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Abstract

++

In this paper, we prove that Yu < « (KK+ ) - ( ’ﬁ) is consistent with 2" = x**
K

for singular .

1 Introduction

Definition 1.1 (Erd6s—Hajnal-Rado [2]). For any cardinals ko, k1, o, A1, 6,

()= ()

K1 A1 0

means for any c : ky X k| — 0, there are Hy € [ko]" and H, € [k " such that
c I Hy X H\ is a constant function.

We say (KO) - (10) iff vo' < 6 (KO) - (/10) . For this partition relation, we are
K1 )y K1 A1)y
interested in the case of kg = Ag and k1 = A;. But if kg > 2 then (:(l’) — (fl’) is
<cf(k1)
obviously satisfied. In addition, (i) - (:) fails for every «. Therefore we consider a
2

coloring on kg X k1 where k is in between «} and 2“!.
For such coloring, the following theorem is known.

Theorem 1.2 (Sierpinski [9] for k = w; Erdés—-Hajnal-Rado [2]). For any infinite
cardinal k, if 2¥ = k¥,
«t Kt
(K ) i (K )2 '
Let us consider the following question.

Question 1.3. How about polarized partition on k* X k under the assumption 2 = k*?

.
Note that (KK ) - (i) is the maximal form under the 2 = «*. For large 1, we
<cf(x)
.
ask whether (KK ) - (ﬁ) is consistent with 2¥ = x* or not.
<cf(x)
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In the case of « is a limit cardinal, the following are known.

Theorem 1.4 (Baumgartner—Hajnal [1]). If « is weakly compact, then

()= (.

Theorem 1.5 (Erdos—Hajnal-Rado [2]). If « is singular of cofinality w, then

()= C)..

Theorem 1.6 (Shelah [8]). If k is singular limit of measurable cardinals, then

— .
“ K/ <ef)
On the other hand, for successor cardinals, the following consistency result is
known.

Theorem 1.7 (Jensen). In L, for every infinite «,

Kt 2
()~ 2).
K
In fact, Weak Kurepa Hypothesis over «* gives a such coloring. For successors of
regular cardinals, a positive polarized partition is also known:

Theorem 1.8 (Laver [5]). If k is regular below some HUGE cardinals then there is a
k-directed closed poset P which forces that

+ . . + +
We will prove that we can force 2 = x** without destroying (KK+ ) — (:+) as
K
++

+ +
lemma 3.5. So it is consistent that ('j(+ ) - (;) with 2 = k**. Therefore a case of
K

successors of regular cardinals is solved. However, the following is still open.

++

N
Question 1.9. Is it consistent that (KK+ ) - (:}) for singular «?
K

As a partial answer for this question, we will show the following theorem.

Theorem 1.10. If k is supercompact below HUGE and 2* = k*, there is a poset which
forces that

Pans u
e () (),
2. «k is strong limit singular,

302K = gt



22

2 Polarized Partition and Saturated Ideal

In this paper, if we say that / is an ideal over «*, I denotes k*-complete non-principal
ideal over «*.

Definition 2.1. An ideal I is (A, i1, k)-saturated if and only if for every X € [I*]%, there
isaY € [XV such thatVZ € [Y]* NZ e I".

Note that k-saturation is (k, 2, 2)-saturation. So this is an extended concept of satu-
ration property.

Theorem 2.2 (Laver [5]). If 1is HUGE and k < A is regular, then there is a k-directed
closed P which forces that there is a (k**, k™", k)-saturated ideal over k*.

Laver’s polarized partition theorem is shown by using (k**, x™*, k)-saturation prop-
erties. We give a direct proof of Laver’s theorem.

Theorem 2.3 (Laver [5]). If 2 = «* and there is a (™, k™", k)-saturated ideal over

K, then
()= ()
+ )= +) -
K K X
Lemma 2.4. Suppose that 2 = k* and (X, | @ < «k**) € <" ([«*]€) satisfies VX €

[ 10 Ngex Xol = k7). Then thereisa Y € (k™1 such that | Neey Xol = «*.

Proof. Let ¥ be sufficiently large regular and let M < Hy be an elementary substruc-
ture such that:

o |M|=«".

e kT+1C M.

° X_a, KteM.

e M is closed under the taking x-sequence. i.e. “M C M.

e 6 = M Nk* is an ordinal.

This M can be taken because we have 2 = x*. Note that § has cofinality «* since
M closed under the taking «-sequence. We construct a sequence (8; | £ < «*) and
(ag | € < k™) by the following way:

® o = minX(;.
e Sy = the least y € ¢ such that o) € X,.
® ay=min(),« Xg, N X5 \{ay [ m < &L

e fBs =theleasty € 6\ sup{B, | n < &} such that {a;, | n < &} C X,



This construction will be succeed. In every stage, a; can be defined by |,z X, N
X;| = k*. Bz can also be defined in every & < k. By construction, we have {a, | <
&} € Xs. By assumption for M, we have 8 := sup, ., < 6 and {e,, | n < &} isin M.
By elementarity of M,

MEZ3Y >Bla, I n<éC Xy

So we can take B¢ as .
As conclusion, let Y := {8 | £ < «*}, then

fae | €<k} C ﬂxﬁfzﬂxa.

E<kt acly
So we have | (Ney Xaol = «*. O

Proof of Theorem 2.3. Let I be (k™*,k**, k)-saturated ideal over k*. Let ¢ : k** Xk* —
k be an arbitrary coloring. For every @ < «**, by k-completeness of /, there is an 7,
such that X, = {£ <« | c(@, &) = n,} € I*.

For simplicity, we may assume that there is an 77 such thatn, = n forall @ < «**. By
(k**, k**, k)-saturated, we may assume that YX € [k ]((Npex Xo € I7). In particular,
MNaex Xq 18 of size «* for every X € [«7F]* .

By lemma 2.4, we can pick Hy € [«**]*" such that H; := Maet, X is of size k™.
We have ¢ | Hy X H; is monochromatic with color 7. O

Remark 2.5. We can proof more strong form of theorem 2.3. In fact, under the same
assumption, we can take Hy € [k**]* and H, € [k*1¥ such that ¢ | Hy x H, is
monochromatic for every ¢ : k™t X k* — k and ordinal @ < k**.

Definition 2.6 (Garti [3]). For any family A C P(A),
1. Coloring c : k X A = 0 is A-amenable if and only if

Va < kdnp < 63X € ANVE € X c(a, é) =1).

2. (:?) -4 (/;?) says that for every A-amenable coloring c : ko X k| — 0, there
0

are Hy € [ko]™, Hy € [k;]Y such that ¢ | Hy x H, is monochromatic.
The above lemma gives a polarized partition for amenable colorings:

Corollary 2.7. If2* = «* and A C [k*] has k*-completeness(or every intersection
++

N
of k-many sets in A have size k*), (KK+ ) -4 (;) holds.
K

) et () hotds

++

In particular, (l;+

Proof. By the similar proof of Theorem 2.3. m|

Theorem 2.8 (Garti [3]). If2™ = K, holds, then

Nz 32
(Nl) 7L>Club(81) (Nl)z .

23
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By these observations, we have
. . N
GCH implies ( ) P Club(¥) ( ) bUt( ) = Club(¥) (N:)x
0

Question 2.9. Is it consistent that there is a (k**, k™, k)-saturated ideal over k* for
singular k?

3 Proof of Main Theorem

Definition 3.1. We say that P satisfies (), if and only if there is a (F, | n < k) such
that F, is k-directed and P = U, /F,.

Here, X is «-directed iff every subset of X of size < « have a common extension.
Cleary, (*), implies x-c.c. Many Prikry-type forcing satisfies (x),. (%), poset preserves
saturation property for ideal over k* as follows.

Lemma 3.2. For regular cardinals u < k, suppose that

1. There is a (k**, u, u)-saturated ideal I over k*.

2. Pis a poset which satisfies (x), and preserves u < k and k.
Then
P\ I generates (k**, 1, j1)-saturated ideal

Proof. Let (F, | n < k) witnesses to (*),. Let I be a P-name which denotes an ideal
generated by 1.

Since P has the «*-c.c., P forces [ is k*-complete.

Consider a p and (X, | @ < «™) such that

prX, el

It is enough to show that there is a ¢ < p such that ¢ - AH € [k (,ey X € I*.

Foreach a < k" ,p < k, let Al == {¢ < «* | Ag e F (g < pAq Wk &€ X))
Since [, As € I" and I is k*-complete, there is an 7, such that A" € I". And
Aq := A" Then there are Z € [k**]" and 5 < « such that 57 = 1, for all @ € Z. By the
(k**, u, p)-saturation for I, we can pick H € [Z]¥ such that (e Aq € IT.

Claim 3.3. For every & € (\oey Aa» there is a q < p such that q v & € Nocrr Xo-

Proofof Claim. By the definition of A,, for each @ € H, we can pick g, € I, such that
go F & € X,. Since each ¢, are in IF,, there is a g < g, for every a. g is an extension of
p and forces that £ € N,y Xo m]

We show that there is a ¢ < p which forces that (,.;; X, € I. Consider a set
A={g<plIdZ,elgWr ﬂaeHX cZ 4)}. Note that A is the set of all ¢ < p which
forces (M ,enr X, is I-measure zero. Let A C A be a maximal antichain below p. By the
k*-c.c., A has size at most k. S0 Z := |J,en Z, is also I-measure zero.

Therefore ((,eyg Ae) \ Z # 0. Pick & € (ﬂ%H Ay) \ Z, by claim, thereisa g < p
which forces that £ € M,.;; X,. Cleary, g is incompatible with any element in A. By
the maximality of A, g I N,ez3 Xy € I*. O
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Corollary 3.4. In V¥, (KI::) — ( :*) holds.

K
Proof. Let G be an arbitrary (V,P)-generic. We discuss in V[G]. Let I be an ideal
generated by 1. By lemma, [ satisfics (**, u, p1)-saturated.

Take any coloring ¢ : k™ X k* — k. For each @ < «**, there is a 7, such that
X, = {€ <k | c(a, &) = 1y} in I*. We may assume that there is an 7 such that 77, = 7
for every @ < «**.

By the saturation property of I, there is an Hy € [k ]# such that H; := Naer, Xa €
I, Trivially, ¢ | Hy X Hy is monochromatic with color 7.

O

Lemma 3.5 (Folklore). Suppose that (KI::) - ( /fi) holds for some pu < k** and 2" >

k**. Then there is a poset P such that
1. P forces 2" =, and ('::) — (:i) ,
K
2. P preserves all cardinals below k*™.

Proof. LetP := coll(x**,2*"). Note that P is k**-closed. Cleary P forces that 2¢" = x**.
It is enough to show that P preserves polarized partition relation. Let p € Pand ¢ € V*
be such that:
plrc: kKT XK >k
By induction on @ < «*, we define a sequence (p, | @ < «**) and coloring
f:ktT Xkt — k such that:

e (p, | @ < k™) is decreasing sequence in P and py < p.
o po (&) = f(,8) for every & < k.

+4
By «**-closedness, we can construct this sequence. By ('} ) — ( Ifi) , there are Hy €
K

[«**1* and H; € [«*]* such that f | Hy x H, is monochromatic.
Let a := (sup Hy) + 1 < «**. Then

PoFC T 1170 x Hy = f I ﬁo x H; is monochromatic.
O

We recall about Prikry forcing in [7]. For a normal ultrafilter U over «, Prikry
forcing Py is [«]°“ X U ordered by {a, A) < (b, B) iff a is an end-extension of b (i.e.
aNmax(b) =b), A C Band a\ b C B. Prikry forcing preserves all cardinals but forces
that cf (k) = w.

Lemma 3.6. Py satisfies (x),.

Proof. For each a € [«]*, let F, := {{a,A) | A € U}, which is «-directed. Cleary,
P= UuE[K]<‘“ ]Fa' O
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Proof of Theorem 1.10. First, by Laver’s theorem and indestructibility for supercom-
pactness, there is a poset P which forces that there is (k™*, k**, k)-saturated ideal over
«* and k remains supercompact.

In V¥, Let Q be a P-name which denotes Prikry forcing over . By Q satisfies that

(+), in VF and lemma 3.2, VP2 = Yy < ('::) - (Iﬁi) holds and ¢f(x) = w. Further,

by lemma 3.5, we can forces that 2 = «** without destroying polarized partition

relation. So this proof is done. O

Lemma 3.7. Ifk is supercompact below HUGE, then there is a poset which forces that
1. ('j::) . (K{)K for every A < «,
2. 24 =k,
3. «k is strong limit singular with uncountable cofinality.

Proof. Note that Magidor’s forcing in [6] satisfies (x),. We can do the same proof for
theorem 1.10. o

Lemma 3.8. Suppose that there is a (™, k™", k)-saturated ideal over k™ and k is su-
percompact, 2 = k*. Then there is a poset which forces that

Nw+2 Nn
1. (le) - (N“’”)Nw foreveryn < w,
2. k=N,

3. Mot = No+2.

Proof. Let U be a normal ultrafilter over k and j : V — M be an elementary embedding
induced by U. By 2¢ = «*, there is an (M, Coll((k**)M, < j(k)))-generic G in V. Then G
induces a Gitik’s forcing in [4] which forces k = N,,. Note that Gitik’s forcing satisfies
()« We can do the same proof for theorem 1.10 again. O

Note that we don’t need a HUGE cardinal to give such a polarized partition over
N 1 X Nz.

Lemma 3.9 (Zhang [10]). Suppose that there is a presaturated ideal I over k*. For

everyn < w,
Kt n
—
(KJr K K.
n

In particular, if there is a presaturated ideal over N\ then (:?) - (31) for every
No

n< No.

Proof. Let G be an arbitrary (V,P)-generic and j : V — M C V[G] be generic ultra-

power induced by G.
Since I is presaturated, we have
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e crit(j) = k.
o jk*) = ()",

Let ¢ : k"% X k™ — k be an arbitrary coloring.
Let A := j’«x**. |A] = («*)Y. Since cf((x**)") > k, we can take unbounded subset
B C A and n < « such that

Vé € B(j(O)E (M) = ).

Pick any finite sequence j(By), ..., j(B,—1) € B. Note that (B, ...,8,_1) € V.
We construct a sequence (g | € < «*) below («")V by induction. Suppose that
(g | € < i) has been defined. Let @ := SUPg., Xg < k*. In M, the following holds:

" > a A Vi < n(je)GB), «HY) = jm).
So M | AL > aVi < n(j(c)(j(Bi), () = j(n)). By elementarity,
A > aVi < n(c(B;, ) =n).

Let a;, be defined as such {.
Cleary, ¢ [ {8 | i < n} X {ag | £ < k*} is monochromatic. |

The same proof shows the following lemma.

Lemma 3.10. Suppose that there are presaturated ideal I over «* and regular u < «
such that {I*,C) is u*-Baire. Then
()= (),
K

Remark 3.11. In [10], Zhang proved it is consistent that (:T) — (NO

8 ) fails but there
1 No

is a presaturated ideal over N.
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