

(2.3) hy(A) = max (x,\).
X€Esupp(v)

Then by Definition 2.2, we readily see that
wx(v) = min { {x, A) | x € supp(v) } = —hy(=A).
Then we have the following characterization of K -stability.

Lemma 2.11. [Til8, Proposition 8.1 (2)] The pair (v, w) is K-stable with respect to T' if and only if
the following two conditions

(1) Nr(v) € Np(w)
2@ {z € Ng | hy(z) = hy(z)} € {z € Nr | ho(z) = hdeg(V)N(]I)(x)}
are satisfied.

3. K-ENERGY ASYMPTOTICS AND STABILITY

Let X — PY be a linearly normal algebraic variety of deg X > 2. Recall that a projective variety
X c PV is called linearly normal if it is non-degenerate (i.e., X is not contained in a hyperplane) and
cannot be represented as an isomorphic projection of a non-degenerate variety from a projective space
of higher dimension. These conditions require an isomorphism

HO(PY, Opn (1)) = H°(X, Ox(1)).

Unless otherwise stated, we consider an irreducible n-dimensional linearly normal complex projective
variety X" — PV of deg X > 2 throughout this section.
We denote the Grassmannian of k-dimensional projective linear subspaces of PV by G(k, N).

Definition 3.1. The Cayley-Chow form (X -resultant) of X — P, denoted by Ry, is the defining
polynomial of the irreducible divisor

Bl Zy={LeGIN-n—1,N)|LNX#0}={LeG(N—n—1,N)|Rx(L)=0}
which is uniquely determined up to scaling. Observe that deg(Rx) = d in the Plucker coordinate and

Rx € Cyny)[Mnynyx(ve1))-
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Let (PY)Y be the dual projective space of PV so that points of (P™)V correspond to hyperplanes
in PV, Denoting Sm X the smooth points of X (i.e, Sm X = X \ Sing X), we consider the Zariski
tangent space T,(X) to X at p € Sm X which is an n-dimensional projective linear subspace of P,

Definition 3.2. The dual variety X* C (PN)Y of X — PV is the Zariski closure of the set of tangent
hyperplanes to X:

X* = Zariski Closure { f € (PV)" | T,(X) C ker(f) for some p € SmX }.
When X* has codimension one in (PV)V, i.e, the dual defect
0(X):=N—dim(X*) -1
is zero, then there exists an irreducible homogeneous defining polynomial
Ax € C[(PY)Y] = C[Myx(v41)]
of X* which we shall call X-discriminant:
X*:{fe(IP’N)V]AX(f):O}.
We further consider the following Segre embedding

(3.2) XxPl P (M;X(NH))

for a given projective embedding X™ — PV. Then it follows that the dual defect §(X x P™ 1) of
the Segre image of (3.2) is zero (see [Paul3, Proposition 3.1]). Hence there exists a non-constant
homogeneous polynomial

Axypn-1 € C[Myy(n1)]
such that
(X x P 1) = { f €P(Myyvt1) | Axspa-i(f) =0}
We call A yypn—1 the X-hyperdiscriminant

In order to state the main result in [Paul2], we introduce the standard notation of Kéhler geometry.
For a smooth complex projective variety X — PV of degree d > 2, we set w := wrg|x where wrg
is the standard Fubini-Study Kahler form on PV. For each o € G, we consider the Bergman potential
vy € C°(X) given by

=1 -
cfw=w + 2—88§Og > 0.
™

We readily see that ,, is given by the formula

2
s = log (%) € Hoy
2]l

where || - || denotes the standard norm on polynomials defined as
HfH2:ZM for f(Z):ZC 200 L ON
aplag! - an! ag-aN <0 N -

Theorem 3.3 (Theorem A in [Paul2]). Let X" < PN be a smooth, linearly normal complex projective
variety of degree d > 2. Let Rx and Axypn-1 be the X-resultant and the X -hyperdiscriminant
respectively. Then under a suitable normalization of norms, the K-energy v,, of (X, w) restricted to
the Bergman metrics is

llo - Ayspnt|? o - Rx|”
2 2
[Axxpn1l [ Rx|l

Combining Thereom 3.3, Proposition 2.6 and Theorem 2.4, we have the following.

1y (o) = deg(Rx) log — deg (Axypn-1) log
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Theorem 3.4 (Theorem C in [Paul2]). The K-energy of (X, w) restricted to the Bergman metrics is
bounded from below along any one parameter subgroup X in G if and only if the inclusion between the
weight polytopes

(33) (ieg (AXX]P”’I) NT(RX) g deg (RX) NT(AXX]PW—I)

holds for each maximal torus T < G.

Hence it is natural to define the following.

Definition 3.5. Let X — PY be a linearly normal complex projective (not necessarily smooth) variety
of deg X > 2. Then X is said to be K -semistable (resp. K -stable, uniformly K -stable) if the pair

deg(A n—
(R;g( X X P! 1)) A?fi%}ﬁi)ﬁ%)

is K -semistable (resp. K -stable, uniformly K -stable) in the sense of Definition 2.3 along all one
parameter subgroup A in G.

Remark 3.6. From the view point of the Hilbert-Mumford criterion (Theorem 2.4), K -semistablity of
X — PV is equivalent to the condition of (3.3) for each maximal tori T < G.

As a special case of Theorem 3.4, we conclude that the following fact.

Corollary 3.7 (Theorem 4.2 in [Pau08]). The restriction of the K-energy of a projective algebraic
curve X < PN is bounded from below along all one parameter subgroup X in G if and only if the
Sfollowing inclusion holds for any maximal torus T' < G':

deg(Ax)

G4 deg(Ry)

NT(R)() - NT(AX)-

4. THE RATIONAL NORMAL CURVES AND GKZ THEORY

One of the interesting case study about (3.4) is where X is the rational normal curve of deg X > 2.
Recall that the rational normal curve of degree d is given by the image of the d-th Veronese embedding

of P! such that

ve: P — P9, [20 : 21] > [2d 28712y oo 2

The image X4 := v4(P') C P?is an algebraic curve of the genus g(X) = 0 with degree d > 0. In
general, it is known that

deg(Ax)=2d —2+2g and deg Rx = 2d,

where g denotes the genus of the curve. In [Pau08, Proposition 4.3], it was observed that the following
inclusion holds for the standard torus action of H < G.

Proposition 4.1 (Paul). Let X < P? be the d-th rational normal curve and let G be SL(d + 1, C). We
consider the standard torus H < G which is given by

to
h 0

tqg—1

0 (to---ta—1)""

Then (Ri?’g Ax , Ac)i(eg Rx ) is K-semistable with respect to H-action, in particular, the following in-

12

4.1) H

clusion holds:
deg Ax

deg Ry

NH(R)() C NH(Ax).
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For the reader’s convenience, we provide a proof of Proposition 4.1 in the previous paper. Firstly we
recall the following results on the classical Resultants/Discriminants from Gelfand-Kapranov-Zelevinsky
theory [GKZ94, Chapter 12].

Here and hereafter, we always assume that X C P4 is the rational normal curve of degree d > 2. By
definition, the associated hypersurface Zx C G(d—2,d) in (3.1) consists of (d —2)-dimensional linear
subspaces L in P? which meet X. Since such an L arises as the kernel of a linear map A : C*+1 — C?
of maximal rank 2, we write the matrix A as

A= (90 7 dd) with  agbo # 0.
bo o by

Define L := ker A and two polynomials

d
f(z) = apr 4+ -+ ag_1z +ag = ag H(m -\,

i=1

U

g(x) i=boa + -+ bg_yx+ by =bo | [ (= — ).
j=1

Then we observe that
LNX#0 = f(z) and g(x) have a common root.

Hence the Cayley-Chow form Rx is the classical resultant

R(f,9) == afvg | [(\i — my)-
ij

Lemma 4.2 (Lemma 1.18 and Lemma 1.19 in [Muk03]). The resultant R(f, g) is 2d x 2d determinant

ag e - aq

R(f.g) = e e

bo oo - by
Moreover the discriminant of f(x) is given by the resultant of f(x) and its derivative f'(x):
Ax(f) = R(f. ).

Example 4.3 (The Qudric in P?). Let v, : P! — X, C P2 be the 2-nd Veronese embedding of P!
Then the image X» = 15(IP!) is a smooth quadric curve in P2, Therefore by Lemma 4.2, we compute
the X-resultant Ry as 4 x 4 determinant

apg ap as 0
0 ap a; ag
bp b1 b2 O
0 by b by

= a%b% + aoagb% — 2apasbgbs — agai1biby — ajasboby + a%bobz + a%b%

Ry = det

Moreover,
flz) = apr® + a1z + as, f’(x) = 2a0T + a1
implies that

ag ar  a
R(f,f')=det | 2a9 a1 0 | =ap(4agaz — a?).
0 2a0 al
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Therefore we conclude that the discriminant of f is

Ax(f) = 4dapaz — a%.

For the later convenience, let us denote

ap -+ aq
Rx (bo bd) = Z Cpq @ b
(piq) € 224
lpl = lq| =d
where a? = af’---al?, b? = b’ ---b%. The Newton polytope of Rx in R?¥*2 is defined by the
weight polytope with respect to the algebraic torus (C*)?+!
N(Rx) := Ncxyan (Rx) = Conv { (p;q) € ZQ;OH | cpg #0}.

Similarly we consider the discriminant

Ax(ag,...,aq) = Z Cpq @

pe Z‘;‘Sl
lp| =d

and define its Newton polytope A/ (Ax) in R*! as
N(Ax)=Conv{pe ZdH ep #0}.

The following beautiful characterization of N'(Rx) and N'(Ax) was detected by Gelfand, Kapranov
and Zelevinsky.

Theorem 4.4. The Newton polytopes N'(Ax) and N'(Rx) consists of all points satisfying the follow-
ing linear equations and linear inequalities:

d

N(Ax)_{(pomwpd eRL! > (d—i)pi=d(d—1), 21%7261 2,
=0 =0
J
dDG—ipizii-1) 0<j<d }
=0
N(Rx)—{(po,n~713d;q07~~-7<1d)GRQ;S+2 ‘
d d d
(4.2) > (d ﬂpﬁz —i)gi = d*, dor=Y a=d
i=0 i=0 i=0
14
43) Z(j—i)pﬁzj(é—k)qk%e 0<jl<d }
i=0 k=0

Now we define maps ¢, pry and pra by

@R — R (pig) = (Do Pa G0+ 4a) — (Po+ Q05 - -5 Pa F 4a)
@4 prp:R¥ R (prg) > (po+ g0 — (pa+qa), - Pa-1 + da-1 — (Pa+ da))
pra :R™ — R (po,...,pa) — (P0 — Pd: - - Pa-1 — Pa)
respectively. Then we have the following

Claim 4.5. (‘%1) BN (Rx)) € N(Ax).



Proof of Claim 4.5. Setting r; := p; + q;, we readily see that for any point (p;q) € N(Rx),

() e = (7)) S =5+ 2 =20a- ),
() =i+ 0 = () Sta— i = 5 =)

by (4.2). Furthermore, by taking ¢ = j and k = i, (4.3) becomes

J

(4.5) > G —ipi+a) =57 0<j<d
1=0

Since

(43) st < eV,

we see that for any (rq,...,7q) € (d;1> D(N(Rx)),

d
J
S G—iyri = 3> - 1), 0<j<d
i=0
by (4.5). This implies that (ro, ..., 74) € N(Ax). O

Proof of Proposition 4.1. Let H be the standard torus defined by (4.1). We readily see that
prp(N(Rx)) =Np(Rx)  and  pra(N(Ax)) = Nu(Ax)
by the definition of maps (4.4). In the following commutative diagram, the upper horizontal map

d—1
(T) & is injective by Claim 4.5.

N(Rx) N(Ax)
d—1

(4.6) <T> pr b

d—1 ]

<T) Nu(Rx) ¢ Nu(Ax)

This induces the inclusion map
deg A
7 dztéR;(NH(RX) — NH(A)()

because deg Ax = 2(d — 1) and deg Rx = 2d. O

5. PROOF OF THE MAIN THEOREM

In this section, we provide the proof of Theorem 1.1.

Let X <% P? be the rational normal curve of degree d > 2. Let v and w be R;i(eg AX and A;‘fg Rx
respectively. By Proposition 4.1, we already knew that

Nu(v) € Nu(w)

for the standard torus H in (4.1). Under consideration of Lemma 2.11, we conclude the first condition
is satisfied. Hence, it is crucial to see the second condition in Lemma 2.11 holds or not. Then we shall
consider the following two cases.
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Proof of Theorem 1.1. Case 1) Ny (v) € Ny (w). Inthis case, there is a sufficiently small 0 < g9 < 1
such that
dist (ONg (v), ONg(w)) = g9 > 0.
Hence we can find 0 < dp < 1 so that any § € (0, §p) satisfies
(1= 0N (v) +0deg(V)Nu(I) € Ny (w)

because the standard simplex A (I) is compact. Eventually, we may find an appropriate integer m >> 1
satisfying

(1 - —) Nir(e) + - deg(V)Nir (1) € Nir(uw)

This concludes that (Rd(g Ax Adcg Rx ) is uniformly K -stable.

Case 2)  dist (0N (v), ONg(w)) = 0. By the definition of deg(V'), we have the inclusion
(5.1) N (v) C deg(V)Np (D).

From the definition of support functions (2.3), we observe that

{z €N | hy(x) = hu(z)}
={x € Ng | hy(z) = (z,y) and h,(z) = (z,y) for some y € INy(v) N ONy(w)}.
Fixing this y € Ny (v), we see that y € deg(V) Ny (D) by (5.1).

Mg
Ny (w)
Y
Now we suppose that the inclusion
deg(V)Np(I) € N (w)
holds, so that y € ANy (w). Then by definition of support functions,
Paeg(vyng m(T) = (x.y") < max (z,y) = he(z) = (z,).

y esupp(dcg(V YN (1)) Yy’ €supp(w)

Since hgeg(vynry (m () = (x,y) in the above, this implies that h, () = hgeg(v)a7, @) () and hence, the
second condition in Lemma 2.11 follows.
Thus it is crucial to see whether

(5.2) deg(V)Np (I) C Ny (ASE™X) = deg (Rx) Ny (Ax)

holds or not for the rational normal curve X of degree d > 2. Since deg(V') = deg Rx - deg Ax in
our case, (5.2) becomes
deg(Ax)Ng (1) C Ny (Ax).

Now we claim that

Claim 5.1. For the rational normal curve X — P¢ of degree d > 2 with the standard torus actions of
H < G =SL(d+1,C), we have

deg(Ax)Ng (1) 2 Ny (Ax).
If Claim 5.1 has been proved, the assertion would be verified by Lemma 2.11 and Proposition 4.1. [

Proof of Claim 5.1. We first consider the Newton polytope, namely the weight polytope with respect
to T = (C*)¥* 1 action. Then we have

deg(Ax)./\/((Cx)d+1(H) = deg(AX) Conv { €1y...5,€4+1 }

—{(%u ,pa) € REY! Zp1—2d 2}




because deg(Ax) = 2d — 2. Meanwhile, Theorem 4.4 yields

d d
MCX)d+1(AX)—{(p07-~-: RIH! Y (d—ipi=dd—1), Y pi=2d-2,
i=0 =0
J
S Gi—ipi=iG-1) 0<j<d }
=0
Obviously
(5.3) Mcx)d+1(AX) c deg(AX)-/\/(Cx)dH (@).

For a given point (po, ..., pq) € R4, we define the projection by

TH - Rd+1 I Rda (va e 7Pd) — (pO —Pdy---sPd—1 — Pd)
Then by (5.3), we conclude that

deg(Ax)ma (/\/(Cx)dﬂ(u)) = deg(Ax)Nu (D)
2 TH (Mcx)d+1(Ax)) = NH(Ax)

6. AN EXAMPLE: THE QUADRIC CURVE

Again we consider the quadric curve X5 in P? which is dealt in Example 4.3. Recall that X> is the
image of the 2-nd Veronese embedding

vy Pt — Xy c P2 [20 :21) > [28 1 2021 : 23] = [X : YV : Z]
where X = 22, Y = 221 and Z = »2. Hence X3 is isomorphic to the hypersurface of degree 2 in P?:
Xo={[X:Y:Z]eP? | XZ-Y?*=0}.
In particular, the X -resultant Ry can be regarded as the defining equation of X5 :
F(X,Y,Z):=XZ -Y? (= Ry)

whose degree is 4. Meanwhile one can also compute the discriminant Ay, using the Gauss map as
follows. Let [a : b : ¢] be a homogenous (dual) coordinates on (P2)V. Since Xo = V(F) C P?isa
smooth irreducible hypersurface, the Gauss map is defined as

oF oF oF
. 2\V — | ey Yy Y
G: Xo — (P?) pHT”XZ’{ax(p)‘ay(p)’az(p)
where
or oF oF
S0 gy 5500 | = [26) -2V () : X))
=[2f: 222 :25] =[a:b:c] € (IP’2)V
Since X is a smooth projective variety,
X;={fe@) |kerfOT,X, peX}
={[la:b:c e PV | —dac=0}
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which we conclude that Ax = b? — 4ac. This agree with the formula deg Ay = 2-2 -2 = 2.
Consequently we see that

0 1
Ncxy3(Ax) = Conv 21,10 and
0 1
2 0 0
deg(Ax)Ncx3(I) = Conv o), (2], 10
0 0 2

Hence the plane deg(A x )NV (cx)3(I) contains the line Ncxys(Ax) as in the picture below.

2 N3 (Ax)
deg(Ax)Nex)s (D)
2
2
: : _ pdeg(Ax) _ Adeg(Rx)
Finally we compare Ncxys(v) with Ncx)s(w) where v = Ry and w = Ay respec-
tively. From the above argument, we already see that
0 4
Ncxys(w) = deg(Rx )N (cx)3(Ax) = Conv 8 0
0 4
Let us compute /\/'(Cx )3 (Rx,). We regard X» as a toric variety P! with projective embedding
pt 9% x, - p2
whose corresponding moment polytope is the interval P = [—1, 1] C R. Then there are 2 regular

triangulations of P, namely
Ty = {[-1, 1] } (the trivial triangulation)  and
Ty = {[-1, 0], [0, 1] } (a triangulation separated into 2 pieces).
Each corresponding GKZ vector ¢, is
2 1
Y, =10 and Y, = | 2
2 1

Since ./\f((cx>s (Rx,) coincides with the secondary polytope of P (see [GKZ94, p. 260, Theorem 3.1]
and [Yotsul6]), we find that

2 1
./\/(CX)3(RX2) = Conv 01,12
2 1
Thus
2
Q1 := N(cxy3(v) = Conv , 14 = Conv {v1, v2 },
2

= Conv { wy, ws }

Q2 := Ncxys(w) = Conv

SO O

S o O

1
with v; = w; and vy = §(w1 + wo) which gives @1 C Qs.
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