A note on the number of cusps of perturbations of complex polynomials

Kazumasa Inaba Faculty of Education, Iwate University

1. Introduction

A smooth map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is called an excellent map if for any $p \in \mathbb{R}^2$, there exist local coordinates (x,y) centered at p and local coordinates centered at f(p) such that f is locally described in one of the following forms:

- $(1) (x,y) \mapsto (x,y),$
- (2) $(x,y) \mapsto (x,y^2),$ (3) $(x,y) \mapsto (x,y^3 + xy).$

A point in case (1) is a regular point. Points in cases (2) and (3) are called a fold and a cusp, respectively. Denote by $C^{\infty}(\mathbb{R}^2,\mathbb{R}^2)$ the set of all smooth maps $\mathbb{R}^2 \to \mathbb{R}^2$ equipped with the C^{∞} -topology. In [7], Whitney showed that the set of excellent maps is dense in $C^{\infty}(\mathbb{R}^2,\mathbb{R}^2)$. It's known that there is a relation between the topology of surfaces and the topology of the critical locus of a map, see [5, 1]. Fukuda and Ishikawa also studied the number of cusps of stable perturbations of generic map germs [1]. They showed the number of cusps modulo 2 is a topological invariant of generic map germs. Moreover, the number of cusps modulo 2 depends only on the topology of surfaces.

Let f(z) be a complex polynomial such that f(0) = 0. Then there exist a positive integer k and a complex polynomial g such that $f(z) = z^k g(z)$ and $g(0) \neq 0$. We call k the multiplicity of f at the origin. We consider certain perturbations of complex polynomials and calculate explicitly the number of cusps of perturbations by using multiplicities of singularities of complex polynomials.

We identify \mathbb{C} with \mathbb{R}^2 . Then f(z) defines a real polynomial map

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \quad (x,y) \mapsto (\Re f(x,y), \Im f(x,y)),$$

where $z = x + \sqrt{-1}y$. Assume that the origin 0 of $\mathbb C$ is a singularity of f. We define a linear perturbation f_t of f as follows:

$$f_t(z) := f(z) + t(a+ib)\bar{z},$$

where $a, b, t \in \mathbb{R}, i = \sqrt{-1}$ and $0 < |t| \ll 1$. Note that a linear perturbation f_t of f is not a complex polynomial, but is a 1-variable mixed polynomial in the sense of Oka [4]. We now regard a mixed polynomial map $f_t: \mathbb{C} \to \mathbb{C}$ as a real polynomial map $(\Re f_t, \Im f_t): \mathbb{R}^2 \to \mathbb{R}^2$. If $f(z)=z^n$, Fukuda and Ishikawa showed that the number of cusps of a linear perturbation of f is congruent to n+1 modulo 2, see [1, Example 2.3]. If a and b lie outside the union of zero sets of analytic functions determined by a, b and f, f_t is an excellent map for $0 < |t| \ll 1$, see Lemma 2. The main theorem is the following [2].

Theorem 1. Let f(z) be a complex polynomial and k be the multiplicity of f the origin. Suppose that $k \geq 2$. If a linear perturbation f_t of f is an excellent map for $0 < |t| \ll 1$, then the number of cusps of $f_t|_U$ is equal to k+1, where U is a sufficiently small neighborhood of the origin.

²⁰¹⁰ Mathematics Subject Classification. Primary 57R45; Secondary: 58K65, 58K60. Key words and phrases. excellent map, cusp, complex polynomial

2. Singularities of Polynomial Maps

Let $g = (g_1, g_2) : U \to \mathbb{R}^2$ be a polynomial map, where U is an open set. Set $J = \frac{\partial (g_1, g_2)}{\partial (x, y)}, G_i = \frac{\partial (g_i, J)}{\partial (x, y)}$ for i = 1, 2. We define the algebraic set G' as follows:

$$G' := \left\{ (x, y) \in U \mid J(x, y) = G_1(x, y) = G_2(x, y) = \frac{\partial(G_1, J)}{\partial(x, y)} = \frac{\partial(G_2, J)}{\partial(x, y)} = 0 \right\}.$$

In [3, Proposition 2] and [6, Proposition 2.2], Krzyżanowska and Szafraniec showed the following proposition:

Proposition 1. The algebraic set G' is empty if and only if the set of singularities of g consists of either fold singularities or cusps. Moreover, the number of cusps of g is equal to the number of $\{(x,y) \in U \mid J(x,y) = G_1(x,y) = G_2(x,y) = 0\}$.

3. Multiplicity with sign

Set z = x + iy. Then a pair of real polynomials (g_1, g_2) defines a mixed polynomial $g(z, \bar{z})$ as follows:

$$g(z, \bar{z}) = g_1(x, y) + ig_2(x, y)$$

= $g_1\left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i}\right) + ig_2\left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i}\right)$.

Suppose that w is a mixed singularity of a mixed polynomial g, i.e., the gradient vectors of g_1 and g_2 at w are linearly dependent over \mathbb{R} . Then we have

$$\left| \frac{\partial g}{\partial z}(w) \right| = \left| \frac{\partial g}{\partial \bar{z}}(w) \right|,$$

see [4]. Let $\alpha \in \mathbb{C}$ be an isolated root of $g(z, \overline{z}) = 0$. Put

$$S_{\varepsilon}^{1}(\alpha) := \{ z \in \mathbb{C} \mid |z - \alpha| = \varepsilon \},$$

where ε is a sufficiently small positive real number. We define the multiplicity with the sign of the root α by the mapping degree of the normalized function

$$\frac{g}{|g|}: S^1_{\varepsilon}(\alpha) \to S^1.$$

We denote the multiplicity with the sign of the root α by $m_s(g,\alpha)$.

We say that α is a positive simple root if α satisfies

$$\left| \frac{\partial g}{\partial z}(\alpha) \right| > \left| \frac{\partial g}{\partial \bar{z}}(\alpha) \right|.$$

Similarly, α is a negative simple root if α satisfies

$$\left| \frac{\partial g}{\partial z}(\alpha) \right| < \left| \frac{\partial g}{\partial \bar{z}}(\alpha) \right|.$$

In [4, Proposition 15], α is a positive (resp. negative) simple root if and only if $m_s(g,\alpha) = 1$ (resp. $m_s(g,\alpha) = -1$).

Consider a family of mixed polynomials $g_t(z, \bar{z}) = 0$ for $g_0 = g$ and $t \in \mathbb{R}$. Oka showed the following proposition, see [4, Proposition 16].

Proposition 2. Let $\{P_1(t), \ldots, P_{\nu}(t)\}$ be the roots of $g_t(z, \bar{z}) = 0$ which are bifurcating from $z = \alpha$. Then we have

$$\sum_{j=1}^{\nu} m_s(g_t, P_j(t)) = m_s(g, \alpha).$$

4. The existence of linear perturbations which are excellent maps

Let f(z) be a complex polynomial. Assume that f(0) = 0 and the origin of \mathbb{C} is a singularity of f. Set $f_1 = \Re f$ and $f_2 = \Im f$. We take $a, b \in \mathbb{R}$. Then a linear perturbation f_t of f is defined by $f_t(z) = f(z) + t(a+ib)\bar{z}$, where $0 < |t| \ll 1$. Note that f_t is equal to

$$f_t(z) = f(z) + t(a+ib)\bar{z}$$

= $f_1(z) + t(ax+by) + i\{f_2(z) + t(bx-ay)\}.$

Then f_t defines a real polynomial map from \mathbb{R}^2 to \mathbb{R}^2 as follows:

$$f_t: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x,y) \mapsto (f_1(x,y) + t(ax+by), f_2(x,y) + t(bx-ay))$.

We calculate J, G_1 and G_2 of f_t . By the Cauchy–Riemann equations $\frac{\partial f_2}{\partial x} = -\frac{\partial f_1}{\partial y}$ and $\frac{\partial f_2}{\partial y} = \frac{\partial f_1}{\partial x}$, J is modified as

$$J = \det \begin{pmatrix} \frac{\partial f_1}{\partial x} + ta & \frac{\partial f_1}{\partial y} + tb \\ \frac{\partial f_2}{\partial z} + tb & \frac{\partial f_2}{\partial y} - ta \end{pmatrix}$$
$$= \left| \frac{\partial f}{\partial z} \right|^2 - t^2 (a^2 + b^2).$$

Since f is a complex valued harmonic function, $\frac{\partial f_1}{\partial x \partial x} = -\frac{\partial f_1}{\partial y \partial y}$. Then we have

$$G_{1} = \det \begin{pmatrix} \frac{\partial f_{1}}{\partial x} + ta & \frac{\partial f_{1}}{\partial y} + tb \\ \frac{\partial J}{\partial x} & \frac{\partial J}{\partial y} \end{pmatrix}$$

$$= 2\left(\left(\frac{\partial f_{1}}{\partial x} \right)^{2} - \left(\frac{\partial f_{1}}{\partial y} \right)^{2} \right) \frac{\partial^{2} f_{1}}{\partial x \partial y} + 4 \frac{\partial f_{1}}{\partial x} \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y}$$

$$+ 2t \left\{ a \left(\frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial x \partial y} + \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y} \right) - b \left(-\frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial y \partial y} + \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial x \partial y} \right) \right\},$$

$$G_{2} = \det \begin{pmatrix} -\frac{\partial f_{1}}{\partial y} + tb & \frac{\partial f_{1}}{\partial x} - ta \\ \frac{\partial J}{\partial x} & \frac{\partial J}{\partial y} \end{pmatrix}$$

$$= 2\left(\left(\frac{\partial f_{1}}{\partial x} \right)^{2} - \left(\frac{\partial f_{1}}{\partial y} \right)^{2} \right) \frac{\partial^{2} f_{1}}{\partial y \partial y} - 4 \frac{\partial f_{1}}{\partial x} \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial x \partial y}$$

$$+ 2t \left\{ a \left(-\frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial y \partial y} + \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial x \partial y} \right) + b \left(\frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial x \partial y} + \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y} \right) \right\}.$$

If G_1 and G_2 are equal to 0 at (x,y), then (x,y) satisfies the following equation:

$$a \left[\left(-3 \left(\frac{\partial f_1}{\partial x} \right)^2 + \left(\frac{\partial f_1}{\partial y} \right)^2 \right) \frac{\partial f_1}{\partial y} \left\{ \left(\frac{\partial^2 f_1}{\partial y \partial y} \right)^2 - \left(\frac{\partial^2 f_1}{\partial x \partial y} \right)^2 \right\}$$

$$+ 2 \left(-\left(\frac{\partial f_1}{\partial x} \right)^2 + 3 \left(\frac{\partial f_1}{\partial y} \right)^2 \right) \frac{\partial f_1}{\partial x} \frac{\partial^2 f_1}{\partial x \partial y} \frac{\partial^2 f_1}{\partial y \partial y} \right]$$

$$+ b \left[\left(-\left(\frac{\partial f_1}{\partial x} \right)^2 + 3 \left(\frac{\partial f_1}{\partial y} \right)^2 \right) \frac{\partial f_1}{\partial x} \left\{ \left(\frac{\partial^2 f_1}{\partial y \partial y} \right)^2 - \left(\frac{\partial^2 f_1}{\partial x \partial y} \right)^2 \right\}$$

$$- 2 \left(-3 \left(\frac{\partial f_1}{\partial x} \right)^2 + \left(\frac{\partial f_1}{\partial y} \right)^2 \right) \frac{\partial f_1}{\partial y} \frac{\partial^2 f_1}{\partial x \partial y} \frac{\partial^2 f_1}{\partial y \partial y} \right]$$

$$= 0.$$

Set real polynomials ϕ_1, ϕ_2 and Φ as follows:

$$\begin{split} \phi_1 := & \left(-3 \left(\frac{\partial f_1}{\partial x} \right)^2 + \left(\frac{\partial f_1}{\partial y} \right)^2 \right) \frac{\partial f_1}{\partial y} \left\{ \left(\frac{\partial^2 f_1}{\partial y \partial y} \right)^2 - \left(\frac{\partial^2 f_1}{\partial x \partial y} \right)^2 \right\} \\ & + 2 \left(-\left(\frac{\partial f_1}{\partial x} \right)^2 + 3 \left(\frac{\partial f_1}{\partial y} \right)^2 \right) \frac{\partial f_1}{\partial x} \frac{\partial^2 f_1}{\partial x \partial y} \frac{\partial^2 f_1}{\partial y \partial y}, \\ \phi_2 := & \left(-\left(\frac{\partial f_1}{\partial x} \right)^2 + 3 \left(\frac{\partial f_1}{\partial y} \right)^2 \right) \frac{\partial f_1}{\partial x} \left\{ \left(\frac{\partial^2 f_1}{\partial y \partial y} \right)^2 - \left(\frac{\partial^2 f_1}{\partial x \partial y} \right)^2 \right\} \\ & - 2 \left(-3 \left(\frac{\partial f_1}{\partial x} \right)^2 + \left(\frac{\partial f_1}{\partial y} \right)^2 \right) \frac{\partial f_1}{\partial y} \frac{\partial^2 f_1}{\partial x \partial y} \frac{\partial^2 f_1}{\partial y \partial y}, \\ \Phi := a\phi_1 + b\phi_2. \end{split}$$

Suppose that G_1 and G_2 are equal to 0 at (x,y). By the equation (1) and the definitions of ϕ_1, ϕ_2 and Φ , $\Phi(x,y)$ is also equal to 0. To show the existence of linear perturbations which are excellent maps, we consider the intersection of $\phi_1^{-1}(0)$ and $\phi_2^{-1}(0)$.

Lemma 1. Let U be a sufficiently small neighborhood of the origin 0 of \mathbb{C} . Assume that U satisfies $\{w \in U \mid \frac{\partial f}{\partial z}(w) = 0\} = \{0\}$ and $\{w \in U \mid \frac{\partial^2 f}{\partial z \partial z}(w) = 0\} \subset \{0\}$. Then the intersection of $\phi_1^{-1}(0), \phi_2^{-1}(0)$ and U is equal to $\{0\}$.

To study singularities of f_t , we define the mixed polynomial G_t as follows:

$$G_t := G_1 + iG_2$$

$$= \left(\frac{\partial f}{\partial z} + t(a+ib)\right) \frac{\partial J}{\partial y} - i\left(\frac{\partial f}{\partial z} - t(a+ib)\right) \frac{\partial J}{\partial x}.$$

Since $\frac{\partial J}{\partial z}$ is equal to $\frac{1}{2} \left(\frac{\partial J}{\partial x} - i \frac{\partial J}{\partial y} \right)$, $\frac{\partial J}{\partial x}$ and $\frac{\partial J}{\partial y}$ are equal to

$$\begin{split} \frac{\partial J}{\partial x} &= 2\Re\frac{\partial J}{\partial z} = 2\Re\frac{\partial^2 f}{\partial z\partial z} \frac{\overline{\partial f}}{\partial z} = \frac{\partial^2 f}{\partial z\partial z} \frac{\overline{\partial f}}{\partial z} + \frac{\overline{\partial^2 f}}{\partial z\partial z} \frac{\overline{\partial f}}{\partial z},\\ \frac{\partial J}{\partial y} &= -2\Im\frac{\partial J}{\partial z} = -2\Im\frac{\partial^2 f}{\partial z\partial z} \frac{\overline{\partial f}}{\partial z} = i \left(\frac{\partial^2 f}{\partial z\partial z} \frac{\overline{\partial f}}{\partial z} - \frac{\overline{\partial^2 f}}{\partial z\partial z} \frac{\overline{\partial f}}{\partial z}\right), \end{split}$$

where z = x + iy. Thus G_t is equal to

$$-2i\left(\frac{\partial f}{\partial z}\right)^{2}\frac{\overline{\partial^{2} f}}{\partial z \partial z} + 2ti(a+ib)\frac{\partial^{2} f}{\partial z \partial z}\frac{\overline{\partial f}}{\partial z}.$$

Suppose that z satisfies $G_t(z) = 0$ and $\frac{\partial f}{\partial z}(z) \frac{\partial^2 f}{\partial z \partial z}(z) \neq 0$. By the above equation, z satisfies J(z) = 0. Since the multiplicity k of f at the origin is greater than 1, $G_t(0) = 0$ and $\frac{\partial f}{\partial z}(0) \frac{\partial^2 f}{\partial z \partial z}(0) = 0$. Thus we have

$$\left\{z \in U \mid G_t(z) = 0, \frac{\partial f}{\partial z}(z) \neq 0, \frac{\partial^2 f}{\partial z \partial z}(z) \neq 0\right\}$$
$$= \left\{z \in U \setminus \{0\} \mid G_t(z) = 0\right\} \subset J^{-1}(0).$$

Similarly, we define the following mixed polynomial:

$$\begin{split} H_t &:= \det \begin{pmatrix} \frac{\partial G_1}{\partial x} & \frac{\partial G_1}{\partial y} \\ \frac{\partial J}{\partial x} & \frac{\partial J}{\partial y} \end{pmatrix} + i \det \begin{pmatrix} \frac{\partial G_2}{\partial x} & \frac{\partial G_2}{\partial y} \\ \frac{\partial J}{\partial x} & \frac{\partial J}{\partial y} \end{pmatrix} \\ &= \left(\frac{\partial G_1}{\partial x} + i \frac{\partial G_2}{\partial x} \right) \frac{\partial J}{\partial y} - \left(\frac{\partial G_1}{\partial y} + i \frac{\partial G_2}{\partial y} \right) \frac{\partial J}{\partial x} \end{split}$$

The differentials of G_t satisfy the following equations:

$$\frac{\partial G_t}{\partial z} = \frac{1}{2} \left(\frac{\partial G_1}{\partial x} + \frac{\partial G_2}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial G_2}{\partial x} - \frac{\partial G_1}{\partial y} \right), \quad \frac{\partial G_t}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial G_1}{\partial x} - \frac{\partial G_2}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial G_2}{\partial x} + \frac{\partial G_1}{\partial y} \right).$$

Then we have

$$\begin{split} H_t &= \Big(\frac{\partial G_t}{\partial z} + \frac{\partial G_t}{\partial \bar{z}}\Big)\frac{\partial J}{\partial y} - i\Big(\frac{\partial G_t}{\partial z} - \frac{\partial G_t}{\partial \bar{z}}\Big)\frac{\partial J}{\partial x} \\ &= \frac{\partial G_t}{\partial z}\Big(\frac{\partial J}{\partial y} - i\frac{\partial J}{\partial x}\Big) + \frac{\partial G_t}{\partial \bar{z}}\Big(\frac{\partial J}{\partial y} + i\frac{\partial J}{\partial x}\Big). \end{split}$$

Since $\frac{\partial J}{\partial y} - i \frac{\partial J}{\partial x} = -2i \frac{\partial J}{\partial \overline{z}}$ and $\frac{\partial J}{\partial y} + i \frac{\partial J}{\partial x} = 2i \frac{\partial J}{\partial z}$, H_t is equal to

$$\begin{split} H_t &= -4 \left(\frac{\partial f}{\partial z}\right)^2 \frac{\partial^2 f}{\partial z \partial z} \bigg\{ \overline{2 \left(\frac{\partial^2 f}{\partial z \partial z}\right)^2 - \frac{\partial f}{\partial z} \frac{\partial^3 f}{\partial z \partial z \partial z}} \bigg\} \\ &+ 4t (a+ib) \overline{\frac{\partial f}{\partial z} \frac{\partial^2 f}{\partial z \partial z}} \bigg\{ - \left(\frac{\partial^2 f}{\partial z \partial z}\right)^2 + \frac{\partial f}{\partial z} \frac{\partial^3 f}{\partial z \partial z \partial z} \bigg\}. \end{split}$$

Note that $J(0) = \left|\frac{\partial f}{\partial z}(0)\right|^2 - t^2(a^2 + b^2) \neq 0$ for $t \neq 0$ and $(a, b) \neq (0, 0)$. By the definitions of G_t and H_t , we have

$$\{z \in U \setminus \{0\} \mid G_t(z) = H_t(z) = 0\}$$

$$= \Big\{ z \in U \mid J(z) = G_1(z) = G_2(z) = \frac{\partial(G_1, J)}{\partial(x, y)}(z) = \frac{\partial(G_2, J)}{\partial(x, y)}(z) = 0 \Big\}.$$

By using Lemma 1, we show the existence of a linear perturbation f_t of f which is an excellent map for generic (a, b).

Lemma 2. For a generic choice of (a,b), $f_t|_U$ is an excellent map.

Let w be a singularity of f and U_w be a sufficiently small neighborhood of w. By changing coordinates of U_w and $f(U_w)$, we may assume that w=0 and f(w)=0. So we can apply Lemma 2 to any singularity of f. Thus we can check that f_t is an excellent map for $0 < |t| \ll 1$ if a and b are generic.

5. Calculation of the number of cusps

To calculate the number of cusps of f_t , we study zero points of G_t and differentials of G_t .

Lemma 3. The set $\{z \in U \mid G_t(z) = 0, z \neq 0\}$ is the set of positive simple roots of G_t for $(a,b) \neq (0,0)$ and $0 < |t| \ll 1$.

Assume that f_t is an excellent map for $0 < |t| \ll 1$. We calculate the number of cusps of $F_t|_U$. By Proposition 1, the number of cusps of $f_t|_U$ is equal to

$$\sharp \{z \in U \mid G_t(z) = 0, z \neq 0\}.$$

Set $\{z \in U \mid G_t(z) = 0, z \neq 0\} = \{w_1, \dots, w_{\nu}\}$. We denote the multiplicity of sign by $m_s(G_t, w_j)$ for $j = 1, \dots, \nu$. By Proposition 2 and Lemma 3, we have

$$\left(\sum_{j=1}^{\nu} m_s(G_t, w_j)\right) + m_s(G_t, 0) = \nu + m_s(G_t, 0) = m_s(G_0, 0).$$

The multiplicity $m_s(G_0,0)$ is equal to

$$\deg\left(-2i\left(\frac{\partial f}{\partial z}\right)^2 \frac{\overline{\partial^2 f}}{\partial z \partial z}\right) \middle/ \left|-2i\left(\frac{\partial f}{\partial z}\right)^2 \frac{\overline{\partial^2 f}}{\partial z \partial z}\right| : S_{\varepsilon}^1(0) \to S^1\right) \\
= 2(k-1) - (k-2) = k,$$

where $S_{\varepsilon}^1(0) = \{z \in U \mid |z| = \varepsilon\}$ and $0 < \varepsilon \ll 1$. By the definition of G_t , for any $t \neq 0$, $m_s(G_t, 0)$ is equal to

$$\deg\left(2ti(a+ib)\frac{\partial^2 f}{\partial z\partial z}\frac{\overline{\partial f}}{\partial z}\middle/\left|2ti(a+ib)\frac{\partial^2 f}{\partial z\partial z}\frac{\overline{\partial f}}{\partial z}\right|:S^1_{\varepsilon_t}(0)\to S^1\right)$$

$$=k-2-(k-1)=-1,$$

where $0 < \varepsilon_t \ll \varepsilon$. Thus the number ν of cusps of $f_t|_U$ is equal to k+1. We estimate the number of cusps of f_t in \mathbb{R}^2 .

Corollary 1. Let f_t be a liner perturbation of a complex polynomial f in Theorem 1 and $n = \deg f$. Assume that $n \geq 2$. Then the number of cusps of f_t belongs to [n+1,3n-3]. In particular, the number of cusps of f_t is at least three.

6. Examples

In this section, we construct a perturbation of a complex polynomial which has (n+1)-cusps and also a perturbation which has (3n-3)-cusps.

Example 1. Let $f(z) = z^n$ and $f_t(z) = z^n + t(a+ib)\bar{z}$ be a perturbation of f which is an excellent map. Then $G_t(z)$ is equal to

$$G_t(z) = -2in^3(n-1)z^{2n-2}\bar{z}^{n-2} + 2tn^2(n-1)(a+ib)z^{n-2}\bar{z}^{n-1}$$

= $-2in^2(n-1)|z|^{2n-4}\{nz^n - t(a+ib)\bar{z}\}.$

Set $z = re^{i\theta}$ and $a + ib = \tau e^{i\iota}$, where $\tau > 0$. Then we have

$$-2in^{2}(n-1)r^{2n-4}\{nr^{n}e^{ni\theta} - t\tau re^{i(\iota-\theta)}\}.$$

Assume that $z \neq 0$ and $G_t(z) = 0$. Then z satisfies

$$r = \left(\frac{t\tau}{n}\right)^{\frac{1}{n-1}}, \quad \theta = \frac{\iota + 2j\pi}{n+1},$$

for j = 0, ..., n. Thus the number of cusps of f_t is equal to n + 1.

Example 2. Let $f(z) = z^n + z$. Then the number of singularities of f is equal to n-1 and the multiplicity at each singularity of f is equal to 2. Let $f_t(z) = z^n + z + t(a+ib)\bar{z}$ be a perturbation of f which is an excellent map. By the same argument as in the proof of Corollary 1, the number of cusps of f_t is equal to 3n-3.

7. Non-Linear Perturbations

7.1. **Perturbations of** f_t . Let f_t be a linear perturbation of f which is an excellent map. We fix a, b and t. Let $g(z, \bar{z})$ be a mixed polynomial which satisfies $\frac{\partial g}{\partial z}(0) = \frac{\partial g}{\partial \bar{z}}(0) = 0$. In this subsection, we study a perturbation of f_t :

$$f_{t,s}(z) := f(z) + t(a+ib)\overline{z} + sq(z,\overline{z}),$$

where $0 < |s| \ll |t| \ll 1$. Since |s| is sufficiently small, we can show the following theorem.

Theorem 2. The set of singularities of $f_{t,s}$ consists of either fold singularities or cusps and the number of cusps of $f_{t,s}$ is constant for $0 \le |s| \ll |t| \ll 1$.

7.2. Lower bounds of the numbers of cusps of non-linear perturbations. Let $h(z,\bar{z})$ be a mixed polynomial which satisfies h(0) = 0 and $|\frac{\partial h}{\partial z}(0)| \neq |\frac{\partial h}{\partial \bar{z}}(0)|$. We define a perturbation $f_{t,h}$ of a complex polynomial f as follows:

$$f_{t,h}(z) := f(z) + th(z, \bar{z}),$$

where $0 < |t| \ll 1$. Set $h_1 = \Re h, h_2 = \Im h$ and

$$J_{t,h} = \det \begin{pmatrix} \frac{\partial f_1}{\partial x} + t \frac{\partial h_1}{\partial x} & \frac{\partial f_1}{\partial y} + t \frac{\partial h_1}{\partial y} \\ -\frac{\partial f_1}{\partial y} + t \frac{\partial h_2}{\partial x} & \frac{\partial f_1}{\partial x} + t \frac{\partial h_2}{\partial y} \end{pmatrix}.$$

Then any singularity of $f_{t,h}$ belongs to $J_{t,h}^{-1}(0)$. Assume that $f_{t,h}$ satisfies the following conditions:

- (i) $f_{t,h}$ is an excellent map for $0 < |t| \ll 1$,
- (ii) any cusp of $f_{t,h}$ is a simple root of $G_{t,h}$, where

$$G_{t,h} := \det \begin{pmatrix} \frac{\partial f_1}{\partial x} + t \frac{\partial h_1}{\partial x} & \frac{\partial f_1}{\partial y} + t \frac{\partial h_1}{\partial y} \\ \frac{\partial J_{t,h}}{\partial x} & \frac{\partial J_{t,h}}{\partial y} \end{pmatrix} + i \det \begin{pmatrix} -\frac{\partial f_1}{\partial y} + t \frac{\partial h_2}{\partial x} & \frac{\partial f_1}{\partial x} + t \frac{\partial h_2}{\partial y} \\ \frac{\partial J_{t,h}}{\partial x} & \frac{\partial J_{t,h}}{\partial y} \end{pmatrix}$$
$$= -2i \left(\frac{\partial f}{\partial z} + t \frac{\partial h}{\partial z} \right) \frac{\partial J_{t,h}}{\partial z} + 2ti \frac{\partial h}{\partial \bar{z}} \frac{\partial J_{t,h}}{\partial z}.$$

Since $f_{t,h}$ is an excellent map, the intersection of $J_{t,h}^{-1}(0)$ and $(\frac{\partial J_{t,h}}{\partial z})^{-1}(0)$ is empty by Proposition 1. Let U be a sufficiently small neighborhood of the origin. Then the number of cusps of $f_{t,h}|_U$ is equal to the number of $\{z \in U \mid G_{t,h}(z) = 0, \frac{\partial J_{t,h}}{\partial z}(z) \neq 0\}$. We define

$$\delta = \begin{cases} 1 & |\frac{\partial h}{\partial z}(0)| > |\frac{\partial h}{\partial \bar{z}}(0)| \\ -1 & |\frac{\partial h}{\partial z}(0)| < |\frac{\partial h}{\partial \bar{z}}(0)| \end{cases}.$$

Theorem 3. Let $f_{t,h}$ a perturbation of a complex polynomial f which satisfies the condition (i) and the condition (ii). Then the number of cusps of $f_{t,h}|_U$ is greater than or equal to $k-\delta$, where k is the multiplicity of f at the origin.

References

- T. Fukuda, G. Ishikawa, On the number of cusps of stable perturbations of a plane-to-plane singularity, Tokyo J. Math. 10 (1987), 375–384.
- [2] K. Inaba, On the number of cusps of deformations of complex polynomials, arxiv: 1811.01189.
- [3] I. Krzyżanowska, Z. Szafraniec, On polynomial mappings from the plane to the plane, J. Math. Soc. Japan. 66 (2014), 805–818.
- [4] M. Oka, Intersection theory on mixed curves, Kodai Math. J. 35 (2012), 248–267.
- [5] J. R. Quine, A global theorem for singularities of maps between oriented 2-manifolds, Trans. Amer. Math. Soc. 236 (1978), 307–314.
- [6] Z. Szafraniec, On bifurcations of cusps, arXiv:1710.00591, to appear in J. Math. Soc. Japan.
- [7] H. Whitney, On singularities of mapping of Euclidean spaces. I. Mappings of the plane into the plane, Ann. of Math. (2), 62 (1955), 374–410.

Faculty of Education, Iwate University, 18-33 Ueda 3-chome Morioka, Iwate 020-8550, Japan E-mail address: inaba@iwate-u.ac.jp