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Abstract

We represent a consistency proof of a partition relation studied by S. Todorcevic. We make use of a
so-called side condition method. We also report that a type of morass negates this partition relation.

Introduction

By [T], it is consistent that the partition relation wy — (w1, (w1;fin w1))2 holds. This means that for
any function f : [w1]? — {0, 1}, either there exists a cofinal 0-homogeneous subset of w; or there exists
(A, B) such that

e A is a cofinal subset of wy,
e B3 consists of finite subsets of w; such that min[B] = {min(b) | b € B} is cofinal in wy,
o If (v, b) is such that a € A, b € B, and o < min(b), then there exists 3 € b such that f({a,3}) = 1.

By [AM], a new type of iterated forcing with side condition is found. In this paper, we force the partition

relation along the line of this new method of iterated forcing. By [M], a type of (w, 1)-morass is forced. We
report that this type of morass negates the partition relation.

The length of the iterated forcing in this paper is restricted to ws. In particular, it is the case that
2% = wsq. Is it possible to construct any longer iteration in this context ?

§1. 0-Amalgable Coloring

We find the following mathematical idea in [T], though it had no name.
Definition. Let f : [w1]? — 2. We say f is 0-amalgable, if for any (A, B) such that
e A is a cofinal subset of w;.
e B C [w1]< such that min[B] = {min(b) | b € B} is cofinal in wy.
there exists 0 = dap < wy such that for any b € B\ d, there exists o € AN J such that for all 3 € b,
Let f : [w1]?> — 2 be O-amalgable. Let B C [w1]<* be such that min[B] is cofinal in wi. Let x be a
regular cardinal with £ > (2¢)*. In particular, the power set P(w) € Hguy+ C Hy.

Lemma. Let Ny € Ny € --- € Ny, be a finite €-chain of countable elementary substructures of (H,, €).
Let Be Ny and b= {f1 < B2 < --- < B} € B be such that

NiNwp <G <NoNwy <P <+ < N Nwyp < B

Then there exists a tree T € N; such that T consists of sequences of countable ordinals that are <-increasing,
of length at most k, for each t € T with its length less than k, {3 < w1 | t™(8) € T'} is cofinal in w, and for
each t € T such that its length equals k, rang(t) € B.

Proof. By induction on k < w.

C

Lemma. Let Ny € Ny € --- € Ng, B, b, and T € N; be as above. Let us further assume that f € Nj.
Then there exists ((1,C2,+ -+, k) € Tk N Ny such that f[{¢i, ¢, -+, C} = {B1,02,---. B} = {0} and so
{¢1.Gy . G} € BN Ny, where X : Y = {{z,y} | z € X,y € Y} for sets of ordinals X < Y.
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Proof. We opt to be less formal so that we see better what is actually going on. Let A; = {¢1 | (1) € T}
Then A; € Nj is a cofinal subset of wy. Since f is 0-amalgable, there exists (¢1) € 71 N Ny such that

F{G.B81}) =0, f({G,B2}) =0, -, f({¢,B}) =0.

Let Ao = {{2 | (¢1,¢2) € To}. Then Ay € N; is a cofinal subset of wy. Since f is 0-amalgable, there
exists (2 such that (¢1,(2) € To N Ny and

J({G.81}) =0, f({¢B2}) =0, -, [f({C,B})=0.

By repeating this argument k-times, we finally get ((1,¢2,-+,Ck) € Tk N Ny such that for all | =
1,2,---,k, we have

FHGAY) =0, f({¢B)) =0, -, F({G,8}) =0.
Since {¢1,C2, -+, Ck} € BN Ny, we are done.

We formulate a second-order treatment of proper posets. Predense subsets are used to formulate generic
conditions.

Definition. (Second-order) Let x be an uncountable regular cardinal and P be a poset such that
P C H, and P has the k-cc. Let N be a countable elementary substructure of a relational structure

(H.m €7P7 <p, 1P7HH n VPv {(pa Taﬂ) | prP “r = 7(”}).

We say ¢ € P is (P, N)-generic, if for any predense subset D of P with D € N, DN N is predense below q.
Lemma. (Second-order) Let ¢ € P and N < (H,;, €, P,---) be as above. The following are equivalent.
e ¢ is (P, N)-generic.
o ¢l pEN[GINHY = N".
o ¢|Fp“N[G]NKk=NNK
Here, N[G] = {re, | TeNNVPY.
If P € H,, then (P,<p,1p) € N < (H,,€) iff N < (Hg,€,P,---). In this case, ¢ € P is (P, N)-generic
iff for any dense subset D € N of P, D N N is predense below g.

Definition. (Second-order) Let x be an uncountable regular cardinal and P be a poset such that
P C H, and P has the s-cc. Then we say P is proper, if for any p € P, {N € [H,]* | there exists ¢ < p
such that ¢ is (P, N)-generic} contains a club in [H]*.

We design a poset with a side condition that forces a generic cofinal 0-homogeneous subset of wy. To be
proper, the side condition has to be structured. While giving up a preservation of wy, we may simply assume
that they form an €-chain. This formulation suffices for applying the Proper Forcing Axiom (PFA) or the
Bounded Proper Forcing Axiom (BPFA). Here, we present a version of poset that satisfies a reasonable chain
condition. To iteratively force later, we implicitly formulate similar, but not exactly the same, posets that
are more dependent on objects in the intermediate stages.

Definition. (Two sorted version) Let f be 0-amalgable. Let p = (MP, NP, AP) € P(f), if
e (cover) MP is a finite set of countable elementary substructures of a relational structure (Hy, €).

o (structured) NP C MP is a finite f-symmetric system of countable elementary substructures of (H,, €).
By this we mean

o (el) If N € NP, then f € N < (Hy, €).



e (ho) If Ny, Ny € NP with N7 =,, Na, then there exists a (necessarily unique) isomorpism ¢y, N,
from (Ni, €) to (N2, €) such that ¢y, n, is the identity on the intersection Ny N Ny, where X =, Y
abbreviates X Nwy; =Y Nws.

e (up) If N3, No € N? with N3 <., Na, then there exists Ny € NP such that N3 € N; and Ny =, No,
where X <, Y abbreviates X Nw; <Y Nwj.

° (down) If N1, No, N3 € NP such that Ny = Ny and N3 € Ny, then ¢N1N2(N3) e NP,
e AP is a finite 0-homogeneous subset of wy w.r.t. f.

o (separation) If N € NP and AP \ N = {{; < & < -+ < &} with k > 2, then there exists an €-chain
{M; € My € --- € My} C MP such that

e M;=N.
e MiNwi <& < MoNwp <& <o < M Nwy <&
We simply say that an €-chain that starts with N and followed by elements of MP? separates AP \ N.

e For p,q € P, let ¢ <pin P, if M9 D MP, N9 D NP and A? D AP.
Notation. Let P be a poset such that P C H,, and P has the x-cc. For the sake of concise presentation,

P’s order relation <, a greatest element 1, P-names, and relevant forcing relations are omitted in relational
structures. Hence we understand that a structure (H,, €, P) abbreviates a structure

(He, €, P, <, 1,H.NVE {(p,7,7) | plp “T ="} N Hy, ).

Lemma. (1) P(f) C H, has the (2¥)T-cc.
(2) P(f) is proper.
(3) There exists p € P(f) such that p|-ps) “A=J{A? | p € G} is a cofinal 0-homogencous subset of w;”.

Proof. For (1): Let {p; | i < (2*)"} be an indexed family of conditions of P(f). Let N; be a countable
elementary substructure of (H,, €) such that f,p; € N;. By thinning, we may assume that {N; | i < (2¥)T}
forms a A-system and that for any i < j < (2¥)", APi = APi, (N;, €, f,p;) and (Nj, €, f,p;) are isomorphic
such that the isomorphism is the identity on the intersection N; N N;. Let

g = (MPUMPI NP UNP AP AP ),

Then ¢ € P(f) and ¢ < p;, p; in P(f).
For (2): Let p € P(f) and p € N < (H,, €, f, P(f)). Let
pN = (MPU{N},NPU{N}, AP).
We show that this pN is (P(f), N)-generic. To this end, let D € N be a predense subset of P(f). Let

g < pN,d € D, g <din P. It suffices to find h™ € P(f) and d € DN N such that h* < ¢,d’. Let
g =A%\ N.

Case 1. g, = (): Then A7 € N. We have
(Hy, €. f,P(f)) = “There exists (¢, d') s.t. ¢ in P(f),d € D, ¢ <d,N"NN C N9, and A9 = A9
Hence there exists (¢/,d’) € N as such. Let
ht = (MIUMT UMFT NTUNT UNT, ATU AT,

where
Mt = {¢nn(M) | M € MY N' € N, N' =, N},
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Nt ={onn (W) | W e N, N € N9, N' =, N}.
Then h* € P(f), Mh" = MIUM*, NP = NTUN+, AP = A7 = A7 and h* < q,¢.
Case 2. 0, # (): Let us define B such that ¢ € B, if
o 0 € [w]lodl.
e There exists (¢/,d') such that ¢’ € P(f), d € D, and
e N9 N C N,
e AN N gets end-extended by A7
o0 =A7\ (AN N).
Then 0, € B € N and min(oq) > N Nw;. By lemma, there exists o/ € BN N such that flo’ : o] = {0}.
Since ¢/ € BN N, there exists (¢’,d’) € N such that
¢ € P(f), d € D.
e NN N CN7.
AN N gets end-extended by A7
o o/ = A7\ (47N N).
Let

Wt = (MIUMT UM NTUNT UNT, ATU AT,

where
MT = {onn/ (M) | M € MT N € N'N' =,, N},

N = {ow (W) | W € N7 N' € NN =, N},
Then h™ € P(f) and h™ < q,q'. Hence D N N is predense below pN in P(f).

. For (3): We make use of the properness of P(f). Take a countable elementary substructure N such that
Ae N < (Hi e, f,P(f)). Let

p:({N}~{N}{NmW1}) S({N}v{N}v(D)S (@,@,@)

Then p € P(f) and p is (P(f), N)-generic. Hence p [-p(s)“N Nw1 € A e N|G] =., N”. Hence p I=pes) “A
is cofinal below w1”.
C

We see, say under BPFA, that every 0O-amalgable function has a cofinal 0-homogenous subset of wy.
This expressed as follows.

Corollary. Let us assume BPFA, then w; — (wl, (w1 ; ﬁncul))2 holds.

Proof. Let f : [wi]> — 2. If f is O-amalgable, then apply BPFA to P(f)[p. We get a cofinal
0-homogeneous subset A of w; w.r.t. f.

If f is not O-amalgable, then there exists (A, B) such that A is a cofinal subset of wy, B C [w1]<* such
that min[B] is cofinal in w1, and that for any § < w, there exists o5 € B such that min(os) > ¢ and for all
a € ANJ, there exists G € o5 with f({a,ﬁ}) =1.

Let C = {y < w1 | v is a limit ordinal, and Vd < 7,05 < v}. Then C is a closed cofinal subset of wy.
Let A’ be a cofinal subset of A such that for any distinct two elements oy < g of A’, there exists v € C
such that o1 < v < ag and 80 04, < a2 < 04,. Let B = {{a} Uos | a € A'}. Then B’ C [wi]<¥ is an
uncountable disjoint finite subsets of w; such that for any (o, o) such that o € A’, o € B/, and o < min(o),
there exists 3 € o such that f({c,8}) = 1.



§2. Iteration

Let K = wy in this section. We start with the ground model V' where CH and 2*!' = w9 hold. Let
® : wy — H,, be a bookkeeping function. We force w; — (wl, (w13 ﬁnwl))2 over V. We use Aspero-
Mota type iteration such that for all & < wy and for all p € P11, we demand that

NP(a) ={N e NP | NSPa}

is P<q-symmetric. This in turn limits lengths of iteration at the longest to ws.

Definition. Let a < ws. Let (P, | n < @) be a sequence of posets such that for each n < o, P, C H,,,
and has the ws-cc. Let us form a relational structure

P<& = (HUJ2~, 67@7 <<PT7 | n < 0[>>),
where we code
(Py|n<a))={(m.p)|n<apeP}C Hy,.

This structure includes the P,’s order relations, the greatest elements, the names VP H,,, relevant
forcing relations, say, {(p,7, ) | p|-p, “r =77} N H,,,, but omitted to mention for the sake of conciseness.

Definition. We recursively construct a sequence of posets (P, | @ < ws). Let o < wo and suppose we
have constructed (P, | n < «) such that for each n < «

e P, C H,, such that (ob), (symmetric), (), and (g) for 7 are satisfied.

e P, has the wa-cc.

e P, is proper in the following manner.

(Lemma (main) for ) If ¢ € P, such that S7(N) = N N7 and N gives a rise to a countable elementary
substructure of P<, that is written as

N =< ,PSW = (Hw2767®7p’07<<PC | C < 77)))7

then ¢ is (P,, N)-generic.
(Lemma (N-extension) for n) Let p € Py, p € N < Py, and

g = WP U{N},SPU{(N, Q) | ¢ € NN}, A7),

then g € Py, ¢ < pin P,, and S7(N) = NNn. Hence, if furthermore N < P<,,, then ¢ is (P,, N)-generic.

Now we form P,. Let p = (NP, 8P, AP) = (N, S, A) € P,, if the following (ob), (symmetric), (*), and
(g) are satisfied.

(ob)
e N is a finite set of countable elementary substructures of a relational structure

(szv G, ‘1))

such that the following (el), (ho), (up), and (down) are satisfied. We may refer A as a finite ®-symmetric
system.

o (el) If N € NV, then (N,€ N (N x N),® N N) (this simply denoted as either (N, €,®) or N) is a
countable elementary substructure of (H,,, €, ®). Denoted as

N < (H,,,€,®).
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e (ho) If Ny, No € N with Ny Nwy = No Nwq (this denoted as Ny =,, N2), then there exists a
necessarily unique isomorphism

AN, N, : (N1, €, @) — (No, €, @)

such that ¢, n, is the identity on the intersection Ni N Na.

e (up) If N3, Ny € N with N3 Nwy; < No Nw; (this denoted as N3 <., Na), then there exists
N1 € N such that N3 € Ny and Ny =, Na.

e (down) If N3, No, Ny € N such that N3 € Ny and Ny =,,, N, then ¢y, n,(N3) € N.

Ny~ No

\ |
Ny~ on v (Ns)

e S is a relation from N to a (i.e., S C N x «) such that for all N € N, S(N) = {n < a | NSn}is
an initial segment of a N N.

e A is finite relation from « to wy. For & < a, write A(¢) = {( | (AC} (intended as a finite 0-
homogeneous set w.r.t. a bookkept Pe-name ®(€) s.t. p[€|p, “@(€) : [w1]? — 2 is 0-amalgable”.)

(symmetric) For all < o, we demand N (n) = {N € N | NSn} is P<,-symmetric. By this we mean
the following (el), (ho), (up), and (down).

(el) If N € N(n) (this denoted as N.Sn), then
N < Pey = (Huy, €, 9, Py, ((Pe | £ <1))).
(ho) If N1Sn, NoSn s.t. N1 Nwy = Na Nw; (this denoted as N1.Sn =,,, N2Sn), then
(N1, €,0, Py, ((Pe [ € <)) ~ (N2, €8, Py, (P | € <))

by the isomorphism ¢, n,-
(up) If N3Sn, NaSn s.t. N3Nwy < NoNw; (this denoted as N3Sn <., NaSn), there exists Ny € N ()
such that N3 € Ny and N1Sn =, NaSn.
(down) If N1.Sn =, NoSn, N3Sn and N3 € Ny, then ¢, n, (N3)Sn.
NiSn ~ NaSn

| |
N3Sn ~  ¢én,n, (N3)Sn

() If £ € dom(A) and p[¢ € P, then ®() is a Pe-name such that p[¢|p “®(§) : [wi]> — 2 is
O-amalgable and A(¢) is 0-homo w.r.t. ®(£)”, where for any triple p = (N, S, A) and any ordinal £, we
define
plE = (V€ STE Afe),
NTE =N (unchanged),
S[e={(N.n) [ n < &(N.n) € S},
Ale={(n,¢) | n <& () € A}
(g) If £ € dom(A), N € N(¢) and |A(¢) \ N| > 2, then an €-chain that starts with N and followed by

elements of M(§) = {M € N' | MS[MNE], M < P<¢} separetes A(§)\ N, where M S [M N¢] abbreviate
MN¢C{n| MSn}. Notice that M(&) 2 N(E).

For p,q € Py, ¢ <pin P,, if N4 D NP, S92 SP and A7 D AP.



The following two lemmas confirm that we indeed have an iterated forcing of length o < wy.
Lemma. (Projection) Let p < a < ws. Then p € P, — p[p € P, is a well-defined function.
(order-preserving) If ¢ < p in P,, then ¢[p < p[p in P,.

(reduction) If p € P, and h < p[p in P,, then hp = (N, Sh U SP, Ah U AP) € P,, hp < p in P, and
hp[p = h.

Proof. To show that p[p € P, and hp € P,, we check the list of items (ob), (symmetric), (x), and (g)
corresponding to P, and F,, respectively. The checking is routine.

I

Lemma. (Complete suborder) Let p < o < wy. Then P, is a complete suborder of P,.
(suborder) P, C P, and for p,q€ P,, g <pin P, iff ¢ <pin P,.
(incompatibility) If p,q € P,, then p,q are incompatible in P, iff p, ¢ are incompatible in P,.
(self-comparison) If p € Py, then p < p[p in P,.
(reduction) If p € P, and h < p[p in P,, then h and p are compatible in P,.
(Generic Objects) Let G, be Py-generic over V. Let Go[p={p[p | p € Go}. Then
GNP, =G.[p
is P,-generic over V.

Proof. To show that any p € P, is in P,, we check the list of items (ob), (symmetric), (*), and (g)
corresponding to P,. The point is that any initial segment of X N p is so in X N a. The checking ought to
be trivial.

We now establish the wo-cc that assures a second-order treatment of the poset P, .
Lemma. P, C H,, has the ws-cc.

Proof. Let (p; | i < ws) be a sequence of conditions of P,. For each i < ws, pick a countable elementary
substructure

Ni = P<a = (Hw27€7@7 <<P77 | n < Oé>>)
such that p; € N;, where we code
(PyIn<a))={(p)|n<apecPh}

This structure includes the order relations, the greatest elements, the names, and relevant forcing relations,
but omitted to mention by our convention.

By CH, we may assume that {NN; | i < ws} forms a A-system. We may also assume that N; and N; are
isomorphic such that the isomorphism is the identity on the intersection N; N N;. Let

ht = (sz UNPi SPiy SPi, APi UAPJ)_

Then ht € P, and h* < p;,p; in P,.

To further study P,, we similarly form a relational structure with a distinguished predicate for P,

Pga = (Hw27€,®,PQ,<<Pn | N < Oé>>)

Here is a typical use of this structure. It turns out that it has a natural “expansion” in any generic
extension. Notice that G, is available as a predicate.
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Lemma. Let us write wy = & for short. If N < P<, and Gy, is Py-generic over V, then in V[G,]

N[Go] < (HYC= e, HY @, Gy, P, ((Py | 1 < @))).

Proof. (Out-line) For any formula ¢(vy, - -, vx), find a formula ¢*(v, vy, - - -, v) such that for any p € P,
and any 7 -+, T, € Vha,

plp, “(HY9) €, HY | ®,Ga, Po, (Py | 1 < @) | “6(r1,--,70)""
iff
PS(X = (HNV 67 cbvpntv <<P77 ‘ n < a>>) ': “d’*(pa Tiy e >Tk)”'
A crux of the matter is the maximal principle of P,-names in H, and an observation
Up, (Y6 €,000) | 3y (6, m) = 6,7, m)

Hence no N-generic conditions are necessary. It is the same as in proper forcing.

C
Similarly, we have
Lemma. Let us write wp = & for short. Let N < P<, and p € N Na. Then
N < (Hy,€,®,P,, Po, (P | 1 < a))).
Let G, is Py-generic over V. Then in V[G))]
N[G,] < (HY€) e, HY 8,G,, Py, Pa, (P | 1 < a))).
C

Lemma. (N-extension) Let p € P, and p € N < P-,. Let
PN = (NPU{N},SPU{(N,n) | n € NNa}, A7),

Then pN € P, such that pN < p and SPN(N) = N Na.

Proof. Just check the list of items. Note that if n < o and n € N < P.q, then ®(5) € N < P<,, holds.
=

Here is a crutial technical lemma to form an amalgamation of ¢ and ¢’ with a common head % in all
cases (successor stages, all limit stages) in the proof of lemma (main). This is where the following functions,
provided Kk = wa:

If N=, N and a € NN N'Nwsy, then NNa=N'Na.

The proof is basically a diagram-chase. However, it involves many cases to argue. There are, say, 3 x 3
cases for (up) and 3 x 3 x 3 cases for (down). Some of them have 3 subcases to argue. In the chase, we take
compositions of isomorphisms. And it is important to remember the isomorphisms are unique no matter
how we compose them.

Lemma. (Technical) Let ¢ € Py, S9(N)=NNa,and pe NNa. Let ¢ € P, N. Let h < q[p,¢'[p
in P,. Let us denote the strong-sup of N Na by ay. Namely, ay is the least ordinal 7 such that N Na C .
And so p < ay < a. Define
S=S8"usiusTuUST,



where S* = {(¢nn/(W),n) | p <1 < an, N' € N(n), N' =, N,W € N (n)}.

NS ~ NSt
\ |
WSy ~ onn (W)STy

Then
o S(X)={¢| XSC} is an initial segment of X N« for each X € A",
o S[p=25"

e Tor each n < a, {X € N | XSn} is P<,-symmetric. Namely, it satisfies (el), (ho), (up), and (down)
with respect to
(szf €, (I)vp’m <<PE ‘ £< 77>>)

Proof. Since it is a lengthy diagram-chase, here we just observe that for any X € N, S(X) is an initial
segment of X Na. To this end, let XSy and ¢ € X N7. We want to show X S(. We specifically pick up the
case X Stn. If ¢ < p, then

NSt~ N'Sh¢
\ \
WSh¢ ~ X =¢nn(W)S"¢

and so X SC.

If p < ¢, then
NS¢~ N'S4¢
| |
WSI¢ ~ X =¢nn(W)ST¢

and so so X.SC.

Lemma. (MAIN) If p € P,, SP(N) = NN, and N < P<q, then p is (Py, N)-generic.

Proof. Let us write wy = & for short. Let D C P, be predense in P,. We want to show that D N N is
predense below p. Let ¢ < p in P, and d € D such that ¢ < d. It suffices to find ¢/ € P,"N,d € DN N,
and ht € P, such that h* < ¢,¢’ and ¢’ < d’. We argue by induction on a.

Case 1. a = 0: Notice that ¢ = (N7,0,0) € Py. We have
P<o = (Hy, €.+, Po,-++) |= “There exists (¢, d') s.t. ¢ in Py,d' € D,¢’ <d in Py, NTNN C N,

Now
D,N?NN e N < Pcg.

Hence there exists (¢’,d’) € N as such. Let
ht = (NTUNT UNT0,0),

where N+ = {¢xn/ (M) | N' € N9, N' =,, N, M EN‘Z/}. Then h* € Py, N"" = N9UN*, and h* < ¢,

Case 2. a = o+ 1: We assume that o € dom(A7), since case o ¢ dom(A9) is similar and simpler. Let
Ga be Py-generic over V with g[a € Gy We argue in V[Gy]. Since S9*(N) = Nna and N < P<,, we
have N[G,] N HY = N by induction.

Subcase. A%(a) C N: Then A%a) € N. In (H,‘;,/[G"h67~~~7G(,7P,y,P(H_1,~~~)7 there exists (¢/,d’)
such that

¢ in Pay1,¢[ain Ga,d € D¢’ <d in Payy, N9N N C N7, o€ dom(A?), Aql(a) = Al(a)”.
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Since
aaDquvaAq(ﬂ) EN[Ga] = (Hr‘a/[Ga]vEv"'vGa7Pa7Pa+17"‘)7

there exists (¢',d’) € N as such. Let h € G, such that h < g[a, ¢’ [a. Let
Rt = (N", 8" USTU ST USH, AU ATU AT,

where ST = {(¢oxn/(W), @) | N' € N(a),N' =, N,W € N (a)}.
Then h*t € P,i1, h[a = h, and hT < ¢,¢'. Notice that the strong-sup of (o + 1) N N satisfies
(a+1)y = a+1, as o € N. Hence if we set p = v € NN(a+1), then the interval of stages [p, (a+1)y) NN =
[a,a+ 1) = {a} holds in lemma (technical).
Subcase. A9(a) ¢ N: Let 04 = {& < & <+ < &} =A%)\ N. Let us define B such that o € B, if
there exists (¢’,d’) such that
e ¢ €Pyi1,¢[aeG,,d €D, and ¢ <d'.
e NiNN C N9

A7 (@) end-extends A9(a) N N.
o 0 =A@\ (A%(a) N N).

Then ®(a) is a P,-name such that ®(a)q, @ [wi]? — 2 is O-amalgable, ®(a)g,,B € N[G,] and
o4 € B\ N[G,]. If k > 2, then o0, is separated by an €-chain starting with N and followed by elements
of {M | M € N9, MSIM nNal, M < P<y}. Hence o, is separated by an €-chain starting with N[G,] and
followed by elements of {M[G,] | M € N9, MSIM N «a], M < P<o}. Hence there exists 0/ = {(1 < (» <
-+ < (i} € BN N such that ®(a)q, [0’ : 04] = {0}. Since o’ € BN N, there exists (¢/,d’) € N as such. Let
h € G, such that h < g[a,¢'[a. Let

ht = (WM S USTUST USH AR U ATU AT,

where ST = {(¢nn (W), @) | N' € N9(a),N' =, N, W € N7 (a)}.
Then h* € Poiq,
AMT = AP U {(a,d) | i € A%a) U A7 ()},
htla=h,and ht < ¢, q.

Case 3. cf(a) = w: Let p € N Na be such that dom(A?) € p. Then ¢[p € P,, SI°(N) = N N p,
and N < P<,. Let G, be P,-generic over V with ¢[p € G,. We argue in V[G,]. By induction, we have

NG, N HX = N. Since (H:-,/[G”], €,-,Gp, Py, P, ) knows
“J(¢,d')st. ¢ in Py,q'[pin G,yd € D¢ <d ,NNNC ./\/'q/,dom(Aq’) cp’,

and
p, D,NTNN € NG| < (HYICA €, Gy Py Pay---),

there exists (¢',d") € N as such. Let h € G, with h < ¢'[p,q[p. Let
Bt = (N ST USTUST UST AM U ATU AT,

where S* = {(¢NN'(W)777) I p<n< O{,N/ EN(I(U)vN/ =u, N,W ENq,(U)}‘
Then ht € P,, ART = AM ht[p = h, and ht < q,¢/. Note that the strong-sup of N N a satisfies

anN = .

Case 4. cf(a) = wi: Then the strong-sup of N N « satisfies oy = sup(N Na) and ay < «. Let
p € N Na be such that
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(1) Y <, N, Y € N2, then NNY Na < p. (Reduces the number of subcases in case 2. Not essential in
this paper.)
(2) dom(A?) Nay C p.
Then ¢[p € P,, SU°(N) = NNp, and N < P<,. Let G, be Py-generic over V with ¢[p € G,. We argue
in V[G,]. By induction, we have N|G,] N HY = N. Since

(HYC) €, o Gy Py Py +) = “I(qd) st ¢ in Pa,q/[pin Gyd € D¢ <d NTNNCNT.”

pwa/\/’qﬂNeN[GP} =< (H;/[G,‘]7ea“’7Gp7Pp7PO¢7'“)7

there exists (¢/,d') € N as such. Let h € G, with h < ¢q[p,q'[p. Let
ht = (NP ShUSTUST UST, AU ATU AT,

where St = {(¢nn (W), n) | p <1 < an, N' € Ni(n), N' =,, N, W € N (i) }. Then ht € P,, ht[p = h,
and ht < ¢/,q.

We provide some details on (g) to check AT € P,. Let & € dom(A4"), XS""¢, and |Ah+ )\ X|>2.
We want to show that A" (&) \ X gets separated by an €-chain that starts with X and followed by elements
of MM (&) = {M | MS" [M N, M < P<g}.

Case 1. £ < p: Then ¢ € dom(A") and X S”¢. Hence an €-chain that starts with X and followed by
elements of M"(¢) separates A"(¢) = A" (¢). But MP (&) = MM (¢).

Case 2. p <& < ay: Then £ € dom(A7) and A" (€) = A7 (€). Either X57¢ or X5+¢ holds.
Subcase. X S‘Ilf : Then an €-chain that starts with X and followed by elements of M7 (€) separates
AT (€). Bus A (§) = A7 (&) and M™" (€) 2 M7 ().

Subcase. XST¢: Let N' =, N, WS‘I/£7 and oy n/ (W) = X. Then an €-chain that starts with W and

followed by elements of M9 (€) separates A7 (€). Map this e-chain by ¢ 7. Then we have an €-chain
that starts with X and followed by elements of M"" (€).

Case 3. ay <& < a: Then ¢ € dom(A?) and an €-chain that starts with X and followed by elements
of MY(€) separates A7(¢). But A" (¢) = A9(¢) and MP"(£) D MI(E).

To show that for any 0-amalgable f, there exists an uncountable 0-homogeneous set in the final model
V[Guy,], we prepare the following.

Lemma. Let p € P, and f be a P,,-name such that p I-r., “f : [w1]? — 2 is 0-amalgable”. Then
there exists (o, ¢) such that p,q € Pyt1, ¢ < .p in Poy1, ®() is a Py-name, and ¢|[-p,, “(A[,)(C%mpnﬂ)
is an uncountable 0-homogeneous set w.r.t. f = ‘I)(O‘)(G APy [w1]? — 2 that is 0-amalgable”, where

. . w2
bprs *Aa = ULA7(@) | 7€ Cara}.

Proof. Since H,, is book-kept by ® : wy — H,,,, we have o < ws such that p € Py, O(a) is a Py-name,
and pl-p,, “f = q)(o‘)(G'wzﬂPu)”' Since p |-p., “f : [w1]? — 2 is O-amalgable”, by going down-ward, we
have p |l p, “®(a) : [w1]> — 2 is O-amalgable”. Let p, Ay € M < P<qir. Let

q=(NPU{M},SPU{(M,n) | neMn(a+1)}, 47U {(a, M Nw)}).

Then q € Py41 and ¢ < p in P,y;. We observe this ¢ works. Since M S []W N (a+ 1)] and M < P<ast1,

we know that g is (Pat1, M)-generic. Hence q |l p,,, “M[Got1] Nwi = M Nw; € Ay € M[Gy11]”. Hence
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q|p.., “Aq is an uncountable 0-homogeneous set w.r.t. ®(a)”. By going up-ward, g [-r,, “(Aa)(c APyiy)
wa NPy

is an uncountable 0-homogeneous set w.r.t. f”.

For an (w,1)-morass that exists in ZFC, see [V]. For a weakly nice (w,1)-morass that can be forced to
exist, see [M]. We report the following.

Theorem. If a weakly nice (w, 1)-morass exists, then the partition relation wy — (wy, (w1 ; finwy))?
fails.
Inspecting a proof of a theorem of Hajnal, say, a proof on page 141 in [HL], we also report the following.

Theorem. (CH) The partition relation w; — (w1, (w1 ; finwy))? fails.
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