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YORIOKA'S CHARACTERIZATION OF THE COFINALITY OF THE 
STRONG MEASURE ZERO IDEAL AND ITS INDEPENDENCY FROM 

OF CONTINUUM 

MIGUEL A. CARDONA 

ABSTRACT. In this paper we present a simpler proof of that no inequality between 
cof(SN) and c can be decided in ZFC using tecniques and results well known. 

1. INTRODUCTION 

Borel [Bor19] introduced the new class of Lebesgue measure zero subsets of the real 
line called strong measure zero sets, which we denote by SN. The cardinal invariants 
associated with strong measure zero have been investigated. To summarize some of the 
results: 

Theorem A. The following holds in ZFC 

(i) (Carlson [Car93]) add(N)さadd(SN),
(ii) cov(N) :s; cov(SN) :s; c, 
(iii) (Miller [Mil81]) cov(M) :s; non(SN) :s; cov(N) and add(M) = min{b, non(SN)}, 
(iv) (Osuga [Osu08]) cof(SN) :S: 2~. 

Moreover, each of the following staments is consistent with ZFC 

(v) (Goldstern, Judah and Shelah [GJS93]) cof(M) < add(SN), 
(vi) (Pawlikowski [Paw90]) cov(SN) < add(M), 
(vii) (Yorioka [Yor02]) c < cof(SN) (from CH), 
(viii) (Yorioka [Yor02]) cof(SN) < c, 
(ix) (Laver [Lav76]) cof(SN) = c. 

To prove (vii) and (viii) Yorioka give a characterization of SN, to do this he introduced 
the u-ideals巧parametrizedby increasing functions f E w竺whichwe call Yorioka ideals 
(see Definition 2.1). These ideals are subideals of the null ideal N and they include 
SN  and SN= n切： f E ww increasing}. Even more, he proved that cof(SN) = i)" 
(see Definition 2.2) whenever add(石） = cof(功） = K for all increasing f. But Yorioka's 
original proof assumes add(勾） = cof(巧） = i) = cov(M) = K for all increasing f, but i) 
and cov(M) can be omitted since add(N) :s; minadd :s; add(M) and cof(M)さsupcof:s; 
cof(N) (see [Osu08, CM19]). 

In this work, we provide a simpler proof of the result. 

Main Theorem (Yorioka [Yor02]). Let K, v be an infinite cardinals such that~1 :s; K = 
K<" < v = v" and assume that入isa cardinal such that K さ入＝炉0• Then there is some 
poset Q such that lf-q add(N) = cof(N) = K, cof(SN) = i)氏=v and c =入

This result give the consisteny that values value cof(SN) may be less than c. 
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2. PROOF THE MAIN THEOREM 

We first start with basic definitions and facts: 
Let K be an infinite cardinal. Let f, g E炉.Set f :::;* g廿ヨa<K'v/3 > a(f(/3):::; g(/3)). 

Denote pow k : w→ w the function defined by powk(i) := ik, and define the relation≪ 
on ww as follows: f≪g iff'vk < w(f o powkざ g).

Definition 2.1. For a E (2<wt define 

[a]00 := {x E 2w: ヨ00n< w(a(n)こx)}= n u [a(m)] 
n<wm砂

and ht(j E ww by h島(i):= la(i)I for each i < w. Let f E ww be a increasing function, 
set 

I1 :={Xi;;;; 2w: ヨaE (2<w)w(Xこ[a]00and hび ≫f)}.

Any family of the form功 iff increasing is called a Yorioka ideal, since Yorioka [Yor02] 
has proved that巧isa a-ideal in this case, and SN= n{勾： f increasing}. Denote 

minadd = min{ add(巧）： f increasing}, supcof = sup{ cof(石）： f increasing} 

Definition 2.2. Let K be a regular cardinals. Define the cardinal numbers b,., and cl,., as 
follows: 

b氏 =min{IFI:Fi;;;; 炉 &'vgEK勺fE F(fダ g)}the (un)bounding number for炉

and 

cl,.,= min{IDI: Dこ炉 &'vgE炉ヨfE D(g :::;* f)} the dominating number for炉

In particular, when K = w, b,., and ()氏 areb and () respectively, well known as the 
(un)bounding number and the dominating number. 

Set Fn<,.,(J, J) := {p i;;;; Ix J : IPI < Kand p function} for sets I, J and an infinite 
cardinal K. 

Lemma 2.3. Let v, K be uncountable cardinals such that K<" = K and v > K. Then 
Fn叫 VX K, K) Iト(),.,2: V. 

Proof. Let {} < v and let {ぬ： a < {}} be a set of Fnくん(vx K, K)-names of functions in 
k氏. Since Fnくれ(vX K,K) is (K<ん）+ = K+ -cc we can find a subset S of v of size < v such 
thatぬ isa Fn(S x K, K)-name for each a < {}_ 

Claim 2.4. Fn<,.,(K, K) adds an unbounded function in炉 overthe ground model. 

Proof. Let G be a Fn<,.,(K, K)-generic set over V. Let c := c0 = LJ G E炉 bethe real 
generic added by Fn叫 K,K). Assume that f E炉 nV. We will prove that fダ c.To see 
this, for aく K,define the sets Da := {p E Fn<,.,(K心）：ヨ/3> a(p(/3) > f(/3))} which are 
dense, so G intersects all of these yielding Vaく代ヨf3く a(c(/3)> f(/3)). ロ

By Claim 2.4, Fn<,.,(v x K, K) forces that the K-Cohen real at some~E v "-S is not 
dominated by any互ロ

As mentioned in the introduction that add(N) :::; minadd :::; 叫 d(M)and cof(M) :::; 
sup碩：：：：： cof(N) (see [Osu08, CM19]) we can reformulate Yorioka's characterization of 
cof(SN) as follows. 

Theorem 2.5 (Yorioka [Yor02]). Let K be a regular uncountable cardinal. Assume that 
K = minadd = supcof. Then cof(SN) = cl,.,. 
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To prove our Main Thereom we need to preserve i'l" for Ii regular. The following result 
show one condition under it can be preserved. 

Lemma 2.6. Let Ii be a regular uncountable cardinal. Suppose that JP is a Ii-cc. Then 
1 トJP()~= 囮

Proof. It is enough to show that JP is応 bounding1because Ii凡boundingposets preserve 
囮 Let允bea JP-name for a member of炉.We prove that Va < Iiヨz(a)< ii(IトIPx(a) < 
z(a)). Fix any aく Ii.Towards a contradiction, assume that ¥/ (3 < IiヨP/3E lP(p13 IトIP(3 :S 
出(a)).

Claim 2. 7. Assume that JP is Ii-cc and {pa : a く Ii}~JP. Then there is a q E JP such 

that q I卜l{a<Ii: Pa E G}I = Ii. 

Proof. To reason by conしradictionassume that IトIPI { a < Ii : Pa E G} I < ii. Let /3 be 

a JP-name such that Iト/3E Ii and { a < Ii : Pa E G}~(3. Fix a maximal anti chain 

A deciding (3 and a function h : A→ Ii such that p I卜h(p)= (3 for all p E A. Set 

'Y := suppEA h(p) < Ii. since Ii is regular and JP is応 cc,'Yく Ii,so戸{a < Ii : Pa E G}こT

But P,+1廿'Y+ 1 E { a < Ii : Pa E G}~'Y, which is a contradiction. ロ

By Claim 2.7, we can find a condition q E JP such that q I卜l{/3く K,: P/3 E G}I = Ii, so 
there are a r :S q and iJ < Ii such that r Iトカ(a)= iJ, even more, we can findsさrand

c > iJ such that s I卜PsE G. Hence s I卜x(a)= iJ < E :S x(a) because Ps I卜c:S x(a) 
which is a contradiction. 

For a < Ii set z E ii" such that IトlPわ(a)< z(a). This z work. ロ

Now we are ready to prove the Main Theorem. 

Proof of the Main Theorem. In V, we start with JP。:= Fn叫 vx Ii, ii). Note that JP。is
此 ccand < ii-closed. Then I卜lP。i'l"= 2" = v by Lemma 2.3. 

In VIP。,let JP1 be the FS iteration of amoeba forcing of length入Ii.Then, lf-JP1 add(N) = 
cof(N) = Ii and c =入.In particular, add(SN) = non(SN) = Ii and minadd = supcof = 

Ii. On the other hand, cov(SN) = Ii because the length of the FS iteration has cofinality 
Ii (see e.g. [BJ95, Lemma 8.2.6]). Therefore, IトlPiadd(SN) = cov(SN) = non(SN) = Ii 
and cof(SN) = i'l" = v by Theorem 2.5 and Lemma 2.6. ロ

3. OPEN PROBLEMS 

Very quite recently, the author with Mejia and Rivera-Madrid [CMRM] constructed 
a poset forcing non(SN) < cov(SN) < cof(SN). This is first result where 3 cardianl 
invariants associated with SN  are pairwise different, but its still unknown for 4, so we 
ask. 

Question 3.1. Is it consistent with ZFC that add(SN) < non(SN) < cov(SN) < 
cof(SN)? 

In a work in progress, the author with Mejia and Yorioka have improved methods and 
results known from [Yor02] to prove the consistency of cov(SN) < non(SN) < cof(SN). 
However its still unknown the following problem. 

Question 3.2. Is it consistent with ZFC that add(SN) < cov(SN) < non(SN) < 
cof(SN)? 

1 A poset JP is 1,, 凡 boundingif for any p E JP and any JP-name i: of a member for炉， thereare a function 
zE炉 andsome q~p that forces i:(a)~z(a) for any a< 1,,. 
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The method of K,-uf-extendable matrix iterations, introduced recently by the author with 

Brendle and Mejia [BCM], could be useful to answer the question above. For example 

they constructed a ccc poset forcing 

add(N) = add(M) < cov(N) = non(M) < cov(M) = non(N) < cof(M) = cof(N). 

In the same model, cov(SN) = cov(N) < non(SN) = non(N) by Theorem A and 
because this model is obtained by a FS iteration of length with cofinality v (where v is 

the desired value for non(M)), and it is well known that such cofinality becomes an upper 

bound of cov(SN) (see e.g. [BJ95, Lemma 8.2.6]). But it is unknown how to deal with 

add(SN) and cof(SN) in this context. 
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