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1. INTRODUCTION

A smooth map f : R? — R? is called an excellent map if for any p € R2, there exist local
coordinates (z,y) centered at p and local coordinates centered at f(p) such that f is locally
described in one of the following forms:

(1) (z,y) = (2,y),
(2) (2,y) = (2,97,
(3) (z,y) — (z,y° + zy).
A point in case (1) is a regular point. Points in cases (2) and (3) are called a fold and a cusp,
respectively. Denote by C°(R? R?) the set of all smooth maps R? — R? equipped with the
C*>-topology. In [7], Whitney showed that the set of excellent maps is dense in C™(R?, R?).
It’s known that there is a relation between the topology of surfaces and the topology of the
critical locus of a map, see [5, 1]. Fukuda and Ishikawa also studied the number of cusps of
stable perturbations of generic map germs [1]. They showed the number of cusps modulo 2 is a
topological invariant of generic map germs. Moreover, the number of cusps modulo 2 depends
only on the topology of surfaces.
Let f(z) be a complex polynomial such that f(0) = 0. Then there exist a positive integer k and
a complex polynomial g such that f(z) = zFg(z) and g(0) # 0. We call k the multiplicity of f at
the origin. We consider certain perturbations of complex polynomials and calculate explicitly the
number of cusps of perturbations by using multiplicities of singularities of complex polynomials.
We identify C with R2. Then f(z) defines a real polynomial map

[iR? =R (z,y) — (Rf(2,),Sf(z,9)),

where z = x + v/—1y. Assume that the origin 0 of C is a singularity of f. We define a linear
perturbation f; of f as follows:

fi(z) == f(2) + t(a+ib)z,

where a,b,t € R,i = /=1 and 0 < [t| < 1. Note that a linear perturbation f; of f is not
a complex polynomial, but is a 1-variable mixed polynomial in the sense of Oka [4]. We now
regard a mixed polynomial map f; : C — C as a real polynomial map (Rf:, Sf;) : R2 — R2. If
f(z) = 2™, Fukuda and Ishikawa showed that the number of cusps of a linear perturbation of f
is congruent to n + 1 modulo 2, see [1, Example 2.3]. If a and b lie outside the union of zero
sets of analytic functions determined by a,b and f, f; is an excellent map for 0 < [t] < 1, see
Lemma 2. The main theorem is the following [2].

Theorem 1. Let f(z) be a complex polynomial and k be the multiplicity of f the origin. Suppose
that k > 2. If a linear perturbation f, of f is an excellent map for 0 < |t| < 1, then the number
of cusps of filu is equal to k + 1, where U is a sufficiently small neighborhood of the origin.
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2. SINGULARITIES OF POLYNOMIAL MAPS

Let g = (g1,92) : U — R? be a polynomial map, where U is an open set. Set J = %, G; =
%((gl—f_’j)) for i = 1,2. We define the algebraic set G’ as follows:

0(Gh,J)  0(Ga,J)
G = UlJ =G4( = Go(z,y) = L = =
{(x7y) € ‘ (xay) l(xvy) 2(-7'7:'!) 8(2177y) a(l"y) }
In [3, Proposition 2] and [6, Proposition 2.2], Krzyzanowska and Szafraniec showed the following
proposition:

Proposition 1. The algebraic set G' is empty if and only if the set of singularities of g consists
of either fold singularities or cusps. Moreover, the number of cusps of g is equal to the number

of {(z,y) €U | J(z,y) = Gi(z,y) = Ga(z,y) = 0}.

3. MULTIPLICITY WITH SIGN

Set z = x + iy. Then a pair of real polynomials (g1, g2) defines a mixed polynomial g(z, z) as
follows:

9(2,2) = g1(zx,y) + iga(z,y)

o (z—i—Z Z_2)+i (2—1—2 z—Z)
=91 2 ) 2% 92 2 ) % .

Suppose that w is a mixed singularity of a mixed polynomial g, i.e., the gradient vectors of g;
and g2 at w are linearly dependent over R. Then we have

99, 5 _ |99
o (w)] = | 2w
see [4]. Let a € C be an isolated root of g(z,z) = 0. Put
SHa):={z€C||z—a| =¢},

where ¢ is a sufficiently small positive real number. We define the multiplicity with the sign of
the root a by the mapping degree of the normalized function

g 1 1
—: S (a) = S".

We denote the multiplicity with the sign of the root a by ms(g, «).
We say that « is a positive simple root if « satisfies
dg dg ‘
—=(a)| > |==(a)].
0= (@) 5z

Similarly, « is a negative simple root if « satisfies
dg dg
()| < |52(a)|.
0z (O‘)‘ 0z (@)
In [4, Proposition 15], « is a positive (resp. negative) simple root if and only if ms(g, o) = 1
(vesp. m, (g, ) = —1).
Consider a family of mixed polynomials g;(z,z) = 0 for go = g and ¢ € R. Oka showed the
following proposition, see [4, Proposition 16].

Proposition 2. Let {Pi(t),...,P,(t)} be the roots of gi(z,z) = 0 which are bifurcating from
z = a. Then we have

> i1 ms(ge Pi(1) = ms(g, a).



4. THE EXISTENCE OF LINEAR PERTURBATIONS WHICH ARE EXCELLENT MAPS

Let f(z) be a complex polynomial. Assume that f(0) = 0 and the origin of C is a singularity
of f. Set fi = Rf and fo = Sf. We take a,b € R. Then a linear perturbation f; of f is defined
by fi(z) = f(z) + t(a+ib)z, where 0 < |t| < 1. Note that f; is equal to

fi(z) = f(z) + t(a+ib)z
= fi(2) + t(az + by) + i{ fo(2) + t(bx — ay)}.

Then f; defines a real polynomial map from R? to R? as follows:
ft : RZ - R27 (1,7?/) = (f1($7y) + t(a‘r + by)7 f2(x7y) + t(b;t - ay))

We calculate J, Gy and Ga of f;. By the Cauchy-Riemann equations 7 f 2 — df L and df 2 =9

Oz °
J is modified as
Bfl 3f1
Gl ta G+ tb
J—det<?w “ oot )

Gt G2 —ta

] 2+ 0%).
Since f is a complex valued harmonic function, % = 8‘(%11/ Then we have
3f1 of
+ ta F-+tb
G 1= = det % aJ
dz Dy

_ 9fi af1\2\ 9*f1 f1 0f1 0 f1
2((61’) ((’)y) >8x8y+48x Oy dydy
Of O°fL 0[O h O fH | 0f N
* 2t{a< Ox 0xdy oy Ay 8y8y) b( Ox Jydy * dy 8x6y)

afl 6f1
+tb —ta
Gy = det 8 6]
dz By

- 2((%)2 - (%)2> Ph0hOh 6

Jx y Yoy B 876711 dxdy

Oh #hH | 0h &Ph of1 0*f1 | 0fi 0*f1
+2t{( ox Oydy 8_y8x8y) b(%@x@ij@_y@yay) ’

If G; and Gy are equal to 0 at (x,y), then (z,y) satisfies the following equation:
2 2
() + (5)) o )~ Gy}
2 2
2((5) +3(5) ) 5 sy ovan)
2 2
Y ol () +(5) ) 3 Gy~ G )

dfiN2  (0f1 f1 0*f1 0*f1
_2(_3(5) + (8_y> )a_y&ray ayay]
=0.
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Set real polynomials ¢1,¢s and ® as follows:
or=((0L)" (GY) (g (20
e2(=() +3(50)) B s
o (o)) o G- (7))
R CORICORE Fa s
D := apy + beo.

Suppose that G7 and Gy are equal to 0 at (z,y). By the equation (1) and the definitions of
@1, 02 and @, (x,y) is also equal to 0. To show the existence of linear perturbations which are

excellent maps, we consider the intersection of ¢;*(0) and ¢, (0).

Lemma 1. Let U be a sufficiently small neighborhood of the origin 0 of C. Assume that U
satisfies {w € U | %( )= 0} ={0} and {w e U | azaz( w) = 0} C {0}. Then the intersection

of ¢71(0), 65 1(0) and U is equal to {0}.

To study singularities of f;, we define the mixed polynomial G; as follows:

Gy :=G1 +1Gy
_(Of 0\ 9J of aJ
B (82 +t(a+1b)) Ay 72(82 —tlas b)) oz’
Since ‘gi is equal to 5 (% — i%), gi and dJ are equal to
2¢ IF 2 DF 92F
aJ Q%Q_SCE(9]"8_f:8]‘(‘3_f+6f(‘3'_f7
oz 0z 020z 0z 020z 0z 020z 0z
aJ EU _95 0% f 8f (82}” of  0f g)
oy 9. T 0202 0z \0202 0z 020z 02/’
where z = x +4y. Thus G, is equal to
OfN2O L 9*fOF
_2Z<£) 020z +2tia +ib) 020z 0z

Suppose that z satisfies G¢(z) = 0 and df( )

af(O) ddzdfz (0) = 0. Thus we have

2
{revicm-0g w0700}

={z € U\ {0} | Gi(2) =0} € JL(0).

Similarly, we define the following mixed polynomial:

6G1 9G1 Gy  9G>
Hy:=det | 55 84 | +idet | 55 9
890 dy ozr dy

6262( z) # 0. By the above equation, z satis-
fies J(z) = 0. Since the multiplicity % of f at the origin is greater than 1, G;(0) = 0 and
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The differentials of Gy satisfy the following equations:
0Gy 170G,  0Go i (0Go  0Gq 0Gy  1/0G;  0Go 1 (0Gy  9Gy
7 =37+ 3y 3l ): 3 )+5( )

Then we have

ox Jy

0z

ox oy

- ox +8—y
S )

Jy ox
9] _ ;0] 2i‘9J nd ‘9‘] + zw =221 H, is equal to

Dy Zax - 0z
_ f\2 f ?fN2 of 0f
Hy = 74(@) 828,2{2(6,2&2) B iazazaz}
af 02f{ (02f>2+% >f }

Since

Hatla+ D)5 55 5502) T 5 9.000-

Note that J(0) = g—f(O)|2 —t2(a® +b%) # 0 for t # 0 and (a,b) # (0,0). By the definitions of
G, and H;, we have

{z € UN{0} | Gi(z) = Hi(2) = 0}

{2 €U () = Gi(2) = Gale) = G, J), (G2, J)

e = D =0

By using Lemma 1, we show the existence of a linear perturbation f; of f which is an excellent
map for generic (a,b).

Lemma 2. For a generic choice of (a,b), fi|lu is an excellent map.

Let w be a singularity of f and U, be a sufficiently small neighborhood of w. By changing
coordinates of U, and f(U,), we may assume that w = 0 and f(w) = 0. So we can apply
Lemma 2 to any singularity of f. Thus we can check that f; is an excellent map for 0 < |t| < 1
if @ and b are generic.

5. CALCULATION OF THE NUMBER OF CUSPS

To calculate the number of cusps of f;, we study zero points of G; and differentials of Gj.

Lemma 3. The set {z € U | Gi(z) = 0,z # 0} is the set of positive simple roots of Gy for
(a,b) # (0,0) and 0 < |t] < 1.

Assume that f; is an excellent map for 0 < |t| < 1. We calculate the number of cusps of F|y.
By Proposition 1, the number of cusps of f|y is equal to

H{zeU|Gz) =0,z # 0}
Set {z € U | Gi(z) =0,z # 0} = {wy, ..., w,}. We denote the multiplicity of sign by m (G, w;)
for j =1,...,v. By Proposition 2 and Lemma 3, we have
(Z0oymalGrwy) ) + (G, 0) = v+ my(Gr, 0) = my (Go, 0).
The multiplicity ms(Go, 0) is equal to
ses( (Y TL) [| i (2) TL
8 8282 82 020z

=2k — )

:8H0) — 51)
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where S}(0) = {z € U | |2| = ¢} and 0 < ¢ < 1. By the definition of G, for any t # 0, ms(Gy, 0)
is equal to

) 9°f f 0*f Of| . 1
deg<2tz(a+zb 9207 0 /‘Qt a+ ib) 8 9292 Sgt(O)—nS')
k-2 (k—1)=

where 0 < £, < . Thus the number v of cusps of fi|y is equal to k + 1.
We estimate the number of cusps of f; in R2.

Corollary 1. Let f; be a liner perturbation of a complex polynomial f in Theorem 1 and n =
deg f. Assume that n > 2. Then the number of cusps of fi belongs to [n + 1,3n — 3].
particular, the number of cusps of fi is at least three.

6. EXAMPLES

In this section, we construct a perturbation of a complex polynomial which has (n + 1)-cusps
and also a perturbation which has (3n — 3)-cusps.

Example 1. Let f(z) = 2" and fi(z) = 2" + t(a + ib)Z be a perturbation of f which is an
excellent map. Then Gi(z) is equal to

Gi(z) = —2in®(n — 1)22"722""2 £ 2tn?(n — 1)(a + ib)z" 22"}
= —2in%(n — )|z H{nz" — t(a + ib)z}.
Set z = re and a + ib = Te*, where T > 0. Then we have
—2in?(n — 1)7"2”74{117""67”0 - trrei(he)},

Assume that z # 0 and Gi(z) = 0. Then z satisfies

r= (D)7, g A
n n+1

)

for 7 =0,...,n. Thus the number of cusps of f; is equal to n + 1.

Example 2. Let f(z) = 2"+ z. Then the number of singularities of f is equal to n — 1 and the
multiplicity at each singularity of f is equal to 2. Let fi(z) = 2"+ z+t(a+1ib)z be a perturbation
of [ which is an excellent map. By the same argument as in the proof of Corollary 1, the number
of cusps of fy is equal to 3n — 3.

7. NON-LINEAR PERTURBATIONS

7.1. Perturbations of f;. Let f; be a linear perturbation of f which is an excellent map. We

fix a,b and t. Let g(z,Z) be a mixed polynomial which satisfies %(O) = %(0) = 0. In this

subsection, we study a perturbation of f;:
frs(2) == f(2) + t(a +ib)z + s9(2, 2),
where 0 < |s| < [t] < 1. Since |s| is sufficiently small, we can show the following theorem.

Theorem 2. The set of singularities of fi s consists of either fold singularities or cusps and the
number of cusps of fis is constant for 0 < |s| < |t| < 1.



7.2. Lower bounds of the numbers of cusps of non-linear perturbations. Let h(z, 2)
be a mixed polynomial which satisfies h(0) = 0 and \%(O)\ # |%(0)| We define a perturbation
fi,n of a complex polynomial f as follows:

ft,h(z) = f(Z) +th(2:,2),
where 0 < |t| < 1. Set hy = Rh, hy = Sh and

of1 _,’_té)hl f1 _,’_t(’)hl
Lﬁ_Wht<(El+t%z %i+¢am>'
Then any singularity of f; ;, belongs to thh (0). Assume that f; , satisfies the following conditions:
(i) fin is an excellent map for 0 < |t| < 1,

(ii) any cusp of f; is a simple root of Gy, where

J_Jr Ohy _L+ Ohy _oh 4y dh2 Of1 4 4Ohy
Gin .det< fJ,yha“” Yot y)—l—idet( %M O f”zaJtvh?y

oz oy o Oy
:722(6]0 )aJth 8h0Jth

a_”E 2. 2% o

Since ftp, is an excellent map, the intersection of thh (0) and (Z2")~1(0) is empty by Proposi-
tion 1. Let U be a sufficiently small neighborhood of the orlgm. Then the number of cusps of
feplu is equal to the number of {z € U | Gy (2) = 0, 8, 52 () # 0}, We define

5_{1 L (0)] > [3£0)]

—1 |22(0)] < |Z2(0)]

Theorem 3. Let fi} a perturbation of a complex polynomial f which satisfies the condition (i)
and the condition (ii). Then the number of cusps of fin|u is greater than or equal to k — 0,
where k is the multiplicity of f at the origin.
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