A note on the number of cusps of perturbations of complex polynomials

Kazumasa Inaba
Faculty of Education, Iwate University

1. Introduction

A smooth map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is called an excellent map if for any $p \in \mathbb{R}^{2}$, there exist local coordinates (x, y) centered at p and local coordinates centered at $f(p)$ such that f is locally described in one of the following forms:
(1) $(x, y) \mapsto(x, y)$,
(2) $(x, y) \mapsto\left(x, y^{2}\right)$,
(3) $(x, y) \mapsto\left(x, y^{3}+x y\right)$.

A point in case (1) is a regular point. Points in cases (2) and (3) are called a fold and a cusp, respectively. Denote by $C^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ the set of all smooth maps $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ equipped with the C^{∞}-topology. In [7], Whitney showed that the set of excellent maps is dense in $C^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$. It's known that there is a relation between the topology of surfaces and the topology of the critical locus of a map, see [5, 1]. Fukuda and Ishikawa also studied the number of cusps of stable perturbations of generic map germs [1]. They showed the number of cusps modulo 2 is a topological invariant of generic map germs. Moreover, the number of cusps modulo 2 depends only on the topology of surfaces.

Let $f(z)$ be a complex polynomial such that $f(0)=0$. Then there exist a positive integer k and a complex polynomial g such that $f(z)=z^{k} g(z)$ and $g(0) \neq 0$. We call k the multiplicity of f at the origin. We consider certain perturbations of complex polynomials and calculate explicitly the number of cusps of perturbations by using multiplicities of singularities of complex polynomials.

We identify \mathbb{C} with \mathbb{R}^{2}. Then $f(z)$ defines a real polynomial map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \mapsto(\Re f(x, y), \Im f(x, y)),
$$

where $z=x+\sqrt{-1} y$. Assume that the origin 0 of \mathbb{C} is a singularity of f. We define a linear perturbation f_{t} of f as follows:

$$
f_{t}(z):=f(z)+t(a+i b) \bar{z},
$$

where $a, b, t \in \mathbb{R}, i=\sqrt{-1}$ and $0<|t| \ll 1$. Note that a linear perturbation f_{t} of f is not a complex polynomial, but is a 1 -variable mixed polynomial in the sense of Oka [4]. We now regard a mixed polynomial map $f_{t}: \mathbb{C} \rightarrow \mathbb{C}$ as a real polynomial map $\left(\Re f_{t}, \Im f_{t}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. If $f(z)=z^{n}$, Fukuda and Ishikawa showed that the number of cusps of a linear perturbation of f is congruent to $n+1$ modulo 2, see [1, Example 2.3]. If a and b lie outside the union of zero sets of analytic functions determined by a, b and f, f_{t} is an excellent map for $0<|t| \ll 1$, see Lemma 2. The main theorem is the following [2].

Theorem 1. Let $f(z)$ be a complex polynomial and k be the multiplicity of f the origin. Suppose that $k \geq 2$. If a linear perturbation f_{t} of f is an excellent map for $0<|t| \ll 1$, then the number of cusps of $\left.f_{t}\right|_{U}$ is equal to $k+1$, where U is a sufficiently small neighborhood of the origin.

[^0]Key words and phrases. excellent map, cusp, complex polynomial

2. Singularities of polynomial maps

Let $g=\left(g_{1}, g_{2}\right): U \rightarrow \mathbb{R}^{2}$ be a polynomial map, where U is an open set. Set $J=\frac{\partial\left(g_{1}, g_{2}\right)}{\partial(x, y)}, G_{i}=$ $\frac{\partial\left(g_{i}, J\right)}{\partial(x, y)}$ for $i=1,2$. We define the algebraic set G^{\prime} as follows:

$$
G^{\prime}:=\left\{(x, y) \in U \left\lvert\, J(x, y)=G_{1}(x, y)=G_{2}(x, y)=\frac{\partial\left(G_{1}, J\right)}{\partial(x, y)}=\frac{\partial\left(G_{2}, J\right)}{\partial(x, y)}=0\right.\right\}
$$

In [3, Proposition 2] and [6, Proposition 2.2], Krzyżanowska and Szafraniec showed the following proposition:

Proposition 1. The algebraic set G^{\prime} is empty if and only if the set of singularities of g consists of either fold singularities or cusps. Moreover, the number of cusps of g is equal to the number of $\left\{(x, y) \in U \mid J(x, y)=G_{1}(x, y)=G_{2}(x, y)=0\right\}$.

3. Multiplicity with Sign

Set $z=x+i y$. Then a pair of real polynomials $\left(g_{1}, g_{2}\right)$ defines a mixed polynomial $g(z, \bar{z})$ as follows:

$$
\begin{aligned}
g(z, \bar{z}) & =g_{1}(x, y)+i g_{2}(x, y) \\
& =g_{1}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)+i g_{2}\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right) .
\end{aligned}
$$

Suppose that w is a mixed singularity of a mixed polynomial g, i.e., the gradient vectors of g_{1} and g_{2} at w are linearly dependent over \mathbb{R}. Then we have

$$
\left|\frac{\partial g}{\partial z}(w)\right|=\left|\frac{\partial g}{\partial \bar{z}}(w)\right|
$$

see [4]. Let $\alpha \in \mathbb{C}$ be an isolated root of $g(z, \bar{z})=0$. Put

$$
S_{\varepsilon}^{1}(\alpha):=\{z \in \mathbb{C}| | z-\alpha \mid=\varepsilon\}
$$

where ε is a sufficiently small positive real number. We define the multiplicity with the sign of the root α by the mapping degree of the normalized function

$$
\frac{g}{|g|}: S_{\varepsilon}^{1}(\alpha) \rightarrow S^{1}
$$

We denote the multiplicity with the sign of the root α by $m_{s}(g, \alpha)$.
We say that α is a positive simple root if α satisfies

$$
\left|\frac{\partial g}{\partial z}(\alpha)\right|>\left|\frac{\partial g}{\partial \bar{z}}(\alpha)\right|
$$

Similarly, α is a negative simple root if α satisfies

$$
\left|\frac{\partial g}{\partial z}(\alpha)\right|<\left|\frac{\partial g}{\partial \bar{z}}(\alpha)\right|
$$

In [4, Proposition 15], α is a positive (resp. negative) simple root if and only if $m_{s}(g, \alpha)=1$ $\left(\right.$ resp. $\left.m_{s}(g, \alpha)=-1\right)$.

Consider a family of mixed polynomials $g_{t}(z, \bar{z})=0$ for $g_{0}=g$ and $t \in \mathbb{R}$. Oka showed the following proposition, see [4, Proposition 16].

Proposition 2. Let $\left\{P_{1}(t), \ldots, P_{\nu}(t)\right\}$ be the roots of $g_{t}(z, \bar{z})=0$ which are bifurcating from $z=\alpha$. Then we have

$$
\sum_{j=1}^{\nu} m_{s}\left(g_{t}, P_{j}(t)\right)=m_{s}(g, \alpha)
$$

4. The existence of linear perturbations which are excellent maps

Let $f(z)$ be a complex polynomial. Assume that $f(0)=0$ and the origin of \mathbb{C} is a singularity of f. Set $f_{1}=\Re f$ and $f_{2}=\Im f$. We take $a, b \in \mathbb{R}$. Then a linear perturbation f_{t} of f is defined by $f_{t}(z)=f(z)+t(a+i b) \bar{z}$, where $0<|t| \ll 1$. Note that f_{t} is equal to

$$
\begin{aligned}
f_{t}(z) & =f(z)+t(a+i b) \bar{z} \\
& =f_{1}(z)+t(a x+b y)+i\left\{f_{2}(z)+t(b x-a y)\right\}
\end{aligned}
$$

Then f_{t} defines a real polynomial map from \mathbb{R}^{2} to \mathbb{R}^{2} as follows:

$$
f_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \mapsto\left(f_{1}(x, y)+t(a x+b y), f_{2}(x, y)+t(b x-a y)\right)
$$

We calculate J, G_{1} and G_{2} of f_{t}. By the Cauchy-Riemann equations $\frac{\partial f_{2}}{\partial x}=-\frac{\partial f_{1}}{\partial y}$ and $\frac{\partial f_{2}}{\partial y}=\frac{\partial f_{1}}{\partial x}$, J is modified as

$$
\begin{aligned}
J & =\operatorname{det}\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x}+t a & \frac{\partial f_{1}}{\partial y}+t b \\
\frac{\partial f_{2}}{\partial x}+t b & \frac{\partial f_{2}}{\partial y}-t a
\end{array}\right) \\
& =\left|\frac{\partial f}{\partial z}\right|^{2}-t^{2}\left(a^{2}+b^{2}\right) .
\end{aligned}
$$

Since f is a complex valued harmonic function, $\frac{\partial f_{1}}{\partial x \partial x}=-\frac{\partial f_{1}}{\partial y \partial y}$. Then we have

$$
\begin{aligned}
G_{1} & =\operatorname{det}\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x}+t a & \frac{\partial f_{1}}{\partial y}+t b \\
\frac{\partial J}{\partial x} & \frac{\partial J}{\partial y}
\end{array}\right) \\
& =2\left(\left(\frac{\partial f_{1}}{\partial x}\right)^{2}-\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial^{2} f_{1}}{\partial x \partial y}+4 \frac{\partial f_{1}}{\partial x} \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y} \\
& +2 t\left\{a\left(\frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial x \partial y}+\frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y}\right)-b\left(-\frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial y \partial y}+\frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial x \partial y}\right)\right\}, \\
G_{2} & =\operatorname{det}\left(\begin{array}{cc}
-\frac{\partial f_{1}}{\partial y}+t b & \frac{\partial f_{1}}{\partial x}-t a \\
\frac{\partial J}{\partial x} & \frac{\partial J}{\partial y}
\end{array}\right) \\
& =2\left(\left(\frac{\partial f_{1}}{\partial x}\right)^{2}-\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial^{2} f_{1}}{\partial y \partial y}-4 \frac{\partial f_{1}}{\partial x} \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial x \partial y} \\
& +2 t\left\{a\left(-\frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial y \partial y}+\frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial x \partial y}\right)+b\left(\frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial x \partial y}+\frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y}\right)\right\} .
\end{aligned}
$$

If G_{1} and G_{2} are equal to 0 at (x, y), then (x, y) satisfies the following equation:

$$
\begin{align*}
& a[\left(-3\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial f_{1}}{\partial y}\left\{\left(\frac{\partial^{2} f_{1}}{\partial y \partial y}\right)^{2}-\left(\frac{\partial^{2} f_{1}}{\partial x \partial y}\right)^{2}\right\} \\
&\left.+2\left(-\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+3\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial x \partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y}\right] \\
&+b\left[\left(-\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+3\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial f_{1}}{\partial x}\left\{\left(\frac{\partial^{2} f_{1}}{\partial y \partial y}\right)^{2}-\left(\frac{\partial^{2} f_{1}}{\partial x \partial y}\right)^{2}\right\}\right. \tag{1}\\
&\left.-2\left(-3\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial x \partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y}\right] \\
&=0
\end{align*}
$$

Set real polynomials ϕ_{1}, ϕ_{2} and Φ as follows:

$$
\begin{aligned}
& \phi_{1}:=\left(-3\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial f_{1}}{\partial y}\left\{\left(\frac{\partial^{2} f_{1}}{\partial y \partial y}\right)^{2}-\left(\frac{\partial^{2} f_{1}}{\partial x \partial y}\right)^{2}\right\} \\
&+2\left(-\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+3\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial f_{1}}{\partial x} \frac{\partial^{2} f_{1}}{\partial x \partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y} \\
& \phi_{2}:=\left(-\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+3\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial f_{1}}{\partial x}\left\{\left(\frac{\partial^{2} f_{1}}{\partial y \partial y}\right)^{2}-\left(\frac{\partial^{2} f_{1}}{\partial x \partial y}\right)^{2}\right\} \\
&-2\left(-3\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+\left(\frac{\partial f_{1}}{\partial y}\right)^{2}\right) \frac{\partial f_{1}}{\partial y} \frac{\partial^{2} f_{1}}{\partial x \partial y} \frac{\partial^{2} f_{1}}{\partial y \partial y} \\
& \Phi:=a \phi_{1}+b \phi_{2} .
\end{aligned}
$$

Suppose that G_{1} and G_{2} are equal to 0 at (x, y). By the equation (1) and the definitions of ϕ_{1}, ϕ_{2} and $\Phi, \Phi(x, y)$ is also equal to 0 . To show the existence of linear perturbations which are excellent maps, we consider the intersection of $\phi_{1}^{-1}(0)$ and $\phi_{2}^{-1}(0)$.
Lemma 1. Let U be a sufficiently small neighborhood of the origin 0 of \mathbb{C}. Assume that U satisfies $\left\{w \in U \left\lvert\, \frac{\partial f}{\partial z}(w)=0\right.\right\}=\{0\}$ and $\left\{w \in U \left\lvert\, \frac{\partial^{2} f}{\partial z \partial z}(w)=0\right.\right\} \subset\{0\}$. Then the intersection of $\phi_{1}^{-1}(0), \phi_{2}^{-1}(0)$ and U is equal to $\{0\}$.

To study singularities of f_{t}, we define the mixed polynomial G_{t} as follows:

$$
\begin{aligned}
G_{t} & :=G_{1}+i G_{2} \\
& =\left(\frac{\partial f}{\partial z}+t(a+i b)\right) \frac{\partial J}{\partial y}-i\left(\frac{\partial f}{\partial z}-t(a+i b)\right) \frac{\partial J}{\partial x}
\end{aligned}
$$

Since $\frac{\partial J}{\partial z}$ is equal to $\frac{1}{2}\left(\frac{\partial J}{\partial x}-i \frac{\partial J}{\partial y}\right), \frac{\partial J}{\partial x}$ and $\frac{\partial J}{\partial y}$ are equal to

$$
\begin{aligned}
& \frac{\partial J}{\partial x}=2 \Re \frac{\partial J}{\partial z}=2 \Re \frac{\partial^{2} f}{\partial z \partial z} \frac{\partial f}{\partial z}=\frac{\partial^{2} f}{\partial z \partial z} \frac{\overline{\partial f}}{\partial z}+\overline{\frac{\partial^{2} f}{\partial z \partial z}} \frac{\partial f}{\partial z} \\
& \frac{\partial J}{\partial y}=-2 \Im \frac{\partial J}{\partial z}=-2 \Im \frac{\partial^{2} f}{\partial z \partial z} \frac{\partial f}{\partial z}=i\left(\frac{\partial^{2} f}{\partial z \partial z} \frac{\overline{\partial f}}{\frac{\partial z}{\partial z}-\frac{\partial^{2} f}{\partial z \partial z}} \frac{\partial f}{\partial z}\right)
\end{aligned}
$$

where $z=x+i y$. Thus G_{t} is equal to

$$
-2 i\left(\frac{\partial f}{\partial z}\right)^{2} \overline{\partial^{2} f} \frac{\partial z \partial z}{\partial t i(a+i b) \frac{\partial^{2} f}{\partial z \partial z} \frac{\overline{\partial f}}{\partial z}}
$$

Suppose that z satisfies $G_{t}(z)=0$ and $\frac{\partial f}{\partial z}(z) \frac{\partial^{2} f}{\partial z \partial z}(z) \neq 0$. By the above equation, z satisfies $J(z)=0$. Since the multiplicity k of f at the origin is greater than $1, G_{t}(0)=0$ and $\frac{\partial f}{\partial z}(0) \frac{\partial^{2} f}{\partial z \partial z}(0)=0$. Thus we have

$$
\begin{aligned}
& \left\{z \in U \mid G_{t}(z)=0, \frac{\partial f}{\partial z}(z) \neq 0, \frac{\partial^{2} f}{\partial z \partial z}(z) \neq 0\right\} \\
= & \left\{z \in U \backslash\{0\} \mid G_{t}(z)=0\right\} \subset J^{-1}(0)
\end{aligned}
$$

Similarly, we define the following mixed polynomial:

$$
\begin{aligned}
H_{t} & :=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial G_{1}}{\partial x} & \frac{\partial G_{1}}{\partial y} \\
\frac{\partial J}{\partial x} & \frac{\partial J}{\partial y}
\end{array}\right)+i \operatorname{det}\left(\begin{array}{cc}
\frac{\partial G_{2}}{\partial x} & \frac{\partial G_{2}}{\partial y} \\
\frac{\partial J}{\partial x} & \frac{\partial J}{\partial y}
\end{array}\right) \\
& =\left(\frac{\partial G_{1}}{\partial x}+i \frac{\partial G_{2}}{\partial x}\right) \frac{\partial J}{\partial y}-\left(\frac{\partial G_{1}}{\partial y}+i \frac{\partial G_{2}}{\partial y}\right) \frac{\partial J}{\partial x}
\end{aligned}
$$

The differentials of G_{t} satisfy the following equations:

$$
\frac{\partial G_{t}}{\partial z}=\frac{1}{2}\left(\frac{\partial G_{1}}{\partial x}+\frac{\partial G_{2}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right), \quad \frac{\partial G_{t}}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial G_{1}}{\partial x}-\frac{\partial G_{2}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial G_{2}}{\partial x}+\frac{\partial G_{1}}{\partial y}\right) .
$$

Then we have

$$
\begin{aligned}
H_{t} & =\left(\frac{\partial G_{t}}{\partial z}+\frac{\partial G_{t}}{\partial \bar{z}}\right) \frac{\partial J}{\partial y}-i\left(\frac{\partial G_{t}}{\partial z}-\frac{\partial G_{t}}{\partial \bar{z}}\right) \frac{\partial J}{\partial x} \\
& =\frac{\partial G_{t}}{\partial z}\left(\frac{\partial J}{\partial y}-i \frac{\partial J}{\partial x}\right)+\frac{\partial G_{t}}{\partial \bar{z}}\left(\frac{\partial J}{\partial y}+i \frac{\partial J}{\partial x}\right) .
\end{aligned}
$$

Since $\frac{\partial J}{\partial y}-i \frac{\partial J}{\partial x}=-2 i \frac{\partial J}{\partial \bar{z}}$ and $\frac{\partial J}{\partial y}+i \frac{\partial J}{\partial x}=2 i \frac{\partial J}{\partial z}, H_{t}$ is equal to

$$
\begin{aligned}
H_{t} & =-4\left(\frac{\partial f}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial z \partial z}\left\{\overline{2\left(\frac{\partial^{2} f}{\partial z \partial z}\right)^{2}-\frac{\partial f}{\partial z} \frac{\partial^{3} f}{\partial z \partial z \partial z}}\right\} \\
& +4 t(a+i b) \frac{\overline{\partial f}}{\partial z} \frac{\partial^{2} f}{\partial z \partial z}\left\{-\left(\frac{\partial^{2} f}{\partial z \partial z}\right)^{2}+\frac{\partial f}{\partial z} \frac{\partial^{3} f}{\partial z \partial z \partial z}\right\} .
\end{aligned}
$$

Note that $J(0)=\left|\frac{\partial f}{\partial z}(0)\right|^{2}-t^{2}\left(a^{2}+b^{2}\right) \neq 0$ for $t \neq 0$ and $(a, b) \neq(0,0)$. By the definitions of G_{t} and H_{t}, we have

$$
\begin{aligned}
& \left\{z \in U \backslash\{0\} \mid G_{t}(z)=H_{t}(z)=0\right\} \\
= & \left\{z \in U \left\lvert\, J(z)=G_{1}(z)=G_{2}(z)=\frac{\partial\left(G_{1}, J\right)}{\partial(x, y)}(z)=\frac{\partial\left(G_{2}, J\right)}{\partial(x, y)}(z)=0\right.\right\} .
\end{aligned}
$$

By using Lemma 1 , we show the existence of a linear perturbation f_{t} of f which is an excellent map for generic (a, b).

Lemma 2. For a generic choice of $(a, b),\left.f_{t}\right|_{U}$ is an excellent map.
Let w be a singularity of f and U_{w} be a sufficiently small neighborhood of w. By changing coordinates of U_{w} and $f\left(U_{w}\right)$, we may assume that $w=0$ and $f(w)=0$. So we can apply Lemma 2 to any singularity of f. Thus we can check that f_{t} is an excellent map for $0<|t| \ll 1$ if a and b are generic.

5. Calculation of the number of cusps

To calculate the number of cusps of f_{t}, we study zero points of G_{t} and differentials of G_{t}.
Lemma 3. The set $\left\{z \in U \mid G_{t}(z)=0, z \neq 0\right\}$ is the set of positive simple roots of G_{t} for $(a, b) \neq(0,0)$ and $0<|t| \ll 1$.

Assume that f_{t} is an excellent map for $0<|t| \ll 1$. We calculate the number of cusps of $\left.F_{t}\right|_{U}$. By Proposition 1, the number of cusps of $\left.f_{t}\right|_{U}$ is equal to

$$
\sharp\left\{z \in U \mid G_{t}(z)=0, z \neq 0\right\} .
$$

Set $\left\{z \in U \mid G_{t}(z)=0, z \neq 0\right\}=\left\{w_{1}, \ldots, w_{\nu}\right\}$. We denote the multiplicity of sign by $m_{s}\left(G_{t}, w_{j}\right)$ for $j=1, \ldots, \nu$. By Proposition 2 and Lemma 3, we have

$$
\left(\sum_{j=1}^{\nu} m_{s}\left(G_{t}, w_{j}\right)\right)+m_{s}\left(G_{t}, 0\right)=\nu+m_{s}\left(G_{t}, 0\right)=m_{s}\left(G_{0}, 0\right) .
$$

The multiplicity $m_{s}\left(G_{0}, 0\right)$ is equal to

$$
\begin{aligned}
& \left.\operatorname{deg}\left(-2 i\left(\frac{\partial f}{\partial z}\right)^{2} \overline{\frac{\partial^{2} f}{\partial z \partial z}}\right) /\left|-2 i\left(\frac{\partial f}{\partial z}\right)^{2} \overline{\frac{\partial^{2} f}{\partial z \partial z}}\right|: S_{\varepsilon}^{1}(0) \rightarrow S^{1}\right) \\
& =2(k-1)-(k-2)=k,
\end{aligned}
$$

where $S_{\varepsilon}^{1}(0)=\{z \in U| | z \mid=\varepsilon\}$ and $0<\varepsilon \ll 1$. By the definition of G_{t}, for any $t \neq 0, m_{s}\left(G_{t}, 0\right)$ is equal to

$$
\begin{aligned}
& \operatorname{deg}\left(2 t i(a+i b) \frac{\partial^{2} f}{\partial z \partial z} \frac{\overline{\partial f}}{\partial z} /\left|2 t i(a+i b) \frac{\partial^{2} f}{\partial z \partial z} \frac{\overline{\partial f}}{\partial z}\right|: S_{\varepsilon_{t}}^{1}(0) \rightarrow S^{1}\right) \\
& =k-2-(k-1)=-1
\end{aligned}
$$

where $0<\varepsilon_{t} \ll \varepsilon$. Thus the number ν of cusps of $\left.f_{t}\right|_{U}$ is equal to $k+1$.
We estimate the number of cusps of f_{t} in \mathbb{R}^{2}.
Corollary 1. Let f_{t} be a liner perturbation of a complex polynomial f in Theorem 1 and $n=$ $\operatorname{deg} f$. Assume that $n \geq 2$. Then the number of cusps of f_{t} belongs to $[n+1,3 n-3]$. In particular, the number of cusps of f_{t} is at least three.

6. Examples

In this section, we construct a perturbation of a complex polynomial which has $(n+1)$-cusps and also a perturbation which has $(3 n-3)$-cusps.

Example 1. Let $f(z)=z^{n}$ and $f_{t}(z)=z^{n}+t(a+i b) \bar{z}$ be a perturbation of f which is an excellent map. Then $G_{t}(z)$ is equal to

$$
\begin{aligned}
G_{t}(z) & =-2 i n^{3}(n-1) z^{2 n-2} \bar{z}^{n-2}+2 \operatorname{tn}^{2}(n-1)(a+i b) z^{n-2} \bar{z}^{n-1} \\
& =-2 i n^{2}(n-1)|z|^{2 n-4}\left\{n z^{n}-t(a+i b) \bar{z}\right\}
\end{aligned}
$$

Set $z=r e^{i \theta}$ and $a+i b=\tau e^{i \iota}$, where $\tau>0$. Then we have

$$
-2 i n^{2}(n-1) r^{2 n-4}\left\{n r^{n} e^{n i \theta}-t \tau r e^{i(\iota-\theta)}\right\}
$$

Assume that $z \neq 0$ and $G_{t}(z)=0$. Then z satisfies

$$
r=\left(\frac{t \tau}{n}\right)^{\frac{1}{n-1}}, \quad \theta=\frac{\iota+2 j \pi}{n+1}
$$

for $j=0, \ldots, n$. Thus the number of cusps of f_{t} is equal to $n+1$.
Example 2. Let $f(z)=z^{n}+z$. Then the number of singularities of f is equal to $n-1$ and the multiplicity at each singularity of f is equal to 2 . Let $f_{t}(z)=z^{n}+z+t(a+i b) \bar{z}$ be a perturbation of f which is an excellent map. By the same argument as in the proof of Corollary 1 , the number of cusps of f_{t} is equal to $3 n-3$.

7. NON-LINEAR PERTURBATIONS

7.1. Perturbations of f_{t}. Let f_{t} be a linear perturbation of f which is an excellent map. We fix a, b and t. Let $g(z, \bar{z})$ be a mixed polynomial which satisfies $\frac{\partial g}{\partial z}(0)=\frac{\partial g}{\partial \bar{z}}(0)=0$. In this subsection, we study a perturbation of f_{t} :

$$
f_{t, s}(z):=f(z)+t(a+i b) \bar{z}+s g(z, \bar{z})
$$

where $0<|s| \ll|t| \ll 1$. Since $|s|$ is sufficiently small, we can show the following theorem.
Theorem 2. The set of singularities of $f_{t, s}$ consists of either fold singularities or cusps and the number of cusps of $f_{t, s}$ is constant for $0 \leq|s| \ll|t| \ll 1$.
7.2. Lower bounds of the numbers of cusps of non-linear perturbations. Let $h(z, \bar{z})$ be a mixed polynomial which satisfies $h(0)=0$ and $\left|\frac{\partial h}{\partial z}(0)\right| \neq\left|\frac{\partial h}{\partial \bar{z}}(0)\right|$. We define a perturbation $f_{t, h}$ of a complex polynomial f as follows:

$$
f_{t, h}(z):=f(z)+\operatorname{th}(z, \bar{z}),
$$

where $0<|t| \ll 1$. Set $h_{1}=\Re h, h_{2}=\Im h$ and

$$
J_{t, h}=\operatorname{det}\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x}+t \frac{\partial h_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y}+t \frac{\partial h_{1}}{\partial y} \\
-\frac{\partial f_{1}}{\partial y}+t \frac{\partial h_{2}}{\partial x} & \frac{\partial f_{1}}{\partial x}+t \frac{\partial h_{2}}{\partial y}
\end{array}\right) .
$$

Then any singularity of $f_{t, h}$ belongs to $J_{t, h}^{-1}(0)$. Assume that $f_{t, h}$ satisfies the following conditions:
(i) $f_{t, h}$ is an excellent map for $0<|t| \ll 1$,
(ii) any cusp of $f_{t, h}$ is a simple root of $G_{t, h}$, where

$$
\begin{aligned}
G_{t, h} & :=\operatorname{det}\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x}+t \frac{\partial h_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y}+t \frac{\partial h_{1}}{\partial y} \\
\frac{\partial J_{t, h}}{\partial x} & \frac{\partial J_{t, h}}{\partial y}
\end{array}\right)+i \operatorname{det}\left(\begin{array}{cc}
-\frac{\partial f_{1}}{\partial y}+t \frac{\partial h_{2}}{\partial x} & \frac{\partial f_{1}}{\partial x}+t \frac{\partial h_{2}}{\partial y} \\
\frac{\partial J_{t, h}}{\partial x} & \frac{\partial J_{t, h}}{\partial y}
\end{array}\right) \\
& =-2 i\left(\frac{\partial f}{\partial z}+t \frac{\partial h}{\partial z}\right) \frac{\partial J_{t, h}}{\partial z}+2 t i \frac{\partial h}{\partial \bar{z}} \frac{\partial J_{t, h}}{\partial z} .
\end{aligned}
$$

Since $f_{t, h}$ is an excellent map, the intersection of $J_{t, h}^{-1}(0)$ and $\left(\frac{\partial J_{t, h}}{\partial z}\right)^{-1}(0)$ is empty by Proposition 1. Let U be a sufficiently small neighborhood of the origin. Then the number of cusps of $\left.f_{t, h}\right|_{U}$ is equal to the number of $\left\{z \in U \mid G_{t, h}(z)=0, \frac{\partial J_{t, h}}{\partial z}(z) \neq 0\right\}$. We define

$$
\delta= \begin{cases}1 & \left|\frac{\partial h}{\partial z}(0)\right|>\left|\frac{\partial h}{\partial \bar{z}}(0)\right| \\ -1 & \left|\frac{\partial h}{\partial z}(0)\right|<\left|\frac{\partial h}{\partial \bar{z}}(0)\right| .\end{cases}
$$

Theorem 3. Let $f_{t, h}$ a perturbation of a complex polynomial f which satisfies the condition (i) and the condition (ii). Then the number of cusps of $\left.f_{t, h}\right|_{U}$ is greater than or equal to $k-\delta$, where k is the multiplicity of f at the origin.

References

[1] T. Fukuda, G. Ishikawa, On the number of cusps of stable perturbations of a plane-to-plane singularity, Tokyo J. Math. 10 (1987), 375-384.
[2] K. Inaba, On the number of cusps of deformations of complex polynomials, arxiv: 1811.01189.
[3] I. Krzyżanowska, Z. Szafraniec, On polynomial mappings from the plane to the plane, J. Math. Soc. Japan. 66 (2014), 805-818.
[4] M. Oka, Intersection theory on mixed curves, Kodai Math. J. 35 (2012), 248-267.
[5] J. R. Quine, A global theorem for singularities of maps between oriented 2-manifolds, Trans. Amer. Math. Soc. 236 (1978), 307-314.
[6] Z. Szafraniec, On bifurcations of cusps, arXiv:1710.00591, to appear in J. Math. Soc. Japan.
[7] H. Whitney, On singularities of mapping of Euclidean spaces. I. Mappings of the plane into the plane, Ann. of Math. (2), 62 (1955), 374-410.

Faculty of Education, Iwate University, 18-33 Ueda 3-chome Morioka, Iwate 020-8550, Japan
E-mail address: inaba@iwate-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 57R45; Secondary: 58K05, 58K60

