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Tangentially bi-degenerate submanifolds. 

Goo Ishikawa* 

1 Introduction. 

Tangentially degenerate submanifolds in projective spaces are studied from 
various aspects; differential geometry, algebraic geometry, singularity the— 

ory and so on. In particular, P. Griffiths and J. Harris [19] and A. Akivis 
and V.V. Goldberg [2][3][4] gave the description of tangentially degenerate 
submanifolds in detail. 
Looking at unit normal vectors or tangent planes to space surfaces is the 

most fundamental method in differential geometry initiated by C.F. Gauss 
[17]. He, in particular, considered the class of tangentially degenerate surfaces 
by means of his (Gauss) mappings. 
Naturally we are led to consider tangentially degenerate submanifolds in 
Euclidean spaces, or more naturally in projective spaces by means of Gauss 

mappings. One of important classes of tangentially degenerate submanifolds, 
then, consists of submanifolds with degenerate Gauss mappings. Another im-

portant class consists of hypersurfaces with degenerate projective dual. The 
tangential degeneracy of a hypersurface can be described by the degeneracy 
of its projective dual; the variety, in the dual projective space, consisting 

of tangent hyperplanes to the hypersurface. Moreover we note that, also 

for submanifolds of codimension greater than one, the tangential degeneracy 
can be described by means of projective d叫 ity.This means that the Gauss 

mapping is degenerate, then the projective dual is necessarily degenerate [19]. 
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Thus among tangentially degenerate submanifolds, we study, in this paper, 
submanifolds with degenerate projective duals, possibly with singularities. 

The notions of projective duality and of incidence relation play the central 
role in projective geometry. We re-formulate the study on submanifolds 
with degenerate Gauss mappings using the incidence relation in projective 

geometry via contact geometry. In§2, we treat degenerate and bi-degenerate 
submanifolds. In§3, we formulate the symmetric Fems inequalities and give 

several examples satisfying the symmetric Fems inequalities. In§4, we recall 
a local classification of frontal mappings. Lastly in§5, we give, as examples 

of tangentially bi-degenerate submanifolds, one-developables of curves in the 
four space. 

2 Degenerate and bi-degenerate submanifolds. 

We denote by RPn+l = P(Rn+2) the (n + 1)-dimensional projective space 
and by RPn+1* = P((Rn+2)*) the (n+ 1)-dimensional dual projective space. 
Here (Rn+2)* means the dual vector space to Rn+2. 

Any submanifold MmこRPn+llifts to a Legendre submanifold訂ofthe 
manifold P (T* RPn+l) of contact elements (tangent hyperplanes) of RPn+ 1. 

Actually M is defined to be the projective conormal bundle P(TMRpn+l) 
of M. Here T'. んRPn+l~T*Rpn+l is the conormal bundle of Min RPn+l_ 

Note t~t, independently of m = dim M, the dimension of the Legendre 
lifting M is equal to n. In general the image of a Legendre submanifold by 
the projection 1r : P(T*Rpn+l)→ RPn+l is called a wave front or simply a 
front. Therefore any submanifold of RPn+l can be regarded as a front. It 
is not the case just only for RPn+1: any submanifold M of any manifold X 

lifts to a Legendre submanifold P(T'. んX)of P(T* X). 
The special feature of RPn+l is that P(T*Rpn+l) has the natural double 

Legendre fibrations: 

RPn+l← -P(T*Rpn+l)→ RPn+h, 

to RPn+l and to the dual projective space RPn+1*_ 

Inverting the process, first we consider Legendre submanifolds in the man-
ifold of contact elements P(T*Rpn+l), the projective cotangent bundle, then 
second we study their projections by 7f : P(T*Rpn+l)→ RPn+1 and by 
汀*: P(T*Rpn+l)→ RPn+1*_ 
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The above constructions is described in term of projective duality. Set 

J = {(x, y) E Rn+2 X (Rn+2)* IX・y = O}, 

where x• y denotes the canonical pairing of elements x E Rn+2 and y E 
(Rn+2)*. 

On I, we have O = d(x• y) = dx• y + x• dy. Moreover we set 

I= {([x], [y]) E RPn+l X RPn+1* IX・y = O}, 

the manifold of incident pairs or the incidence manifold. Then I is of dimen-
sion 2n + 1 and I has the contact structure 

D := {dx・y = O} = {x・dy = O} c TI. 

Namely, a tangent vector (u, v) E T([x],[y])I belongs to the contact distribution 
D if and only if u・y = 0 and, if and only if x・v = 0. 
The projection 1r : J→ RPn+l (resp. 1r* : J→ RPn+1*) identify I, 
as contact manifolds, with the fiber-wise projectivisation P(T*Rpn+l) of 
T*Rpn+l (resp. P(T*Rpn+1*) of T*Rpn+1*). 

A submanifold L c I is called a Legendre submanifold if L is an integral 
submanifold of the contact distribution D of dimension n. The integrality 

condition means that TL C DIL・
Now, to any submanifold M of RPn+l of any codimension m, there cor-

responds the Legendre submanifold in J: 

M := {([x], [y]) E JI [x] EM, (T直） ・Y= 0}, 

which is called the Legendre lifting of M. Here訂こ Rn+2¥ {O} is the 
corresponding (m + 1)-dimensional submanifold to M こRPn+l_
Also to any submanifold N of RPn+1* of any codimension m*, there 

corresponds the Legendre submanifold in J: 

N : = { ([ X], [y]) E I I [叫 EN,(x・Tyめ=O}, 

which is also called the Legendre lifting of N. Here NこRn+2*¥ {O} is the 
corresponding (m* + 1)-dimensional submanifold to NこRPn+1*_
A front of L in RPn+l (resp. in RPn+l*) is, by definition, the image of 

L by 1r (resp. 1r*). 
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Thus any submanifold of RPn+l (resp. RPn+h) can be regarded as a 
front in RPn+l (resp. in RPn+h) of a Legendre submanifold of I. However 
a front may have singularities and we are interested in singularities as well. 
Let L c I be a Legendre submanifold in the manifold I of incident pairs. 
Set 

m = sup{rankq(d(叫）： TqL→ T1r(q)Rpn+l) I q E L }. 
Moreover set 

m* = sup{rankq(d(がに）： TqL→ Tが (q)Rpn+l*)I q E L }. 

We call L degenerate if m* < n. Moreover we call L bi-degenerate if m < n 
and m* < n. 
Now we call a font 1r(I) in RPn+l (resp. 1r*(I) in RPn+l*) tangentially 

degenerate or briefly degenerate if m* < n (resp. m < n). Moreover we call 
a front 1r(I) in RPn+l (resp. 1r*(I) in RPn+l*) tangentially bi-degenerate or 

briefly bi-degenerate if both m* < n and m < n. 

Example 2.1 Let n, m be integers with O :S m :S n Let M = RPm C 
RPn+l be a projective subspace of dimension m. We denote by Mv C 
RPn+1* the projective dual to M; Mv consists of hyperplanes containing 

M, and Mv is a projective subspace of RPn+1* of dimension n -m. Set 

L = M x Mv c I. Then L is the Legendre lifting of M. Then L is 
degenerate if and only if O < m :S n. Moreover L is bi-degenerate if and only 
if O < m < n. 

Example 2.2 Let Mm C RPn+l。＜ m < n, be a submanifold with 
degenerate Gauss mapping. Recall that the Gauss mapping 1 : M → 
Gr(m + 1, Rn+2) is defined by ,([x]) = TxM, ([x] E M). Then the required 
condition is that rank, < m. Thus we are assuming O < m :S n. Lots 
of examples have been found of submanifolds with degenerate Gauss map— 

pings ([29]). Let L be the Legendre lifting of M. We have M = 1r(L) and 
1r*(L) = Mv C RPn+1* is the projective d叫 ofM. Then L is degener-
ate. Moreover L is bi-degenerate if m < n. In other words, a submanifold 
with degenerate Gauss mapping is a degenerate front. Moreover if it is of 

codimension 2: 2, then it is a bi-degenerate front. 

Example 2.3 Let W c cpn be a complex submanifold of complex di-
mension f :S n. Consider the Hopf fibration h : RP2n+l→ cpn_ Set 
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M := h→ W c RP2n+l. Then M is a real submanifold of real dimension 
• —.• 

2£+1 with degenerate Gauss mapping. Let L =Mc I c RP2n+l xRP2n+1* 
be the Legendre lifting of M. Then L is bi-degenerate. In fact n* (L) = 
が―1叩 forthe complex projective dual wv c cpn* and the Hopf fibra— 

tion h * : RP2n+ 1*→ cpn*. Now suppose W is a non-singular complex 
quadric hypersurface in cpn. Then wv is a non-singular complex quadric 

hypersurface in CPm. Then both nlL and n*IL are of constant rank 2n -1. 
In this example m = 2n -1 = m* and m + m* -2n = 2n -2. If n = 2, then 
m = 3 = m*, dim L = 4 and m + m* -4 = 2. 

In the last example, we observe the Legendre submanifold has the con-
stant rank projections nlL and n*IL so that 1r(L) and n*(L) are both non-
singular degenerate fronts. 

3 Symmetric Ferus inequalities for degener-

ate Legendre submanifolds. 

In this section, we give a formulation of Fems ineq叫 ity[15] [16] in projective 
and symmetric form. 
First we recall the Fems inequality for submanifolds in a sphere or in a 

projective space with degenerate Gauss mappings [15][16]. See also [8][29]. 
Let Mm C RPn+l be a submanifold with degenerate Gauss mapping. See 
Example 2.2. Set r = rank(,), the rank of Gauss mapping I of M. 
First recall the Adams number A(k) for k E N from algebraic topology. 
The number A(k) is, by definition, the maximal number of independent vec-
tor fields over the sphere 5k-l _ For example, since Euler number of S2 is 

not equal to zero, there does not exist nowhere vanishing vector field over 
S叫sowe have A(3) = 0. Since 51 and 53 are parallelisable, namely, T 51 
and T53 are trivial, we have A(2) = 1 and A(4) = 3. One of great results in 
algebraic topology or homotopy theory, is the following surprisingly simple 
formula due to Adams: 

A((2b + 1)2c+4d) = 2c + 8d -l, (b, c, d EN  U {O}, 0~c~3). 

In particular A(k) depends only on the exponent to 2 and the odd part in 
the primary decomposition of k. 
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Then define the Ferus number for m E N by 

F(m) = min{k EN  I A(k) + k 2: m}. 

Then Ferns showed, in the framework of Riemannian geometry, the following 
crucial result: 

Theorem 3.1 ([15][16]) Let Mm  be a closed and immersed submanifold of 
RPn+l with r = rank(r) < m. Then r < F(m) implies r = 0. In particu-
Zar, if M is a closed and connected submanifold of RPn+l and M is not a 
projective subspace, then F(m) :S r. 

We write down F(m), for smaller m: 
F(l) = 1, F(2) = 2, F(3) = 2, F(4) = 4, F(5) = 4, F(6) = 4, F(7) = 4, 
F(8) = 8, F(9) = 8, F(lO) = 8, F(ll) = 8, F(12) = 8, F(13) = 8, 
F(14) = 8, F(15) = 8, F(m) = 16, (16 :Sm :S 24), 
F(m) = 24, (25 :Smさ31),F(m) = 32, (32 :Sm :S 41), 
F(m) = 40, (42 :Sm :S 47), F(m) = 48, (48 :Sm :S 56), 
F(m) = 56, (57さm:S 63), F(m) = 64, (64さmさ75),
F(m) = 72, (76さmさ79),F(m) = 80, (80さmさ88),
F(m) = 88, (89 :Sm :S 95), F(m) = 96, (96 :Sm :S 105) 
and so on. Moreover we have F(m) = m if mis a power of 2. 
We call the inequality F(m) :S r Ferus inequality. Many examples satisfy-
ing in fact Ferus equality F(m) = r have been found related to isoparametric 
submanifold, homogeneous submanifolds, austere submanifolds and so on 
([29]). 
However we may feel something missing, by the fact that, in Ferns in-
equality or Ferns equality, there appear just m and r, but, there does not 
appear the number n, or the dimension of the ambient space RPn+l. 
Now we are going to formulate Ferns type inequality in term of Legendre 
submanifolds and in more symmetric form. 

Theorem 3.2 Let L be a closed (compact without boundary) immersed Leg-
endre submanifold of the incidence relation I C RPn+l x RPn+1*. Suppose 

叫 and1r*IL are constant rank m and m* respectively, and L is not the 
Legendre lifting of a projective subspace. Then we have 

F(m)さm+ m* -n, F(m*) :Sm*+ m -n. 
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Note that n'.S m+m*. Moreover we see, if m+m* = n in the situation of 

Theorem 3.2, then Lis the Legendre lifting of a projective subspace (Example 

2.1). 

Proof of Theorem 3.2: Set M = 1r(L). Then M is a closed and immersed 
submanifold in RPn+l. It is easy to see that 

rank(,)~m + m* -n. 

Thus we have F(m)~m+m* -n if Mis not a projective subspace. By the 
symmetry, we also have F(m*)~m* + m -n. Thus we have Theorem 3.2. 
ロ
Now we are led to the following fundamental question: 

Question 1: For any positive integers n, m, m* satisfying 

F(m) = m + m* -n, F(m*) = m* + m -n, 

the symmetric Ferns equalities, find examples of closed Legendre submani-
folds Ln C J2n+1 C RPn+l X RPn+1* such that叫 isof constant rank m 
and礼 isof constant rank m*. 

If the symmetric Ferns equalities are satisfied, then we have 

F(m) = F(m*) and n = m + m* -F(m)(= m* + m -F(m*)). 

Since m 2: F(m) and m* 2: F(m*), the inequalities m :S n, m* :S n are 
necessarily fulfilled. Thus Question 1 can be re-written as follows: 

Question 2: For any positive integers m, m* satisfying F(m) = F(m*), find 
examples of closed Legendre submanifolds Ln C 12n+1 c RPn+l x RPn+1* 
with n = m + m* -F(m)(= m* + m -F(m*)), such that 1rにisof constant 
rank m and n* IL is of constant rank m *. 

We give here some of known examples: 

Example 3.3 By Example 2.3, we have examples for 

(n, m, m*) = (4, 3, 3), (6, 5, 5), (10, 9, 9), (18, 17, 17), (26, 25, 25), (34, 33, 33), 

(50, 49, 49), (58, 57, 57), (66, 65, 65), (82, 81, 81), (90, 89, 89), (98, 97, 97), 

and so on. Moreover, we have examples for the sequence: (2信2,2仁1,2旦1),
£= 1, 2, 3, .... 
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Example 3.4 (Cartan hypersurfaces.) 
(1) (n, m, m*) = (3, 3, 2). Let M3 c RP4 be the Cartan hypersurface. 
Then n = m = 3, m* = 2. Note that F(3) = 2 = F(2). Thus we see the 
symmetric Fems equalities hold. 
(2) (n, m, m*) = (6, 6, 4). Let M6 C RP7 be the Cartan hypersurface. 
Then n = m = 6, m* = 4. Note that F(6) = 4 = F(4). Thus we see the 
symmetric Fems equalities hold. 
(3) (n, m, m*) = (12, 12, 8). Let M12 C RP13 be the Cartan hypersurface. 

Then n = m = 12, m* = 8. Note that F(12) = 8 = F(8). Thus we see the 
symmetric Fems equalities hold. 
(4) (n, m, m*) = (24, 24, 16). Let M24 C RP25 be the Cartan hypersur-

face. Then n = m = 24, m* = 16. Note that F(24) = 16 = F(16). Thus we 
see the symmetric Fems equalities hold. 

4 Local classification. 

Let us turn to the local description of a frontal mapping. Let f : M, x ---+ 
N, J(x) be a frontal map-germ at a point x of M. Take local coordinates 
吐..., Xm of M around x, and Yi, ... , Ym; z1, ... , Zr of N around J(x), re— 
spectively, such that T;。isdefined by d句=・ • ・= dzr = 0. Then the frontal 
mapping f satisfies 

d祐＝ど aiidYi, 1さiさr,
1:Sj:Sm、

for some functions aij. Then f = (y, z, (aij)). 

Set g = (Y1°f, ... , Ym゚ J): Rm, 0 -----+ R叫0.Then we see that z1 o 
f, ... , Zr o f belong to the ramification module [20] [21] [22] [23]: 

凡：={h: R叫0→ R I dh is a functional linear combination of dg1, ... , dgm}-

Conversely, if we take a system h1, ... , hr of elements in R9 for a map-germ 
g: Rm,o一町，0,we get a frontal map-germ f : Rm, 0 -----+ Rm+r by 
f = (g; hい・..'ん）. Thus we have the generic classification of singularities of 
frontal mappings of kernel rank one. 

Theorem 4.1 For a generic frontal mapping f : Mm→ N尺m< n, with 
kernel rank at most one, the (right-left) equivalence classes of germs fx, x E 
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M, have normal forms labeled by integers kぶ．．．ふ， r= n -m, with 

k 2: £1 2: ・ ・ ・2: fr and k十釘十・・・十fr:S: m: f m,kふ，．ょ： R四0→ Rm+r,o 
defined by初 =Xi,・・・,Ym-1 = Xm-1, and 

Ym = x~+1/(k+l)!+xげ~-l/(k -1)! +・ ・ ・+ Xk-lXm (=: u) 

釘 = X仇+l/(£1 + 1)! +狐X仇凡！＋・・・十Xk+f.1-lXm

糾 = x;;;+l厄+1)! + X臼＋…Hr-1x;;; 几！＋・・・十Xk+f.1+…+R.r-lXm

Zj = J巧（枷I叫）dxm, l~j~r, 

The result for r = l is given in [22]. 
In the case (m, m*) = (n, 1), the diffeomorphism classification of the 

singularities of degenerate fronts are studied in detail in [21][23][25]. Note 

that, if n 2:: 2, F(n) > 1 = n + l -n, so叫 isnever of constant rank. For 
example, in the case n = 2, the typical singularities of degenerate fronts (or 
frontal surfaces in the sense of the next section) of dimension 2 in RP3 are 
a cuspidal edge, a folded umbrella and a swallowtail. These are singularities 

of tangent developables of space curves of types (1, 2, 3), (1, 2, 4) and (2, 3, 4), 
respectively. 
For the classification by a weaker equivalence relation, namely by the 

homeomorphism classification of tangent developables is given in [26]. 

5 Singularities of one-developables to curves 

in the four space. 

In this section, we give the classification of singularities of bi-degenerate 
Legendre submanifold in case n = 3, m = 2, m* = 2. Note that, in this case, 

F(2) = 2 > 1 = 2 + 2 -3, so that 1rlL and 1r* IL are never of constant rank. 
Consider the flag manifold 

F := {V : {O} C Vi C 怜 c½c¼cR汀．

Then we see dim F = 10. On F, we define the canonical distribution D C T F 
by the following: a curve 

V(t) : {O} C V1(t) C怜(t)C½(t) C¼(t) C R5 
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on F is tangent to D at t = t。ifthe infinitesimal deformation of Vi (t) at 
t。belongsto屹(to),the infinitesimal deformation of½(t) at t。belongsto 
怜(t0),and the infinitesimal deformation of怜(t)at t。belongsto Vi (to). 
Then we see rankD = 4. 
We define the projection 1r1 : F→ RP4 (resp. 1r4 : F→ RP4*) by 

町 (V)= Vi (1r4(V) = Vi). Also we define the projection 1r1,4 : F→ Jc  
RP4 x RP4* by町，4(V)= (片凶） • Then we have町=7r o 7r1,4 and 7r4 = 
7r* o 7rl,4・ 
Typical singularities appearing in bi-degenerate fronts in this situation 
are cones and l-developables. 

Let c: R→ RP4, 

c(t) = [x(t)] = [x0(t), x1(t), x2(t), x3(t), x4(t))] 

be a smooth curve. Consider the surface ruled by tangent (projective) lines 
to the curve. We call it 1-developable of the curve*. Then the tangent planes 

to regular points of the 1-developable are constant along each ruling. In fact 
the tangent plane to the 1-developable at a point on a tangent line coincides 
with the osculating 2-plane at the tangent point of the tangent line to the 

curve. 

Let a1, a2, a3, a4 be integers with 1 :s; a1く四＜知く a4.The curve c 
is called of type (a1, a2, aふ四） at t。ER if there exist a smooth coordinate 
t of R centred at t。andan affine coordinate xぃX2,Xふ四 suchthat c(t) is 
represented near t。inthe form 
x1(t) = ta1+o(ta1), x2(t) = ta2+o(ta2), X3(t) = ta3+o(ta3), X4(t) = ta4+o(ta4). 

The curve c is of finite type at t。ifthere exist such integers a1, a2, a3, a4 so 
that c is of type (a1, a2, aふ四） • The curve itself is called of finite type if 
it is of finite type at every point. Any curve c : R→ RP4 of finite type 
lifts to unique D-integral curveで： R→ F, by using osculating subspaces 
of dimension 1 (the tangent line), of dimension 2, of dimension 3 and of 
dimension 4. Moreover c* := 1r4 o c: R→ RP4* is of finite type. If the 
original c is of type (a1, a2, aかa4)at t。ER,then c* is of type (a4 -aふ伍一
知，a4-a1, a4) at t。ER. We call c* the dual curve to c ([42]). 
Then we have the following fundamental result: 

*In [27], it is called a tangent surface in a general situation. 
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Theorem 5.1 The 1-developable of a curve c in RP4 of type (a1, a2, aふa4)is 
a bi-degenerate front (or a bi-degenerate frontal surface) with m = 2, m* = 2. 

Its projective dual is the 1-developable of the dual curve c* of type (a4 -aぁa4-

知，a4-a1, aり．

To classify singularities of subsets in RPn+l we must define, at least, 

a local equivalence relation: a subset AこN of a manifold N at a point 
p0 E N and a subset A'~N'of a manifold N'at a point p~E N'are 
called diffeomorphic if there exists a diffeomorphism cp : U→ U'of an open 
neighbourhood U of p。inN and an open neighbourhood U'of p~in N'which 
maps A n U to A'n U'. 

Since an open dense part of 1r(L) is a submanifold of dimension m, it is 
natural to consider a parametrisation by an m dimensional manifold. Then 

smooth mappings f : M→ Nat a point t。EMand f': M'→ N'at a point 
t~E M'are called diff eomorphic if there exist a diffeomorphism心： V→ V' 
of of an open neighbourhood V oft。inMand an open neighbourhood V'of 
玲inM'and a diff eomorphism cp : U→ U'of of an open neighbourhood U 
of Po = f(t0) in Mand an open neighbourhood V'of p~= f'(t') in M'such 
that cp of=『°心onU. 

Theorem 5.2 (cf. [23]) Let c : R→ RP4 be a smooth curve and t。ER.
Suppose c at t。isof one of following types: 
(I)r: (1,2,3,3+r), r = 1,2, ... , 
(II)。:(2, 3, 4, 5), 
(II)i: (1,3,4,5), 

(IIh: (1,2,4,5), 
(III) : (3, 4, 5, 6). 

Then the diffeomorphism class in RP4 of the l-developable of the curve c at 
the point c(t0) is determined only by its type. In other words, if two curves 
have the same type, then their l-developables are locally diffeomorphic. 

For a generic curve in RP4, only points of types (I)i : (1, 2, 3, 4) and (I)2 
(1, 2, 3, 5) appear. Moreover, for the dual curve of a generic curve, only 
points of types (I)i : (1, 2, 3, 4) and (II)0 : (2, 3, 4, 5) appear. 

We call the 1-developable surface cuspidal edge in the case of type (1, 2, 3, 4), 
and open swallowtail in the case of type (2, 3, 4, 5). 
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Example 5.3 (Cuspidal edge.) The 1-developable surface of a curve of type 
(1, 2, 3, 4) has the normal form under the diffeomorphisms: 

3 
(x, t)→ (x, 3柱+2xt, 2t3 + xt2 -t4 + -1 

'4 3 
3 xt). 

Moreover it is diffeomorphic to 

(X, t) f----+ (X, t2 , t叫0).

Example 5.4 The 1-developable surface of a curve of type (1, 2, 3, 5) has 
the normal form under the diffeomorphisms: 

2 2 (x, t)→ (x, 3t2 + 2xt, 2t3 + xt -t5 + !xt 
'5 6 

However it is actually diffeomorphic to 

(x, t) f---+ (x, t汽t3,0), 

namely, diffeomorphic to the cuspidal edge. 

Actually we can prove the following: 

4). 

Theorem 5.5 The 1-developable of a curve of type (I)r : (1, 2, 3, 3 + r), (r = 
1, 2, 3, ...) is diffeomorphic to the cuspidal edge. 

Also we observe that the dual of 1-developable of a curve of type (1, 2, 3, 4) 
and the dual of 1-developable of a curve of type (1, 2, 3, 5) are not diffeomor-

phic: 

Example 5.6 (Open swallowtail.) The 1-developable surface of a curve of 
type (2, 3, 4, 5) has the normal form under the diffeomorphisms: 

， ， 
5 1 (x, t)→ (x, 3t3 + 2xt, -t + xt2 -t + -x社）．

4'10  3 

This is not diffeomorphic to the cuspidal edge. 
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