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Abstract 

In this note, we relax the hypothesis of the main results in Kellner-Shelah-
Tanasie's Another ordering of the ten cardinal characteristics in Cichon's diagram. 

1 Introduction 

This work belongs to the framework of consistency results where several cardinal invariants 

are pairwise different, in particular those in Cichon's diagram (Figure 1). Though we 

assume that the reader is familiar with this diagram, a characterization of its cardinal 

characteristics is presented in Section 2. It is well-known that this diagram is complete in 

the sense that no other inequality can be proved between two cardinal invariants there. 

See e.g. [BJ95] for details and original references. 

Resent progress in this framework appears in [GMS16, FFMM18, :¥1ej19, KTT18, 

GKS, KST19, BCM, GKMS]. In particular, [KTT18] deals with the method of Boolean ul-

trapowers, used in [GKS] to separate all cardinals in Cicho丘'sdiagram using four strongly 

compact cardinals. This result was improved in [BCM] where it is shown that three 

strongly compact cardinals suffice. In [GKMS] more classical cardinal invariants are sep-

arated simultaneously. 
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Figure 1: Cicho丘'sdiagram. The arrows representさ.The dashed arrows mean add(M) = 
min{b, cov(M)} and cof(M) = max{il, cov(M)}. 
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This survey focuses on Kellner-Shelah-Tanasie's work [KST19], where the consistency 

of an alternative order of the ten values of Cicho丘'sdiagram is proved. Concretely, they 

show: 

(A) Assuming GCH, ifふくふくふく入4 くふ areregular祝 inaccessiblecardinals, 1 

then there is a ccc poset that forces add(N) =心 b=極 cov(N)=ふ， non(M)= 

入4,and cov(M) = c =入5・

(B) Assuming GCH, if邸＜入1<麻くふ＜均くふく向＜ふくふく入6くふく入8く

入， areregular cardinals such that入2is a successor cardinal, 入iis Ni-inaccessible for 

i = 1, ... , 5 and Kj is strongly compact for j = 6, ... , 9, then there is a ccc poset that 

forces 

add(N) =ふ， b=ふ， cov(N)=ふ， non(M)=入4,

cov(M) =ふ， non(N) =入か ＂＝ふ， cof(N) =入8, and c =入，．

In this work, we show how to relax many of the hypothesis on (A) and (B), for instance, 

replace GCH by very specific cardinal arithmetic conditions, show that the hypothesis "岡

inaccessible" is only required for入3,and that入2could also be a limit (regular) cardinal 

in (B). To be precise, we prove: 

Theorem A. Let入1:::; 入2 :::; 入3 :::; ふ beregular uncountable cardinals, and letふ＝入；ふ

be a cardinal. Assume that either 

(i)入2=ふ， or

(ii)ふ＝入戸＜ふ，ふ isN1 -inaccessible, and eitherふ＝ふ or碍0 <ふ．

Then there is a ccc poset forcing add(N) =礼 b=極 cov(N)=ふ， non(M)=入4,and 

cov(M) = c =ふ．

Theorem B. Assume that Kgくふく麻＜入2く厨くふく K5<入4:::; ふく入6くふく

入s<入， suchthat 

(i)ふ，．．．，ふ areas in the hypothesis of Theorem A; 

(ii) for j = 6, 朽... , 9, Kj zs strongly compact and入．＝ ふ； and 

(iii) for j = 6, 7, 8, ふisregular. 

then there is a ccc poset that forces 

add(N) =ふ， b=ふ， cov(N)=ふ， non(M)=心，

cov(M) =極 non(N)=入6, () =ふ， cof(N)=ふ， andc =入，．

These improvements does not demand much changes in the original proofs, actually, 

the only dramatic modification is the construction of small posets, this to avoid the 
hypothesis "N1-inaccessible". In relation to Theorem B (or the method of Boolean ultra-

powers) we show how to weaken the notion COB(0, 入） used in [KTT18, GKS, KST19] to 

the more natural "0-dominating family of size X'(see Definition 2.1(7)), i.e., that Boolean 
ultrapowers preserves such dominating families (by just modifying its size in some cases). 

Details are presented in Lemmas 5.l(g) and 5.2(c). 

1A cardinal入is0-inaccessible if忙＜入 foranyμ く入 andv < 0. 
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Remark 1.1. Any strict inequality afterふcanbe replaced by = arbitrarily, and in such 
case the corresponding strongly compact cardinal can be omitted. For example, if we let 

入j-1 =入j (j = 6, 7, 8, 9) then the strongly compact cardinal K,j can be omitted, while 
入，-j:::;入lO-jis allowed (here入。＝叩．

On the other hand, in [GK::¥1S] it is proved that the large gaps between the cardinals 

on the left side of Cicho丘'sdiagram can be reduced, while separating on the right side. 

However, the strongly compact cardinals are still required for this purpose. 

This paper is structured as follows. In Section 2 we review general notions related to 

preservation of unbounded families. In Section 3 we summarize some technicalities used 

in [KST19] without going too deep into details, e.g., we manage to avoid introducing FAM-
limits, which is the core of the tools in that reference. In Section 4 we prove Theorem A 

and in Section 5 we present further remarks on the Boolean ultrapower method towards 
Theorem B. 

2 Relational systems and preservation 

In many cases, cardinal invariants of the continuum are defined through relational systems. 

Definition 2.1. A relational system is a triplet A =〈X,Y,亡〉 where亡 isa relation 

contained in X x  Y. For x EX  and y E Y, xこyis often read y に—dominates x. 

Fix a cardinal 0. 

(1) A family D <:;;; Y is A-dominating iff every member of X is仁ーdominatedby some 

member of D. 

(2) A family F <:;;; X is A-unbounded if there is匹 realin Y that亡ーdominatesevery 

member of F. 

(3) The relational system A _j_ :=〈Y,X, ;zl〉isreferred to as the dual of A. Note that 
(A_j_)_j_ = A and that F <:;;;Xis A-unbounded iff it is A_j_-dominating. 

(4) For a set M say that y E Y is A-dominating over M if x亡 yfor all X E X n M. 

(5) Say that x E X is A-unbounded over M if it is A _]_-dominating over M, that is, x広y

for all y E Y n M. 

(6) The cardinal b(A) denotes the least size of an A-unbounded family and叩(A)is the 
least size of an A-dominating family. Note that b(A_j_) = il(A) and il(A_j_) = b(A). 

(7) A family D <:;;; Y is 0-A-dominating if, for every E E [X]<9, there is some A-

dominating y ED  over E. 

(8) A family FこXis0-A-unbounded if it is 0-A _]_-dominating, that is, for any H E [Y]<0 

there is some A-unbounded x E F over H. 

(9) A family D <:;;; Y is strongly 0-A-dominating if IDI~0 and, for every x E X, 

l{Y ED: X広y}I< e. 
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(10) A family F~Xis strongly 0-A-unbounded if it is strongly-0-A_1_-dominating, that 

is, IFI~0 and, for every y E Y, l{x E F: x亡 y}I< e. 

Remark 2.2. Fix a relational system A=〈X,Y,亡〉．

(1) The cardinal invariants b(A) and cl(A) may not always exist. Concretely, b(A) does 

not exist iff cl(A) = 1. D叫 ly,cl(A) does not exists iff b(A) = 1. 

(2) Any subset of Y is A-dominating iff it is 2-A-dominating. Likewise, A-unbounded is 

equivalent to 2-A-unbounded. 

(3) If 0さ0'arecardinals, then any 0'-A-dominating family is 0-A-dominating. Likewise 

for unbounded families. 

(4) If 0~2, then any 0-A-dominating family is A-dominating.2 Moreover, if D~Y is 
0-A-dominating family then cl(A)~IDI and 0~b(A). Similar statements hold for 
unbounded families, e.g., if F~Xis 0-A-unbounded then b(A)~IFI and 0~cl(A). 

(5) Any strongly 0-A-dominating family is A-dominating. Likewise for unbounded. 

(6) If 0 is regular and D~Y is a strongly 0-A-dominating family, then D is IDI-A-

dominating, so cl(A)~IDI~b(A). Similarly, if F~X is strongly 0-A-unbounded 
then it is !Fl-A-unbounded, which implies b(A)~Fl~cl(A). 

Inequalities between cardinal invariants are often proved using the Tukey order be-

tween relational systems. If A =〈X,Y,亡〉 andA'=〈X',Y',亡'〉 arerelatio叫 systems,

A さTA'means that there are two maps cp : X → X'and心： Y'→ Y such that, 

for any x E X and y'E Y', r.p(x)ご y'impliesxに心(y'). In this case, the 心—image
of any A'-dominating set is A-dominating, and the cp-image of any A-unbounded set is 

A'-unbounded, thus b(A')~b(A) and cl(A)~ 叫(A'). Say that A and A'are Tukey 

equivalent, denoted by A釘 A',if A さTA'andA'五 A.

Before we present examples, we review the preservation theory of unbounded families 

presented in [CM19, Sect. 4]. This a generalization of Judah and Shelah's [JS90] and 

Brendle's [Bre91] preservation theory. 

Definition 2.3. Say that R =〈X,Y,仁〉 isa generalized Polish relational system (gPrs) 

if 

(I) X is a Perfect Polish space, 

(II) Y = LJeE!1兄 wheren is a non-empty set and, for some Polish space Z, Ye is 

non-empty and analytic in Z for all e E n, and 

(III)こ=U こnwhere〈二〉．n<w ・n < w 1s some mcreasmg sequence of closed subsets of 

X x Z such that, for any n < w and for any y E Y, (亡砂Y= {x EX: x亡ny} is 

closed nowhere dense. 

If IOI = 1, we just say that R is a Polish relational system (Prs). 

For the rest of this section, fix a gPrs R =〈X,Y,亡〉．

2 Any subset of Y is 0-A-dominating; and D C::: Y is 1-A-dominating iff Di= 0. 
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Remark 2.4. 〈X,M(X),E〉さTR,so b(R) ::; non(M) and cov(M) ::; 叩(R).

Definition 2.5. Let 0 be a cardinal. A poset JP is 0-R-good if, for any JP-name h for a 

member of Y, there exists a non-empty H~Y (in the ground model) of size < 0 such 

that, for any x EX, if xis R-unbounded over H then I卜xにi-i.
Say that JP is R-good if it is Ni-R-good. 

Note that 0 < 0'implies that any 0-R-good poset is 0'-R-good. Also, if JP <i: Q and Q 
is 0-R-good, then JP is 0-R-good. 

The notion of goodness is practical to preserve special types of unbounded families in 

generic extensions. 

Lemma 2.6 ([CM19, Lemma 4.7]). Let 0 be a regular cardinal, 入 ~0 a cardinal and let 
IP be a 0-R-good poset. 

(a) If FこXis入-R-unbounded,then IP forces that it is入'-R-unboundedwhere, in the 
IP-extension, ,¥'is the smallest cardinal~ 入

(b) If cf( 入） ~0 and FこX is strongly入-R-unboundedthen I卜"if入isa cardinal then F 

is strongly入-R-unbounded".

(c) lf c'J(R)~ 入thenIP forces that c'J (R)~,\'. 

As a first general example, every small poset is always good. 

Lemma 2.7 ([CM19, Lemma 2.7]). If0 is a regular cardinal then any poset of size< 0 
is 0-R-good. In particular, Cohen forcing C is R-good. 

If 0 is an uncountable regular cardinal then any FS support iteration of 0-R-good 

0-cc posets is again 0-R-good (and 0-cc). Hence, according to the previous lemma, they 
preserve入-R-unboundedfamilies for any 入 ~0, and strongly入-R-unboundedfamilies for 

any入withcf(入） ~0. Such unbounded families can be added using Cohen reals. 

Lemma 2_.8 ([CM19, Lemma 4.15]). If v is a cardinal with uncountable cofinality and 

見＝〈IP'a,②〉a<vis a FS iteration of non-trivial cf(v)-cc posets, then !Pv adds a strongly 
v-R-unbounded family of size v. 

Theorem 2.9 ([CM19, Th~. 4.16]). Let 0 be an uncountable regular cardinal, 8 > 0 an 

ordinal, and let恥＝〈恥，ふ〉a<8be a FS iteration such that, for each a < 8, Q°'is a 
IP°'-name of a non-trivial 0-R-good 0-cc poset. Then: 

(a) For any cardinal v E [0, 8] with cf(v)~0, IP., adds a strongly v-R-unbounded family 

of size v which is still strongly v-R-unbounded in the IP 8-extension. 

(b) For any cardinal入E[0, 8], IP入 addsa入-R-unboundedfamily of size入whichis still 

入-R-unboundedin the IP8-extension. 

(c)恥 forcesthat b(R)~0 and 181~c'J(R). 

In the practice, the converse inequalities of the last item are obtained by constructing 

a 0-R-dominating family of size 181. 
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Example 2.10. We fix some notation. For any fuction b : w→ V'---{0} and h E w竺
denote TI b := I]i<w b(i) and S(b, h) := I]i<w[b(i)]::;h(i). For two functions x, y with domain 
w, x E* y denotes ¥/00i < w(x(i) E y(i)). Denote by idw the identity function on w. 

(1) The relational system D =〈W竺w竺さ＊〉 isa Prs, where xさ*y means ¥/00i < w(x(i) ::; 
y(i)). Note that b = b(D) and D = D(D). Clearly, any ww-bounding poset is D-good. 
Anyμ-Fr-linked poset (see Definition 2.11) isμ+-D-good ([Mejl9, Thm. 3.30]). 

(2) For 1-l <:;; ww denote Lc(w, 1-l) :=〈ww,S(w, 1-l), E*〉whereS(w, 1-l) := uhEH S(w, h) 
(here, w denotes the constant function with value w). It is clear that Lc(w, 1-l) is a 
gPrs. Any v-centered poset is v+ -Lc(w, 1-l)-good ([JS90], see also [Bre91, Lemma 6] 
and [BM14, Lemma 5.13]). 

Whenever 1-l is countable and non-empty, Lc(w, 1-l) is a Prs because S(w, 1-l) is 
凡 in([w]<w)w. In addition, if 1-{ contains a function that goes to infinity then 

b(Lc(w, 1-l)) = add(N) and D(Lc(w, 1-l)) = cof(N) (see [BJ95, Thm. 2.3.9]). More-
over, if all the members of 1-l go to infinity then any Boolean algebra with a strictly 

positive finitely additive measure is Lc(w, 1-l)-good ([Kam89]). In particular, any 
subalgebra of random forcing is Lc(w, 1-l)-good. 

For the rest of this paper, fix凡：= {id戸： n < w}. 

(3) (Kamo and Osuga [K014]) Fix a family£<:;; ww of size~1 of non-decreasing functions 
which satisfies 

(i) Ve E£(eさidふ

(ii) Ve E£(limn→ +oo e(n) = +oo and limn→ +00(n -e(n)) = +oo), 

(iii) Ve E£ ヨe'E£(e+ 1 :S* e') and 

(iv) ¥/£1 E [£]岱oヨeE£Ve'Eど(e':S*e). 

For b, h E ww such that b > 0 and hざ 1,we define S(b, h) =高(b,h) by 

S(b, h) :=旦S(b,he) = { cp EリP(b(n)):ヨeE知く w(lcp(n)I:S h(n)e(n))} 

Let n < w. For心，t.p:w→[w]竺 definethe relation ゆ ►n t.p iff \/k~n(ゆ (k) 芦 t.p(k)),
and define ゆ ► t.p iff ¥/00 k < w (ゆ(k)芦t.p(k)),i.e., • = Un<w • n・Put aLc*(b, h) := 
〈S(b,hidw),S(b, h), • >which is a gPrs where O =£, Z = S(b, hidw) and Ye = S(b, hり
for each e E£. Note that Ye is closed in Z. 

Any v-centered poset is v+-aLc*(b, h)-good ([CM19, Lemma 4.25]). On the other 
hidw 

hand, if b夕 1then any (h, b)-linked poset (see [K014]) is 2-aLc*(b, h)-good 
([K014, Lemma 10]). 

If 区i<w~腐<oo then aLc*(b, h)ゴT 〈N,2竺ジ〉， socov(N) :':'.: b(aLc*(b, h)) and 

i'l(aLc*(b, h)) :':'.: non(N) (see e.g. [KM18, Lemma 2.3]). 

(4) Denote三：= {f: 2<w→ 2<w : Vs E 2<w(sこf(s))}and set Mg:=〈2竺三， Eりwhere
x e f iff l{s E 2<w : x~f(s)}I < N。.This is a Prs and Mg号〈2w,M,E〉,SO 

b(Mg) = non(M) and i'l(Mg) = cov(M). 
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(5) Denote Id :=〈2w,2竺＝〉， whichis clearly a Prs. Note that b(Id) = 2 and il(Ct) = 
C := 2糧 Itis easy to see that any 0-cc poset is 0-Ct-good. 

To finish this section, we review a general notion to preserve D-unbounded families. 

Definition 2.11 ([Mej19]). Let JP be a poset and letμbe an infinite cardinal. 

(1) A set Q~JP is Fr-linked if, for~ny sequence j5 =〈Pn:n < W〉inQ, there exists a 

q E JP that forces I { n < w : Pn E G} I = N。•

(2) The poset JP isμ-Fr-linked if JP = Ua<μ, 凡 forsome sequence〈Pa:a<μ 〉ofFr-linked 
subsets of JP. Whenμ= N。,we write C5-Fr-linked. 

(3) The poset JP isμ-Fr-Knaster if any subset of JP of sizeμcontains an Fr-linked set of 
sizeμ. 

Theorem 2.12 ([BCM]). If l'L is an uncountable regular cardinal then any叫ーFr-Knaster

poset preserves all the strongly l'L-D-unbounded families from the ground model. 

3 Iteration candidates 

The main issue in the construction of the FS iteration for Theorem A is to ensure that 

strongly D-unbounded families are preserved. For this purpose, Kellner, Tanasie and She-

lah [KST19] use the method of FAM (finite additive measure) limits, originally introduced 

by Shelah [SheOO]. 
In the construction of the iteration, it is expected to use JE, the standard a-centered 

poset to add an eventually different real, to control non(M), but it seems that they do 

not have FAM limits. For this reason, Kellner, Tanasie and Shelah used an alternative 
poset that behaves well with FAM limits. 

Definition 3.1 ([KST19, Def. 1.11 & 1.13]). Define the following functions by recursion 
on n < w. 

p.(n) = max { IT払 (k),n+2},

1r.(n) = ((n + 1)弘(nr+l)'
p,(n)n 

a.(n) = 1r.(nr+2, 

M.(n) = a.(n)乞

For each n < w define the normµ~: P(M.(n))→ [O, oo] byµ~(x) = log ( 
M,(n) 

a,(n) M.(n)-lxl) 

国 (M.(n))_= oo). Set the tree T* := Un<w ITk<n M.(k). 

Define lE, ordered by~'as the poset whose conditions are subtrees p~T* such that, 
for some 2 S:: m < w, 

(i) trk(p) > 3m where trk(p) is the stem of p, 

(ii)μ;(p) 2". 1 +¾,for any t E p above trk(p), whereμ;(p) :=μltl ({ i E M(ltl) : Ci E p}). 
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Denote ls (p) : =嘉 wherem is the maximal number satisfying (i) and (ii). 

Lemma 3.2 ([KST19, Lemma 1.17]). The forcing屈satisfiesthe following properties. 

(a) (p. ば .)-linked. In particular, it is CJ-linked and aLc*(b,, p.)-good, where b,(n) := 

(n + l)p.(nt+1. 

(b) It adds an eventually different real in ww over the ground model. In particular, it adds 

an Mg-dominating real over the ground model. 

(c) It is equivalent to some subalgebra of random forcing. In particular, it is Lc(w, 1l)-
good whenever 1l is a countable infinite set of functions that diverge to infinity. 

Now we present the basic structure of the FS iterations that are used to prove the 

main results. 

Definition 3.3. Let 0 be an uncountable regular cardinal. A 0-iteration candidate t is 

composed of 

(I) an ordinal Dt partitioned into two sets St, Rt (some could be empty); 

(II) a FS iteration〈lPt,a,Qt,a : a <入〉；

(III) whenever a E St, Qぃ isa lPt,a-name of a ccc poset of size < 0; 

(IV) whenever a E凡， thereis some lP~,a <£JP t,a such that Qぃ＝＄占，"where $ is either 

random forcing or lE. 

When the context is clear, the subindex t is omitted. 

Note that, whenever t is a 0-iteration candidate and a E S, since JP"'is ccc, we can 

find a ca~dinalµ"'=µ ぃ<0 in the ground model such that JP"'forces I似 I~ μa, so we 

can put Q"'= {知：〈＜四｝．
For the rest of this section, fix an ordinal 8., a partition P :=〈S,R〉ofふ， anda 

regular uncountable cardinal 0. Denote W~:= Ila<o. W和where

w0 0 if a ES, 
P,a := { w<w x {¾: 1~n < w} if a E R. 

The following result is essential to construct iteration candidates that serve our pur-

poses. 

Theorem 3.4 (Engelking and Karlowicz [EK65]). Assume that 0 = 0N。andふ<(20)+. 

Then there is some H*こ吟 ofsize 0 such that any countable partial function from吟
is extended by some member of H*. 

From now on assume that 0 = 0殴ふく (2°)+and that H* is as in the previous 

lemma. 

Consider random forcing 18, ordered by <;;;;, whose conditions are trees T <;;;; 2<w such 

that Leb([T] n [t]) > 0 for any t E T, where Leb denotes the Lebesgue measure on 2w_ 
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For T E IB, denote by trk(T) the stem of T and set ls(T) =¾where mis the maximal 
natural number such that Leb([T]) > (1一嘉）Leb([trk(T)]). 

The main point for the main results is to construct an iteration candidate that produces 

a 0-Fr-Knaster poset, this to ensure the preservation of strongly D-unbounded families. 

In the context of iterations, we need to look at quite uniform△ -systems of conditions to 

deal with such property. The corresponding technicalities are presented below. 

Definition 3.5. Let t be a 0-iteration candidate with 心 ~b., St <;;; S and凡 <;;;R.

(1) For a < b, let JP~be the set of conditions p E JP" such that, for any~E domp, if~E S 

thenp(~) =央，(forsome (<µ€; if~E R then p(~) is a JP~ —name (not just a JP°'-name) 
and both trk(p(~)) and ls(p(~)) are already decided by pぽ； and furthermore 

ど］喜＜一．
1 

2 
€€町domp

It is shown in [KST19, Lemma 2.34] that JP~is dense in JP a・ 

(2) Say that j5 =仇： i <'Y〉isat-uniform△ -system if it satisfies: 

(i) Pi E闘

(ii) there is some m < w such that domp; = {い： k<叫 (increasingenumeration); 

(iii) there is some vこm such that, for any k E v, the sequence〈O!i,k: i < "(〉 is

constant with value aぃ

(iv) if k E m'--v then the sequence〈O!i,k: iくぅ〉 isincreasing (hence, 〈domp;:i <'Y〉
forms a△ -system with root { ak : k E v}); 

(v) there is a partition m = s Ur U e such that, for any iく 'Yand k < m: a;,k E S 
IP' a,,k. 

iff k E s; and k E r iff Q。,,k= ]8V' 

(vi) for any k E r U e, the sequence〈(trk(p;(a;,k)),ls(p;(a;,k))): iくぅ〉 hasconstant 

value (tk, 咋）；

(vii) for any k E s n v there is some (k such that p; (a砂＝り叫kfor any iく 'Y-

It is not hard to see that a t-uniform△ -system j5 determines a partial function hfi 

゜in'¥p with domain ui<,domp; such that h(a;,k) = (tk五） when k E r U e, and 

p;(a;,k) =似，k,(h(ai,klwhen k E s. Given h E H*, say that j5 follows h if hp <;;; h. 

In the following result we consider the existence of a class At of good iteration can-
didates, whose elements are iterations that match our goals. This class is not formally 

defined in [KST19] but instead it is clarified how such good iterations are constructed using 
FAM limits. In the result below, corresponding to the main technical lemma in [KST19], 

we try our best to summarize the important features of the good iterations without re-

ferring to the central notions of FAM limits at all. 

Theorem 3.6 ([KST19, Lemma 2.39]). There is a class At of 0-iteration candidates such 

that 

(a) the trivial candidate t。withbt。=0 is in Aぶ；
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(b) if t EAぶthen6t ::; と,St c;;; Sand凡 c;;;R; 

(c) if t EAぶ， r5= r5t E S and Q is a JP8-name of a ccc poset of size < 0, then t+ E A~ 
where t+ is the natural 0-iteration candidate that extends t such that 6t+ = 8 + 1 and 

Qい，8= Q; 

{d) if t EAぶ， 6＝心 ER,AこJP8and$ is either lB or E, then there is some t+ E A~ 
JP' 
t+,ii 

extending t such that AこlPし，8'IJPし』::;max{IAI, ey。,and Qt+ ,8 = 5;v ; 

(e) in addition to the above, if〈tt: T/く叫 isa sequence form A~such that位=r5 + 1, 
t,., extends t (using the same $ at 8) and JP'C JP'whenever~< TJ < w1, then tt,8 - tす，6

t+ E A~where t+ is the iteration candidate extending t such that 6t+ = 8 + 1, 
lPい=U,.,<w, JP臼，8and Qt+ ,8 is defined using the same $. 

(!) if 8~ ふislimit and〈ta:a< 8〉isa sequence of iteration candidates in Aぶsuch
that 61" = a and t/3 extends ta whenever a < /3 < 8, then the natural direct limit of 
〈ta:a< 8〉belongsto A~; 

(g) if t EAぶandp=〈Pn・ 〉. f ・n < w is a t-uni orm△ -system, then there is some q E JP 0. 

that forces l{n < w: Pn E G}I =~。•

As a consequence, good iteration candidates are 0-Fr-Knaster, as desired. 

Corollary 3.7. !ft EA~then JP8 is 0-Fr-Knaster. 

Proof. Assume that {Pi : i < 0}~JP8. It is possible to find an increasing function 
g:0→ 0 such that {Pg(i) : i < 0} forms at-uniform△ -system. Hence, by Theorem 3.6(g), 
this family is Fr-linked. ロ

4 The main results 

Now we are ready to prove Theorem A. Like in [KST19], we require the additional 
hypothesis入5::::; 2入2 to make sense of Theorem 3.6 (because it relies on Theorem 3.4), but 
afterwards it is shown how to get rid of this requirement. 

The case入2=ふofTheorem A can be solved by very standard methods from [Bre91] 
without good iteration candidates. The argument below can be imitated to prove this 

simpler case, just ignore (3) and (3') and, in (4) and (4'), use small models as in (1),(1') 
and (2),(2'). 

Theorem 4.1. Assume that入1::::; ふ＝壻くふ三ふ areuncountable regular cardinals, 
letふ bea cardinal such thatふ＝入；心::::;2入2 and eitherふ＝ふ or入炉＜ふ， andassume 
thatふ is岡 inaccessible.Then there is a FS iteration of ccc posets that adds 

(a) a strongly 0-Ri-unbounded family of size 0 for any regular入:::;0さふ andi < 4, 

where凡 =Id,入。=2, R1 = Lc(w, 凡）， R2= aLc*(b*, p.), and R3 = D; 

(b) a strongly 0-凡-unboundedfamily of size 0 for any regular 0 E {ふ}U(碍0,ふ],where 

R4 = Mg; 



11

(c} a入i-Ri-dominatingfamily of sizeふforany i < 5. 

In particular, this poset forces add(N) = 心 b=極 cov(N)=極 non(M)=入4,and 

cov(M) = c =畑

Proof. Let W be the model obtained after adding入5-manyCohen reals. Fix b, =ふ心
(ordinal product) and a partition〈sk: 1 ::; k ::; 4〉of入5.Put S := {入f3+p:f3<心， pE

S1 uふ},R := {入f3十 p:/3 <入4,p E S3 Uふ}and P :=〈S,R〉.Using Theorem 3.6, 
we construct an iteration candidate t E A伐oflengthふsuchthat, for t =入5/3+ p with 

/3く心 andp <ふ：

(1) if p E S1 then Q€ = JL()CN, (localization forcing) where N€, in W.>-5/3 = WIP亨， isa 

transitive model of (a large fragment of) ZFC of size <>.1; 

(2) if p E S2 then Q€ = IDN, (Bechler forcing) where N€, in W.>-5r,, is a transitive model of 

ZFC of size<ふ；

(3) if p E S3 then JPE <:: JP E has si,r,eくふ and紐=JBWP~; and 

~ P' 

(4) if p E S4 then JPE <:: 恥 hassize :::; 碍oand QE = Ew ". 

Furthermore, the models NE and the subposets JPE are constructed such that, for any 

Bく心：

(1') if FEW入s/3is a subset of ww of sizeく心 thenthere is some NE with~= ふ{3 + p 

(as above) such that p E S1 and F~Niが

(2') if FEW入s/3is a subset of ww of sizeく心 thenthere is some NE with~= ふ{3 + p 

such that p E S2 and F~NE; 

(3') if A E W入s/3is a family of Borel null sets of size <ふ， thenthere is some~= 入5/3 + p 

such that p E S3 and all the members of A are coded in WIP伍

(4') if FEW入s/3is a subset of ww of sizeくふ， thenthere is some~= 入5/3 + p such that 

p E S4 and F~W1Pe. 

Using standard counting arguments and Theorem 3.6, we can construct such at. We prove 

that JP:= Cふ*lPt,J. is as required. For (a), we show that the first 0-many Cohen reals 
form a strongly 0-R;-unbounded family, in the JP-extension, for any regular入：：：：： 0::::: ふ
The case i = 0 is quite obvious; when i = 1, 3, JP is入i-R;-good(see Lemmas 2.7 and 3.2, 

and Example 2.10), so the desired family is strongly unbounded by Theorem 2.9; when 

i = 2, see Theorems 3.6 and 2.12, and Corollary 3.7. 

For (b), since the iteration has cofinality A4, it adds a cofinal sequence of Cohen reals 

of length入4,which is a strongly入4-R4-unboundedfamily. Now, if碍0<ふ， thenall the 

iterands are posets of size :::; 対0,hence JP is (対0t-R4-good(see Lemma 2.7). Thus, for 

any regularや<0 ::::: ふ， thefirst 0-many Cohen reals form a strongly 0-Rrunbounded 
family by Theorem 2.9. 

We finish with (c). The case i = 0 is again trivial (witnessed by the family of all the 

reals in the final extension). The other cases are similar, we show the case i = 2 as an 

example. By (2) and (2'), it is easy to see that {d13,P: /3 <入4,p ES叶formsa入rR2―

dominating family where each d13,P is the D-dominating real over NE (with~= 入5/3 + p) 

added by紐．ロ
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Theorem 4.2. If入戸＝入2then the assumption入5さ2入2 in the previous theorem can 

be omitted. 

Proof. Assume入；入2 =ふ andか＜ふ. Let JR := Fn<入2(ふ Xふ，2). Note that JR is 
＜入rclosedand has入rec,so it preserves cofinalities and forces that the hypothesis of the 

previous theorem holds. 
Denote the ground model by V and V':= VIR. It is clear that any ccc poset in Vis 

also ccc in V'. On the other hand, by Easton's Lemma, if Q is a ccc poset in V then JR 
is <..¥rdistributive in VQ, hence WW n vIRxQ = WW n VQ, 

In V, defineふ，〈sk: 1 ::::: k ::::; 4〉andP =〈S,R〉asin the previous proof. In 

W:=V叫， byrecursion, we define an iteration candidate t of lengthふsuchthat (1)-(4) 
and (1')-(4') of the previous proof hold, and such that I卜岱 tEA芦Though we construct 

tin W, Theorem 3.6 is used in W':= VIRx叫 toensure that t E A }2. Let~= ふf3 + p 

where f3 < ..¥4 and p <ふ， andassume that t has been constructed up to~- Limit steps are 

easy since it is enough to take the direct limit; when p E S, we can define QE arbitrarily 

as in (1) and (2) of the previous proof; the interesting case is when p ER. 

We show the case p E S3 (the case p E S4 is similar). Start with JP~<,: 応 ofsize 

＜ふ containinga small family of codes as in (3') of the previous proof. By applying 
Theorem 3.6(d) in W', there is some JP1 <,: JPE of sizeくふ suchthat JP0こJP1and that E E E 

pl 
W'i; further iterating with lB yields an iteration candidate in A憐Recallthat the reals in 

W':= W'IP1; are the same as those in Wt:= WIP1;_ Therefore, in W, since JRY has ふ—cc,
E 

we can find JP~<,: 凡 ofsiヽeくふ suchthat, in W', JPl~]Pr Repeating this argument 
(and taking unions at limit stages), construct a~ —increasing sequence <JP~: T/く叫 of

complete subposets of JP E of sizeくふ suchthat〈庁： TJ <叫 EWand, in W', when the 
IP研 +1

iteration so far is extended one step by lB W'" , it is in A憐Put]PE := LJr,<w, JP:". Thus, 
]PE <,: 恥 belongsto W, it has sizeくふ， andby Theorem 3.6(e) the iteration extended 

by lB W'P~= lB wJP~(though in W) belongs to枠 inthe model W'. This finishes the 

construction. 

The same argument to prove (a), (b) and (c) in the previous theorem works, with the 
exception of the strongly 0-D-unbounded families for any regular 0 E [極ふ].In W', like 

in the previous proof, we have that the first 0-many Cohen reals { Ca : a < 0} (which are 
in W) form a strongly 0-D-unbounded family in Wt. It remains to show that the same 

holds in W0 •. Let y E ww n W0 •. In Wt, we have that l{a < 0: Caぐ y}I< 0, and since 
this set is in W0., the same holds in this model. ロ

5 Further remarks on Boolean ultrapowers 

The following result summarizes the properties of Boolean ultrapowers used in [KTT18, 

GKS, KST19] to separate cardinal characteristics, with the exception of property (g). 

The latter is an observation of the author. 

Lemma 5.1. Assume that t,, is a strongly compact cardinal and that 0 is a cardinal such 
that 0代=0. Then there is a complete embedding j : V→ M such that: 

(a) M is transitive and M<" CM. 
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(b) K = min{a E On: j(a) > a} (the critical point of j). 

(c) For any cardinal 入 ~K such that either 入 ~0 or入K =入， wehave max{入， 0}~

j(入） < max{入,0}土

(d) If a is a set of size < K then j(a) = j[a]. 

(e) If入>K and I is a <入-directedpartial order, then j [ I] is co final in j (I). 

(f) If cf(a)ヂKthen cf(j(a)) = cf(a). 

(g) If A=〈X,Y,<;;;;〉isa relational system and D <;;;; Y is >.-A-dominating, then 

(i) if入 <K then j(D) is 入—j(A)-dominating; 

(ii) if K, く入 thenj[D] is 入—j(A)-dominating. 

Proof. Let A be the Boolean completion of the poset Fn<,.(0, K). As in [KTT18], there 
is an ultrafilter on A such that its Boolean ultrapower yields a complete embedding 
j: V→ M satisfying (a)-(f). We show (g) (though technicalities are referred to [KTT18]). 

Let E <;;;; j(X) be a set of size <入 If入 <K then E E M by (a), and since M 戸j(D)
is 入—j(A)-dominating" , we can find a z E j (Y) such that w j (亡） z for any w E E. This 
shows that j(D) is入-j(A)-dominating. 

Now assume Kく入.Any w E Eis a mixture of K-many possibilities <x~: a<沿EX八
Now, since {x悶： w E E, a < K} has size <入， thereis some y E D A-dominating over 
this set. This implies that j(y) is j(A)-dominating over E, which shows that j[D] is 
入-j(A)-dominating. ロ

This method of Boolean ultrapowers works to preserve and modify strong unbounded 
families and also certain type of dominating families. Though in the original framework 
from [KTT18, GKS, KST19] they preserve a very strong type of dominating family (the 
property COB), we show in item (c) that a weaker type of dominating families is preserved. 

Lemma 5.2. Assume that _j: V→ M is a complete embedding satisfying (a), (b), (d)-
(g) of the previous lemma. Let JP be a v-cc poset with v < K uncountable regular, and let 
A =〈X,Y,亡〉 bea relational system where X, Y are analytic (or co-analytic) subsets of 
some Polish space, and亡<;;;;X x Y is also analytic (or co-analytic). Then 

(a) [KTT18, GKS] j(JP) is v-cc. 

(b) [KTT18, GKS] Ifμis regular and JP adds a stronglyμ-A-unbounded family of sizeμ, 
then so does j (JP). 

(c) If JP adds a入-A-dominatingfamily of size~X then 

(a) if入<K then j(JP) adds a入-A-dominatingfamily of size引J(x)I;

(b) if K, く入 thenj(JP) adds a入-A-dominatingfamily of size~lxl-
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Proof. Property (a) is immediate from Lemma 5.l(a). For (b), see e.g. [GKMS]. We 
show (c). Let X* be the set of nice JP-names of members of X, and set Y* likewise. 

Note that j(X*) coincides with the set of nice j(lP)-names of members of X, likewise for 

j(Y*) (by Lemma 5.l(a)). On the other hand, j[X*] is eq叫 tothe set of nice j (JP)-
names of members of j[X], likewise for j[Y*]. For±E X* and iJ E Y*, define± 亡*iJ iff 

1トIP出亡り， andset A*:=〈X*,Y*,仁〉.Note that, for u E j(X*) and v E j(Y*), uj(口）も
iff I卜j(IP)U亡 v.

Assume that D = {iJ17 : T/ < x} is forced by JP to be a入-A-d . ommatmg family. It 
is easy to see that iJ is入-A*-dominating. Hence, Lemma 5.1 (g) applies: if入<,,,, then 

J(D) is 入—j(A*)-dominating, which means that j(JP) forces that j(D) is入-A-dominating

(of size :S: IJ (x) I); if ,,,, く入 then{j(iJ11) : T/ < x} is 入—j(A*)-dominating, which means that 

j(JP) forces that {j伽）： T/ < x} is入-A-dominating(of size :S:lxl). ロ

Theorem 5.3. {爪<K,g <入1<店く入2<均くふく向＜入4:s: ふく柚くふく入s<

入， suchthat 

(i} for j = 6, 7, 8, 9, ,,,,j is strongly compact and炉＝

(ii}入;is regular for iヂ5,9, 

伽）入戸＝ふ，碍0 =ふ，入貸＝ふ， and

(iv}ふ is岡 inaccessible,

then there is a ccc poset that forces 

add(N) =ふ， b=ふ， cov(N)=ふ， non(M)=心，

入J' 

cov(M) =極 non(N) =入も () =ふ， cof(N) =入8, and c =入，．

Proof. Use the ccc poset constructed in Theorem 4.2 and apply Boolean ultrapowers 

accordingly as in [KST19]. We omit all the details, but we remark that, instead of property 

COB, we can just preserve or modify dominating families thanks to Lemma 5.2(c). ロ

Remark 5.4. In [KST19], also for the corresponding results in [KTT18, GKS, BCM], 

the authors put quite an effort to construct (strong) dominating families satisfying COB 

through the iteration. But thanks to Lemma 5.2(c), we can work with a weaker and 
more natural type of dominating family, so the construction becomes as simple as in 

Theorem 4.1. 
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