
149

RECENT RESULTS ON INTERSECTION SPACE 

COHOMOLOGY 

J. TIMO ESSIG 

ABSTRACT. In this article, recent results on the theory of intersection 
spaces and their cohomology groups are reviewed. The focus is on 
the construction of intersection spaces for non-isolated singularities and 
stratification depth greater than one as well as on the de Rham, sheaf 
theoretic and algebraic approaches towards intersection space cohomol-
ogy. At the end, a list of open problems is provided. 

1. INTRODUCTION 

This survey article is meant to be an update of the survey [7] of Banagl and 
Maxim. In that article, the authors give an overview of the construction of 
intersection spaces for complex projective varieties with isolated singularities 

and their relation to deformations of singularities. Moreover, they point 
out why intersection space homology is the correct homology theory for 
type IIB string theory of conifolds, while Goresky-MacPherson's intersection 

homology is the correct homology theory for type IIA string theory, making 
both to a so called mirror-pair for Calabi-Yau threefolds. 

In this paper, the focus is on the progress in the intersection space homol-
ogy theory that was made since Banagl-Maxim's survey paper was published. 

I will distinguish between the following three approaches. 

(1) Construction of act叫 intersectionspaces. In particular, the results 

of Banagl and Chriestenson in [5] on intersection spaces for depth 

one spaces with nonisolated singular set, of Klimczak in [21] and 

Wrazidlo in [25] on generalized intersection spaces with fundamental 
class and of Agustin-Bobadilla in [1] on intersection space pairs of 

spaces with stratification depth > 1 are reviewed. 
(2) De Rham models for intersection space cohomology. This part con-

tains outlines on the de Rham models of Banagl in [4] and the author 
in [17] describing intersection space cohomology via a complex of dif-

ferential forms on the smooth part/blowup of the pseudomanifold. 
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Moreover, I review the analytic approach to intersection cohomology 
using L2-cohomology of Banagl and Hunsicker in [6]. 

(3) The third part contains Agustin-Bobadilla's sheaf theoretic approach 
of [1] and Geske's algebraic approach of Geske in [19]. 

Conventions and Notation: Throughout the paper, the terms "singular 
space" and "pseudomanifold" denote a Thom-Mather stratified pseudoman-
ifold, e.g. a Whitney-stratified complex projective variety. 

Note, that we follow the notation of Agustin-Bobadilla when we talk about 
truncation and cotruncation both of spaces and differential form complexes. 
For example, the notation for the homology truncation in degree k of a space 

L is L'.::'.k which would be Lく(k+l)in Banagl's notation. 

2. INTERSECTION SPACES 

Intersection spaces have been first constructed in [2] for singular spaces 
X with isolated singularities or trivial link bundles. For炉=MUaM 
且cone(LふwhereM is an n-dimensional compact manifold with boundary 
aM=LJ占 andthe Li are the links of the singularities, the intersecion space 

is a finite CW  complex defined as『X= M UaM cone (LJi cone((Li)'.::'.q(n))) . 
As reviewed in [7], the CW  complexes (Li)団 (n)come with structural maps 

(Ji)'.::'.iJ(n) : (Lふ頂(n)→Li and are called the Moore-approximations or ho-
mology truncations in degree q(n) of the links Lか

For X = M UaM=BxL (B x cone(L)), with connected singular set B of 
codimension b < n, the intersection space is defined as JP X := M UaM 

cone(B x L'.::'.~(b))- The truncation of the link is performed fiberwisely before 
the product 1s coned off. This construction gives the basic idea, how to 
generalize the construction to twisted link bundles. 

2.1. Equivariant Moore approximation and intersection spaces. In 
[5], Banagl-Chriestenson perform fiberwise truncation of twisted bundles by 
a systematic machinery, called equivariant Moore approximation, to con-
struct intersection spaces. For a topological group G, a G-space X and any 
integer k, a degree k equivariant Moore approximation of Xis a G-space X'.::'.k 

together with a G-equivariant map f'.::'.k : X9→ X, such that the induced 
map Hr(J'.::'.k) : Hr(X叫→ Hr(X) on homology is an isomorphism for r :s; k 
while Hr(X須 (b))= 0 for r > k Th . ere are obstruct10ns on the existence 
of equivariant Moore approximations and Banagl-Chriestenson give some 
examples where those exist: Oriented sphere bundles with vanishing Euler 
class (see [5, Proposition 12.1]), trivial group actions on simply connected 
CW  complexes ([5, Example 3.5]), cellular group actions with vanishing or 
injective cellular boundary operator ([5, Example 3.6]) and symplectic toric 
4-manifolds ([5, Proposition 12.3]). 

The equivariant Moore approximations can be used to perform fiberwise 
truncations of twisted bundles as follows. Let 1r : E→ B be a fiber bundle 
of closed manifolds with closed fiber L, structure group G and all spaces 
compatibly oriented. Suppose, that there is a degree k equivariant Moore 



151

SURVEY ON INTERSECTION SPACE COHOMOLOGY 

approximation f <k : L<k→ L. Let Ep→ B be the underlying principal 
bundle of 7r, that is E = Ep xa B. Then, there is a fiber bundle 7r9 : 
ft::;kE := Epx砂 :Sk→B together with a bundle morphism F::;k: ft::;kE→ 
E induced by the map f 9 and we call the pair (ft9E, F9) a fiberwise 
k-truncation of the bundle E. 

Banagl-Chriestenson use the fiberwise truncation to define intersection 
spaces for pseudomanifolds X of depth one with singular set a closed smooth 
manifold B of codimension b and twisted link bundle. The Thom-Mather 
control data give rise to a decomposition X = M UaM T, with M a com-
pact manifold with boundary 8M = E, the total space of the (twisted) 
link bundle 7r : E → B with fiber L, and T a tubular neighbourhood 
of the singular stratum B C X. Let p and ij be dual perversities. If a 
degree q(b) equivariant Moore~pproximation of the link L exists, the in-

tersection space is defined as JP X := M UaM cone ft図 (b)E= coneT図 (b)'
where T縛 (b): ft縛 (b)E→M is the composition of F額 (b)with the inclusion 
E = 8M'-----+ M. Note, that there are obstructions on Poincare duality for 
intersection spaces of complementary perversities. Banagl-Chriestenson in-
traduce a set of so called "local duality obstructions", that is a set of certain 
cup products in the (n-l)st cohomology group of E. To describe these local 

duality obstructions, let ft河 (b)Ebe the homotopy pushout of the diagram 

B 〈
7r Sii(b) F致 (b)

ft気 (b)E―→ E (see [5, Definition 2.1]). It has the structure 
of a fiber bundle 7r河 (b): ft河 (b)E→B and comes with a vertex section 

び： B→ft河 (b)Eand a bundle morphism c河 (b):E→ ft河 (b)E・Banagland 
Chriestenson denote by Q河 (b)E= cone(CT) the mapping cone ofび， which

contains ft河 (b)Eas a subspace, embedded as~ 河 (b): ft河 (b)E'-----+Q呵 (b)E.
Let C河 (b): E→ Q河 (b)Ebe the composition of c河 (b)and~ 河 (b).If both 
degree q(b) and p(b) equivariant Moore approximations of the fiber L of the 
bundle E exist, the local duality obstructions of 7r : E→ B in degree i are 
then defined as the following subset of Hn-1(E). 

{ c;q(b/x) u c;p(b/Y) IX Eか(Q河 (b)E),y E jjn-1-i(Q>ii(b)E)}. 

Theorem 2.1.1. [5, Theorem 9.5] Let xn be a compact oriented two strata 

pseudomanifold of dimension n with singular set B of codimension b with 
link bundle L→ E→ B. Let p and ij be complementary perversities. If the 
degree ij(b) and p(b) equivariant Moore approximations of L exist and the 
local duality obstructions of the link bundle E→ B vanish in all degrees, 
then there is a global Poincare duality isomorphism 

か(JPX)竺 Hn-r(I双）．

Finally, generalizing the same statement for product link bundles and iso-
lated singularities (see [2, Theorem 2.28]), Banagl-Chriestenson show that 
for a Witt space X such that an appropriate equivariant Moore approxima-
tion of the link exists, the intersection form of the intersection space can 
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be chosen to be symmetric and such that its signature eq叫 sthe Goresky-
MacPherson-Siegel signature of intersection homology ([5, Corollary 11.4]). 

2.2. Intersection spaces with fundamental class. In [21], Klimczak ex-
pands the concept of intersection spaces for pseudomanifolds with isolated 
singularities to tackle the problem, that for Banagl's intersection spaces 
Poincare duality only manifests as equality of the Betti numbers of com-
plementary degrees, and not, as for manifolds, as an isomorphism between 
homology/ cohomology groups induced by a cap product with a fundamental 
class. By exploiting the rational Hurewicz theorem, he shows that for sim-
ply connected links, one can glue an n-cell near the singular set to obtain a 
Poincare duality space that is homeomorphic to Banagl's intersection space 
plus an n-cell. This gluing produces a fundamental homology class, which 
means that cap product with this class is an isomorphism. 

In [25], Wrazidlo applies Klimczak's ideas to depth one pseudomani-
folds with nonisolated singular set as in [5] that satisfy the Witt conditions 

Hdim(L;)/2(Li) = 0 for the links Li. For these spaces, gluing the n-cell near 
the singular stratum is obstructed by a condition on the rational Hurewicz 
homomorphism. As shown in [25, Theorem 6.3], this obstruction is strongly 
related to Banagl and Chriestenson's local duality obstructions. Both are 
equivalent if the dimensions of the bases and links of the link bundles are 
related in a certain way. 

2.3. Agustin-Bobadilla's intersection space pairs. In [I], Agustin and 
Bobadilla provide a method to generalize the construction of intersection 
spaces to pseudomanifolds of arbitrary stratification depth. Their idea is 
to modify the pair (X, Sing(X)) inductively to produce a sequence of inter-
section space pairs. As the procedure advances, tubular neighbourhoods of 
strata of increasing codimension are replaced by fiberwise cones on fiberwise 
homology truncations of their link bundles. In each step, the construction 
is obstructed by the existence of a fiberwise truncation of the respective link 
bundle. It is not unique and follows the scheme of obstruction theory: The 
choices made at each step might obstruct the following steps in the induc-
tive construction. If it is possible to make choices such that the procedure 
terminates, Agustin and Bobadilla say that "the intersection space pair ex-
ists" . Their construction is different from the ones for depth one spaces 
described in the previous sections: Since they want to sheafify the intersec-
tion space construction, that is give a constructible sheaf complex on the 
pseudomanifold with hypercohomology the intersection space cohomology, 
Agustin-Bobadilla need special homotopy models for the pseudomanifold 
that contain the intersection spaces as subspaces. Their intersection spaces 
are only homotopy equivalent to those of Banagl, in general, which can be 
seen in Example 2.3.1. 

Since the notation in the general setting is rather involved and technical, 
Agustin-Bobadilla's construction is reviewed explicitly for the example of the 
three strata pseudomanifold X = cone(cone(Tり） • Note, that this singular 
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space can be restratified to a pseudomanifold with two strata, but since 
intersection spaces depend on the explicit stratification of a pseudomanifold, 
this is not a problem. The notation used is borrowed from [l]. Since the 
link bundles are trivial in this example, the obstructions for the existence of 
an intersection space pair vanish. 

Example 2.3.1. Let X = cone(cone(Tり） with filtration X = X4つふ＝
cone(c)っX。={ C}, with c = the cone point of the inner cone and C = 

the cone point of the final cone. 
As perversity, we take the upper mid-

dle perversity j5 = m. Let rri denote 
the lower middle perversity, which is 
dual to m. In the first part of the 
example, the intermediate intersection 
space pair (If Xふ） is constructed. 
The subscript "3" refers to the fact 
that the pair is derived from the previ-
ous step (that is from the pseudoman-
if old X itself) by replacing the link 
bundle of the stratum of codimension 
3 by its fiberwise truncation in degree 

叫3).

cyl(01) = X U cyl ((叶）：：：：：o) 

FIGURE 1. cone(cone(Tり）

又(lj
キ
(1; 

x~ 

X1 X。

j.o ¢、¥

FIGURE 2. Construction of the intermediate intersection space 

To construct the intermediate intersection space If'X, we first derive a 
homotopy model X~'.:::'. X of X that contains If'X as a subspace. In Figure 
2, the construction of X~is illustrated. The link bundle of the intermediate 

stratum X 1 ¥ X。竺 (0,1) is the trivial bundle af : (BT X1) ¥ X。竺 T2X 

(0, 1)→ (0, 1). The cutoff value for the link T2 is rri(3) = 0. As explained 
in [2, Example 2.2.8], a suitable homology truncation of T2 in this degree is 
T <o = { P}'------+ T2, with P a zero cell of T2. Since the bundle is trivial, a 
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suitable fiberwise truncation of uf in degree O is (uf) :::;o : { P} x (0, 1)→ (0,1) 
with bundle morphism砕： {P} x (0, 1)'---+ T2 x (0, 1). To construct Xふ
one adds cyl ((u化o)x [O, 1] to X, as shown in the first picture of Figure 2. 
The additional dimension for the cylinder is depicted pointing into the page. 
The cylinder on the intermediate stratum X 1 ¥ X。iscontained in this space 

as s1(ふ¥Xo) x [O, 1] via a vertex section s1 : X1 ¥ X。'---+cyl ((uf):::;o) . 
Collapsing the sets s1(x) x [O, 1], x E X1 ¥ X。topoints and taking the 

union with the bottom stratum Xo yields the homotopy model Xふillustrated

切 thesecond picture of Figure 2. Shrinking the cylinder cyl (cyl ((呼）叫）
induces a map巧： x~ → X. It becomes a homotopy equivalence if one 
endows X~with the topology generated by all open sets on X~\ X。andall 

the sets 1r 
/-1 
3 (U) for U c X open. The intermediate intersection space, 

illustrated in the first picture of Figure 3, is the following subspace of Xふ
where ft::; ゚ (8TX1¥ Xo) x [O, 1] = cyl(</>『)C cyl (cyl ((り））・内：：：：：o in unison 
with Agust{n-Bobadilla's notation. 

IfX = (X¥只り ucyl(砕） u cyl (国）：：：：：O) X {O}. 
To construct the final intersection space pair, one has to truncate the 

IfX 
吋l('n。)nI仇Xc.....+IいX

FIGURE 3. The intermediate intersection space I(f X and the 
truncation of the link of X。

link bundle of X。inthe pair (I!f Xふ） in degree rri(4) = 1. The to-

tal space of that bundle is枷 31(TXo)n Iぃx空 T2x [ふ1)U{P}x{½} I, 

with I a closed interval. Exploiting [2, Example 2.2.8] once more, the pair 

(8I(I'TX0)9 := (TらX {ら}U I,pt) C 枷 31(TXo)is a suitable choice for 
the desired truncation. It is illustrated as the red line and the small red circle 
in the second picture of Figure 3. The truncated bundle projection is denoted 

by (碕)9: (81戸TX0)9→X。andth e accompanying bundle morphism by 

碕： (8I(I'TX。い→ 町 TX。n(IぃX,X1). To construct the homotopy 
model X~of X that contains the final intersection space pair, one takes the 

union of X~and cyl((び名）<1) x [O, 1] as shown in the first picture of Figure 4. 
This space is called cyl(0。〗 in Agustin-Bobadilla's notation and contains the 
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subspace X,。x[O, 1], embedded via the vert匹 sectionso : X。→ cyl ((哨）叫・
Collapsing so(Xo) x [O, 1] C cyl(0o) to a point gives the homotopy model 
X4~X3~X. The final intersection space戸 X,shown in the second 
picture of Figure 4, is the union of 1r X ¥ず(TXo) (yellow part) with 

the subspaces cyl(娩） =(8ず TX0)9x [O, 1] (orange hatched surface) and 

cyl((哨）9) {red dotted surface) of cyl(0o). 

戸 X:= (J;i X ¥ 1r31T XO) U cyl(盛）U cyl((u詞） ex~ 
The subspace rm X 1 C 1m X is illustrated by the green line in the picture. 

町(Xo)X 10,ll 

cyl(0o) = X~u (cyl((哨）g) x [0, l]) 
The pair (戸X,戸 X1)

FIGURE 4. The final intersection space pair (戸X,戸 X1)

At the end of the example, it is 
worth pointing out that the method 
introduced by Banagl in [3] to con-
struct interesction spaces for some 
classes with stratification depth two 
is applicable in this setting. To per-
form Banagl's construction, one re-
moves from X tubular neighbour-
hoods TX1 ofふ ¥X。andTX。
of X。toget a man if old M~ 
T2 x (0, 1]2 with two boundary parts 
that both look like T2 x (0, 1]. One 
then takes suitable tru四 tionsof 
the boundary parts in the respective 

FIGURE 5. Banagl's JihX 

degrees and takes the mapping cone of the inclusion of the union of these 
かuncations. The resulting intersection space is ill四 tratedin Figure 5. 
Note, that in contrast to Ag四 Un-Bobadilla'sconstruction, the singular set 
Sing(X) =ふ hasno one dimensional heritage in this intersection space. 

To end this section, it should be pointed out that there is no Poincare 
duality theorem for Agu叫n-Bobadilla'sintersection space pairs, yet. This 
issue will be discussed in more detail in Section 4.1. 
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3. INTERSECTION SPACE COHOMOLOGY WITH DIFFERENTIAL FORMS 

3.1. Pseudomanifold of depth one. In [4], Banagl introduces an ap— 
proach to intersection space cohomology via differential forms. It is compa-
rable to the description of intersection cohomology via differential forms of 
Goresky-MacPherson-Brylinski, presented in [12]. 

A depth one pseudomanifold is said to have geometrically flat link bundles, 
if for each singular stratum~C X, the fiber L~of the link bundle p : BT~ → 
~, where T~is a tubular neighbourhood of~in X, is a closed manifold that 
can be endowed with a Riemannian metric such that the transition functions 
of the bundle are locally trivial and the structure group of the bundle is 
contained in the isometries of L~. For example, each trivializable bundle is 
geometrically flat. For such spaces, Banagl defines the complex of fiberwisely 

cotruncated multiplicatively structured forms ft>knM8(8T~) c n•(oT~)
First, the cotruncation T>kn•(L~) C n•(L~) in degree k is defined as 

ち心(L幻：=・・・ → O→ ker89→ 炉+2(L叫→ 炉+3(L~) →．．．

with的thedual of the boundary operator d with respect to the inner product 
induced by the Riemannian metric g on L~. By the Hodge Decomposition 
Theorem, the cohomology of this complex coincides with the cohomology of 
L~in degrees greater than k, while it vanishes in other degrees. 

Let {Ua} aEI be a trivializing atlas of the bundle p : BT~ → ~- Then, 
a differential form w E n• (BT. 叫 iscalled multiplicatively structured and 

fiberwisely cotruncated in degree k, i.e. w E ft>knM8(8T~), if and only 
if Va: E J it holds that wlp-l(Ua) =呪 ~j 1f1T/j I¥ 7r砂， forsome T/j E 

n•(Ua), ,j E T>kn•(L~). The featured maps are the t・ ・ ・ nviahzation <Pa : 

Ua XL~ 竺 p―1(Ua),and the two projections町： Ua X恥→ 島 and
四： Ua X恥→ L~. A form w E n•(Xreg) . 1s contamed m the intersection 
form complex nり(X),if for any singular stratum~C Sing(X) of codi-
mension b with tubular neighbourhood T~, it holds that叫旺nXreg=がn
with T/ E ft呵 (b)心 s(叩）， where1r : T~n Xreg 竺 BT~x (0, 1)→ 叩 is
the projection. Banagl proves that the cohomology groups of intersection 
form complexes for complementary perversities satisfy Poincare duality in 
the classical sense. 

Theorem 3.1.1. [4, Theorem 8.2] Let p and ij be complementary perversities 
and xn an n-dimensional compact and oriented depth one pseudomanifold 
without boundary. Then, integration of wedge products of forms induces a 
nondegenerate bilinear form 

J :Hr(叫 (X))x Hnー雪(X))→恥 （日，[rt])日 Jw I¥ T/・ 
Xreg 

Banagl also proves that for pseudomanifolds with isolated singularities 
X, the de Rham cohomology groups H惰U!(X)) are isomorphic as vector p 

spaces to the reduced cohomology groups Hr (『X遺） of the intersection 
space JPX with real coefficients, see [4, Theorem 9.11]. This statement is 
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generalized in [23], where Schloder and the author use pullback constructions 
in the category of DGAs to show that the de Rham theorem can be lifted 
to the cohomology rings. Moreover, in [16], the author generalized Banagl's 
de Rham Theorem 3.1.1 to depth one pseudomanifolds with product link 
bundles~x LI;. 

3.2. L2-description of intersection space cohomology. In [6], Banagl 
and Hunsicker give a Hodge theoretic description of intersection space co-
homology via extended weighted L2-harmonic forms. Their approach is in 
the spirit of Cheeger's approach to Poincare duality on singular spaces. In 
[13, 14, 15], Cheeger works with L2-cohomology with respect to conical met-
rics on the regular part of a pseudomanifold and proves Poincare duality. 
He shows that for pseudomanifolds with only even dimensional strata (that 
statement was later generalized to Witt spaces) the space of L2-harmonic 
forms is isomorphic to the linear dual of Goresky-MacPherson's middle per-
versity intersection homology. 

Banagl and Hunsicker work with depth one pseudomanifolds with (con-
nected) singular stratum~and product link bundle~x L. They find a 
Riemannian metric g on the regular part Xreg of X, which is very different 
from Cheeger's conical metric, and a special space of L2-harmonic forms that 
is isomorphic to the de Rham cohomology groups H•(nI;(x)) and, by [16], 

therefore also to the reduced singular cohomology groups ii・(JPX)of the in-
tersection spaces. The type of metric they use is called product type fibered 
scattering metric, the space contains all extended weighted L2-harmonic 

forms. For a weight c and a metric g, a differential form w E L~n•(Xreg) 
is c-weighted, i.e. w E xc L四(Xreg),if J llx―cwll9 dvol9く oo,where 

Xreg 

II・119 denotes the pointwise metric on the space n•(Xreg) induced by the 
metric g. The space xc L加；(Xreg) can be completed to a Hilbert space with 

respect to the inner product〈a,(3〉C := J X CY八X―2c*g (3. Let知 denote
reg 

the formal adjoint of the de Rham boundary operator d with respect to this 

inner product and D9,c := d+8g,c・Then, a form w EL四(Xreg)is extended 

c-weighted L2-harmonic, i.e. w E 11:xt(Xreg, g, c), if w is (c-E)-weighted for 
all E > 0 and D9,cw = 0. The Hodge description of intersection cohomology 
via extended weighted L2-harmonic forms is then given by the following the-
orem. To prove this theorem, Banagl and Hunsicker use conifold transitions, 
that were outlined in [7]. 

Theorem 3.2.1. [6, Theorem 1.1] Let X be a pseudomanifold of depth one 
with singular stratum~C X of codimension b that admits a product link 
bundle~x L. Let 9Js be an associated product type fibered scattering metric 
on the regular part Xreg = X \~- Then, there is an isomorphism 

が (!1J!(X))
b 

p 竺冗xt(ふeg,9fs, 2―1-p(b)). 
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3.3. Pseudomanifolds of depth two. In [17], the author extends the 
intersection form complex n1; to depth two pseudomanifolds with filtration 

X = XnっXn-bっX。={xo}, three strata X ¥ Xn-b, Xn-b ¥ X。and
X。andgeometrically flat link bundle for the middle stratum Xn-b ¥ X。・
n1; is defined on the blowup X of 
X that is constructed by remov-
ing first half a tubular neighbour-
hood TX。ofX。C X from X and 
then half a tubular neighbourhood 

T Xn-b of Xn-b ¥ X。.The leftover 
祖acompact manifold with corners 
X, with compact boundary parts 
E, W, glued along their common 
boundary. The halves of the tubu-
lar neighbourhoods that are not re-
moved from X induce compatible 
collars CE : E x [O, 1) y X and FIGURE 6. The blowup of the 3-
cw: Wx  [O 1) y X. Compatibility strata space X = cone(cone(Tり）
means, that the restriction of cw to 
aw x [O, 1) is a collar of aw= aE in E and vice versa. These collars are il-
lustrated for the example X = cone(cone(Tり） from above in Figure 6. Note, 
that W is the blowup of the link Lo of X。,which is itself singular (with two 

strata). In the example X = cone(cone(Tり）， W = T2 x (0, 1] = cone(T礼
To define the intersection forms complex n1; (X), we need to cotruncate 

the intersection form complex OIE(Lo) in degree ij(n). This can be done 

by choosing a complement Q:q(n)+l of the image of the boundary operator 
imd E nq(n)+l(W) and set 

房 (n匹 (Lo):=・ ・ ・ → Q:q(n)+l→ n1gcn)+2(Lo)→．．． 

With ft>q(b)n知 (E)defined as in Section 3.1 and豆 ： Ex [O, 1)→ E, 7rW: 
Wx  [O, 1)→ W the first factor projections, the complex n1;(x) in the depth 
two setting is then defined as follows. 

岡 (X):= {w E n•(X) :c砂=7reTf, T/ E ft河 (b)nMs(E)and 

cい＝平， (ET>q(n)岡 (Lo)}

The cohomology groups of OIE(X) satisfy Poincare duality in the same sense 
as in the depth one setting. 

Theorem 3.3.1. [17, Theorem 7.4.1] For complementary perversities p and 
ij, integration induces nondegenerate bilinear forms 

/: HIJ; ば） xHiqパ）→恥 ([w],[77]) M J WI¥ 77・ 
X 
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4. OTHER APPROACHES TO INTERSECTION SPACE HOMOLOGY 

4.1. Intersection space cohomology via sheaf theory. The sheaf the-
oretic approach to intersection cohomology, motivated by Deligne and intro-
duced by Goresky and MacPherson in [20], is very powerful. Not only has it 
been used to prove Poincare duality and topological invariance of intersec-
tion cohomology for topological pseudomanifolds, it has also led to a proof 
of the Kazhdan-Lusztig conjecture via D-modules, relating representation 
theory and intersection cohomology. The axiomatic definition has another 
advantage: It makes it easy to check, whether a new approach computes 
intersection cohomology or not. 

With these promising results in the back of one's mind, an analogous 
sheaf theoretical description for intersection space cohomology is desirable. 
In [4, Section 6], Banagl shows that his intersection form complex !:2IJ gives 
rise to a complex of soft sheaves on X with global hypercohomology the de 
Rham cohomology H• (呪(X)).Agustin-Bobadilla follow a more axiomatic 
approach in their paper. Based on their iterative construction of intersection 
space pairs, they derive a constructible complex of sheaves rs; and show 
that its global hypercohomology is the cohomology of the intersection space 
pair. Moreover, in [1, Section 6], they introduce a set of properties, called 
the 1s;-properties in the following, acting as an analogue to the axioms for 

intersection cohomology of [20, Section 3.3]. A sheaf complex satisfying these 
properties will be called an 1s;-complex. There are three main differences 
from intersection cohomology: 

(1) Except for the case of isolated singularities, an 1s;-complex cannot 
be a perverse sheaf complex. 

(2) The IS._-properties do not fix an 1s;-complex of sheaves up to quasi-p 

isomorphism. 
(3) In unison with the other approaches to intersection space cohomol-

ogy, there does not always have to be an 1s;-complex. 

If the intersection space pair exists, then the above complex rs; is an rs; — 

complex. The sheaf theoretic approach is more general, though (see e.g. 
[1, Section 9.1]). Agustin-Bobadilla give necessary and sufficient conditions 
on the existence of an rs;-sheaf complex. Their construction is inductive, 

starting on the regular stratum. In the k-th step, an rs;-complex (rs;)k-l 

on Uk := X ¥ Xn-k can be extended to a complex satisfying the axioms 
on Uk+l if and only if the following distinguished triangle in the derived 
category splits. 

[+1] 
T墨）J匹 (rs;)k-1→j匹 (rs;)k-1→芦 (k)J匹 (rs;)k-1→

The maps ik : Uk'-+ Uk+l and ]k : Xn-k-1 ¥ Xn-k-2'-t Uk are (open and 
closed) inclusions. If this triangle splits, one has to choose such a splitting 
to proceed. The obstruction at each step might, as for the construction of 
the intersection space pairs, depend on all the previous choices. If X is an 
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algebraic variety, Agustin-Bobadilla show that the construction can be lifted 
to the category of mixed Hodge modules on X: If an 1s;-complex exists, 
it is a mixed Hodge module, i.e. its global hypercohomology groups have a 
mixed Hodge structure (see [1, Theorem 8.3]). 

Finding an answer for the Poincare-duality question, raised in Section 2.3, 
does not become easy when using the sheaf theoretic approach. Though the 
Verdier d叫 ofan 1s;-complex is an 1s;-complex ([1, Theorem 10.1]), this 
does not imply global Poincare duality. Agustin-Bobadilla have a partial 
answer for a two strata space Xd of dimension d with singular set Xd-k・If 
an intersection space for a given perversity p exists, the intersection space 
complexes rs; are parametrized by the vector space 

恥：=hom(芦 (k)]kぷik*Qluk,T気 (k)]kぷik*Qu』
(see [1, Corollary 7.6]). An element rs; E Eii is called a GISii or general 
intersection space complex of X with perversity p, if the hypercohomology 
groups of rs; are minimal compared to the hypercohomology groups of all 

complexes in Ep, that is dim (IHii(X, rs;) = mins•EE置(X, s•). Provided 
the existence of such a GI Sp rs;, Agustin-Bobadilla prove that the Verdier 

d叫 ISq:='DISp[-d] is a GI Sq, with ij the dual perversity of p, and that 
there is an isomorphism 

町(X,I況）竺 hom(IHid-i(X, ISqド）
of Q-vector spaces for all i, see [1, Theorem 10.6]. It is not clear, what 
the conditions are that determine the existence of such a GI Sp-complex and 
how it can be constructed. It is interesting to know, whether the intersection 
space of Banagl-Chriestenson in the setting of [5] or the intersection form 
complex OIJ of [4] give rise to GI Sp-complexes. Because of the iterative na-
ture of Agustin-Bobadilla's construction, a generalization of their Poincare 
duality theorem might need a sequence of complexes with minimality condi-
tions for the hypercohomology groups at each step of the construction. This 
seems involved and it might be a good idea to check, whether the complexes 
～・叫 andOJJ of [17] satisfy such minimality conditions, first. 

4.2. Geske's algebraic intersection spaces. In [19], Geske establishes a 
different approach to intersection space homology. He uses a local to global 
technique to construct a chain complex, the homology of which general-
izes intersection space homology and satisfies Poincare duality over com-
plementary perversities, at least if certain duality obstructions vanish. His 
approach is applicable to all compact orientable Whitney stratified pseu-
domanifolds that are contained in a real/ complex analytic manifold. In 
particular, that class contains all complex projective varieties. His starting 
point is the following observation: The (fiberwise) homology truncations of 
[2, 5] are related to the intersection homology groups of the tubular neigh-
bourhoods T of the singular strata. For spaces with isolated singularities, 

with link truncation f : aT匹 (n)→aT, the composition H.(aT図 (n))ム
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H.(BT)→ I Hf (T) is an isomorphism. For the pseudo manifolds considered 
in [5], see Section 2.1, with singular set~of codimension b, the composition 
H.(Jt咽 (b)8T)→H.(BT)→ IHf(T) of (F詞 (b))*and the induced map of 
the inclusion BT c......+ Tis also an isomorphism, see [5, Proposition 6.5]. 

For a more general compact, orientable Whitney stratified pseudomani-
fold X, contained in a real/ complex analytic manifold, the theory of subana— 

lytic sets gives rise to a tubular neighbourhood T of the singular set Sing(X). 
If the stratification depth is greater than one, this tubular neighbourhood 
is not related to the tubular neighbourhoods induced by the Thom-Mather 
control data, a priori. For depth one pseudomanifolds, both notions are sim-
ilar. Geske points out, that one of the obstructions to the existence of an 
intersection space is the surjectivity of the map H.(BT)→ IHf(T) on ho-
mology. In many cases, this map is not surjective, so Geske replaces IH!(T) 

by im (H.(8T)→ I Hf (T)) . He introduces the notion of a p algebraic inter-
section approximation for T, which is a pair (A., J.), consisting of a chain 
complex A. and a chain map J. : A. → C.(BT) such that the composition 

(1) H.(A.)~H.(oT) • im (H.(oT)→I成 (T))

on homology is an isomorphism (with field coefficients for all homology 
groups). Such j5 algebraic intersection approximations always exist, see [19, 
Proposition 4.5]. For two complementary perversitie戸j5and q_ an9 corre-
sponding algebraic intersection approximations (At Jn and (A~, J2), there 

p 竺
is always a local duality isomorphism D: Hr(conef.)→ Hn-r-1(A!). To 
lift that duality isomorphism to the algebraic intersection space cohomology 
groups, the following diagram must be commutative. 

Hn-r-1 (aT) -------+ Hn-r-1 (Ai) 

竺丁 竺『D

Hr(8T) --------+ Hr(cone(JI)) 

Geske calls that the local duality obstructions, which makes sense since 
these obstructions are equivalent to Banagl-Chriestienson's local duality ob-
struction for depth one pseudomanifolds. This follows from [5, Proposition 
6.9] and [19, Proposition 4. 7]. For Witt spaces of even dimension with 
p = ij = in = w the middle perversity, the algebraic intersection approx-
imations to T can be chosen such that this obstruction vanishes, see [19, 
Theorem 4.9]. Globally, Geske defines the algebraic intersection space I PX J. 
with respect to the perversity pas the algebraic mapping cone of the com-

position心→ c.(aT)→ C.(Xげ） with T = T ¥ aT of J! followed by a 
subcomplex inclusion. By a purely algebraic argument, he can then lift the 
local duality isomorphism to a global Poincare duality isomorphism if the 
local duality obstructions vanish. 



162

J. TIMO ESSIG 

Theo:r:_e~4.2.1. [~9,':fheorem 5.1] If the local duality obstructions vanish 
for (A~, J!) and (At J2), there is a non-canonical Poincare duality isomor-
phism 

D: Hr(IJ!X) -=t Hn-r(IJ!X). 

Given the differences between his and Agustfn-Bobadilla's approaches to 
generalizing intersection space homology to pseudomanifolds of stratifica-
tion depth greater than one, Geske calculated the homology groups of both 
approaches for the example of a projective cone of an irreducible degree 
three nodal hypersurface with one isolated singularity. He finds that the 
homology of the intersection space pair vanishes, while the homology of the 
algebraic intersection space does not, see [19, Section 6]. That means that 
the two theories do not compute the same homology. 

The duality isomorphism of Theorem 4.2.1 is constructed by choosing 
sections 

sf :im仇U1tX)→Hr(X -T, BT))→ Hr(I1tX) and 

r~: im (げ(IJ!X)→げ(X¥か）→げ(IJ!X).

Geske proves in [19, Theorem 6.5], that for a Witt space X of even dimension 
n = 2m, there are choices of these sections for p = q = in = r_ri such that 
the signature induced by the Poincare duality isomorphism is exactly the 
Goresky-MacPherson-Siegel signature for intersection homology, see [24]. 

5. OPEN QUESTIONS 

The end of this survey article is a list of open questions concerning inter-
section space cohomology theory. 

5.1. Previously stated questions. In [7, Section 5], Banagl and Maxim 
conclude their paper with four open questions. The first one, asking for a 
sheaf theoretic description of intersection space cohomology, was answered 
in [I]. As was pointed out in Section 4.1, this characterization is not similar 
to Goresky-MacPherson's axiomatic description, though. Banagl-Maxim's 
third question, asking for a canonical mixed Hodge structure on intersec-
tion space cohomology of a complex projective variety, was also answered in 
[1, Section 8]. Note, that since Agustin-Bobadilla's 1s;-sheaf complex de— 
pends on choices and is not canonical, thus, the same is true for the mixed 
Hodge structure on the global hypercohomology. Note also, that there is 
an alternative approach to mixed Hodge structures for isolated singularities 
by Klimczak, covered in [22]. Their other two question, asking for (weak 
and hard) Lefschetz theorems for intersection space cohomology and for a 
generalization on their results of the relation with smooth deformations of 
singularities, have not been answered yet. 
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52 . . Additional open questions. 

(1) To which choices in the splittings of the relevant distinguished tri-
angles of Agustin-Bobadilla corresponds the sheafification of the au-
thor's intersection form complex DIJ for depth two pseudomanifolds 

(sheafified similar to Banagl's construction in [4, Section 6])? 
(2) Is there a de Rham theorem for depth two pseudomanifolds, relat-

ing the de Rham cohomology groups of DJJ and the cohomology 
of Agustfn-Bobadilla's intersection space pairs or is DJJ related to 

Geske's approach? (Geske's and Agustfn-Bobadilla's approach seem 
to be different as mentioned in Section 4.2) 

(3) Do the approaches to intersection space cohomology of [4, 5, 17, 19] 
give rise to GJSp-complexes in the sense of Agustin-Bobadilla (see 
the end of Section 4.1)? 

(4) As mentioned, the de Rham approaches of Banagl and the author 
seem to be related to the de Rham approach to intersection ho-
mology of [12]. But there are various other de Rham approaches 
to intersection homology, see [8], [9], [10, 18] or [11], which moti-
vates the following question: Are there de Rham approaches to in-
tersection space cohomology, comparable to the alternative de Rham 
descriptions of intersection cohomology? In particular, is there an 
approach related to Brasselet-Legrand's (3-bounded forms of [11], 
where the poles of the forms on the singular strata are controlled? 
Does Geske's observation, taking into account the dualized version 
of (1) on cohomology, help to construct such a complex? 

(5) Can Klimczak's and Wrazidlo's fundamental class constructions for 
depth one spaces, inducing a Poincare duality isomorphism via cap 
product, be generalized to the pseudomanifolds considered by Agustin-
Bobadilla in [1]? If so, what are the obstructions for the gluing 
processes and how many cells have to been glued to the space? 
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