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Abstract

‘We study the singular integral operators which have standard kernels and which are bounded on Orlicz
spaces. We generalize the T1 theorem on Orlicz spaces and investigate Their boundedness from the Orlicz
type Hardy space H3 to L' and from L to the Orlicz type BMO (namely BMOg). Furthermore, we
prove that these operators can be extended to bounded operators on some homogenous Sovolev spaces.

1 Introduction

The Calderén—Zygmund singular integral operator T' (CZ operator for a short) is a bounded linear operator
on L?(R") such that

Tf(x) = RnK(%y)f(y)dy (z ¢ supp(f))

for all f € L?(R"™) with compact support, where K (x,y) is a standard kernel, that is, a continuous function
defined on R™ x R™\ {(z,z) : # € R"} and satisfying following conditions:

1|K €, 1 S —17 1.1
(DK (2, )| T (1.1)
Asly — yol® .
(2)\K(%ZI)*K(%ZIO)\S|;‘€T§3L (|y—yo\<‘ 2?"), (1.2)
As|z — xo]® -y
(3)\K($,y)*K(Io,y)|§ﬁ (\xfxox‘ . ‘). (1.3)

Here ¢ € (0,1] is a positive constant. In this paper, we denote T' € CZO(9) if T satisfies above conditions
(1.1)—(1.3). It is well known that any CZ operator extends to a bounded linear operator on L? for 1 < p < oo.
CZ operators play an important role in harmonic analysis (see [2, 3]).

Orlicz spaces are introduced by Orlicz in [4, 5]. They generalize Lebesgue spaces, and are useful tools
on harmonic analysis. As for the CZ operators on Orlicz spaces, Cianchi [1] gave a nesseary and sufficient
conditions on ® and ¥ for the boundedness from the Orlicz space L® to another Orlicz space L.

Definition 1.1. An L®(R") bounded linear integral operator 7 is said to be ®-Calderén-Zygmund operator
(®-CZ operator for a short) if ' € CZO(4) for some 0 < § < 1.

If ®(r) = 72, then ®-CZ operators are classical ones. In this sense, ®-CZ operators generalize CZ opera-
tors.

In this paper, in Section 2, we recall some definitions and results of classical harmonic analysis, and in
Section 3, we give a definition of Orlicz type BMO and Orlicz type Hardy space. Furthermore, we give some
results of those spaces and ®-CZ operators. Finally, in Section 4, we prove the following main theorem:



Theorem 1.2. For a Young function ® and a linear operator T : S — S’, we have the following

(i) If T is a ®-CZ operator with e = £(®) < /4 and T1,T*1 € BMO, then T can be extended to a bounded
operator from W2 NW2=¢ to W2 4 W2 e,

(ii) In particular, if ® € AaNVa and T is a ®-CZ operator, then T can be extended to a bounded operator
on L2.

2 Preliminaries

A function @ : [0,00] — [0, 0] is called a Young function if ® is convex, left-continuous, lim, 1o ®(r) = 0
and lim, o, ®(r) = co. There are many equivalent norms for Orlicz spaces. The following norm is called
Luxenburg-Nakano norm.

Definition 2.1. For a Young function ® and a measurable function f, we set

L*(R") := {f € Li (R | / O (k| f(z)|)dx < oo for some k > 0}
]Rn

it =int {a>0 | [ e <1}

Rn

The Orlicz space L® is a Banach space with its norm.

For Young functions ® and V¥, we write ® ~ W if there exists a constant C' such that
®(C~1r) < U(r) < ®(Cr). Note that, if & ~ U, then ||f||zs ~ ||f]|Lv.

For a Young function ®, the complementary function ® is defined by
B(r) = {sup{rs D(s) | se€0,00)} re0,00),
00 r = o0.
To consider Orlicz spaces (that is to say, to consider Young functions), there are two important conditions
of Young functions. Those come up from speciality of spaces L* and L.
Definition 2.2. For a Young function @,
(1) @ € Ay if any a > 1, there exists a constant C, > 0 such that ®(ar) < C,®(r) for all r > 0,
1
(2) ® € V, if there exists a constant k£ > 1 such that ® < ﬁé(kr) for all » > 0.
Note that ® € Ay & & € Vs. It is well known that for a Young function @, if & € Ay, we have

(L%)* = L%, that is to say, the dual space of L% is equal to L&’(see [15] for these results). From this, we
obtain the following remark.

Remark 2.3. Let & € Ay and T be a &-CZ operator. Then, T* is a ®-CZ operator.
Where T™* denotes the adjoint operator of 7.

To make matters clearer, we give the following numbers depending on Young functions:
Definition 2.4. Let ® be a Young function. Then, we define

pr =p+(®) :=inf{1<p<oo|®(\r) <AP®(r) forr>0, A\>1},
p— =p_(P) :=sup{l<p<oo|P\r) <INO(r) forr>0,0<A<1}.

Remark that, if ®(r) ~ rP, then p; =p_ = p.

Those numbers have an important relationship with Vy and As, in the sense of the following lemma.



Lemma 2.5 ([14]). For a Young function ®, we have

(1) p+(P) <0 & e Ay
(2) p_(®) >1 & P €V,

From this, if ® ¢ Vy, then L? is possible to have a property close to L'. Conversely, if ® ¢ Ay, then L?
is possible to have a property close to L.
By an easy calculation, we have the following:

Lemma 2.6. For a Young function ®,

Pt = px(P) = ply,
where%+$:1f0r0§p§oc.
We note some results on Orlicz spaces below. Refer to [15,16] for these results.
Lemma 2.7. Let ® be a Young function. Then, following conditions are equivalent.
(1) @ € V.

(2) The mazimal operator M is bounded on L®.

Lemma 2.8. Let ® be a Young function and \IJ;](S) = sl/p\I/’l(s). Then, following conditions are equiva-
lent.

(1) There exists a > 0 such that Uy n(r) < ®(ar) for any r >0, and

)
/O tl4n/(n—a) dt < oo,

for enough small e > 0.
(2) The fractional mazimal operator M, is bounded from L* to L*.

Next, we recall definitions of Hardy spaces, BMO and their properties. At first, we define g-aroms, those
are also called Hardy atoms.

Definition 2.9. Let 1 < ¢ < co. We say a function A is a g-atom if there exists a ball B € R™ and A

satisfies following conditions:

(1) supp A C B, @) 14l < |BI" 7,

3) /A:O.

Hereafter, we denote A, by the set of all g-atoms.

Definition 2.10. Let 1 < ¢ < oo. For f € &', f € H(}
that f = Z;’;l Aja;. Furthermore we define

if there exist {\;} € ¢! and {a;} C A, such

,atom

111z

¢.atom

®") =inf § [Nlle | £ =D Naj, aj € 4,
J

Where infimum token over all of decompositions of f.

It is well known that H}

q,atom
we define H, ;ﬁawm by H! again.

is independent from choice of 1 < ¢ < oo (see [2] foe example). From this,



Definition 2.11. For a measurable function f, we define

. 1 .
M flleso = swp = [ 17(0) ~ falds,
Bcke |Bl Jp
(2)  BMOR") = {f € Lige | llfllzmo < 00 } /P,
where P denotes the set of all polynomial functions.
The following lemma means the equivalence FEO,Z = BMO. See [2] for example.

Lemma 2.12. Let ¢ € C°(R™) be a function satisfies f¢5 = 0 and supported on unit ball on R™. Also, let
bu(x) == Eo(%). Then, the norm

1o L dt\7
fllgo , = sup | = e+ f(y)|Pdy—
=2 pcre \|Bl| Jo B t

is independent from choice of 1 < p < oo and ¢ satisfying above conditions. Furthermore, we have

HfHBMONHfHFgOYZ.

3 ®-CZ singular operator,Orlicz type BMO
In this section, we give some results of ®-CZ operators, Orlicz type Hardy spaces and Orlicz type BMO.

Remark 3.1. Let ® € Ay N Vs be a Young function and 7" be a CZ operator. Then T is also a ®-CZ
operator.

Remark 3.1 follows directly from the following theorem.

Theorem 3.2 ([6]). Let ® € Ay N Vs be a Young function and T be a CZ operator. Then T is bounded on
L.

To consider about singular integral operators, ”Weak Bounded Properties” have an important role. To
define that, we prepare functions called bump functions.

Definition 3.3. A C2["/2*2_function ¢ is said to be a bump function if it satisfies following conditions:
()suppe © BO,10) ,()/026(x)| <1 (la| < 2[n/2] +2).

Next, we give the definitions of the classical and generalized weakly bounded properties. Here and below,
Let py = py (®),p- = p(®) and 1, (£)(2) i= f(z — x0), fr(x) :i= R~ (x/R) for v € R".
Definition 3.4. For a linear operator T : S(R") — S'(R™), T is said to be ®-weakly bounded (®-W B) if
there exists a constant C' such that

—Nn-+n 1 _ 1
cr "= (1< R)

(e (3.1)
CR™MF ) (0<R<1),

‘(TTIQ (fR)7TyO (gR)H < {

for all bump functions f, g and xg,yo € R™.

Remark that, if ®(r) ~ 7P for some 1 < p < oo, then T' € ®-W B is equivalent to T' € W B, the classical
Weak Boundedness.

Lemma 3.5. Let T be a ®-CZ operator. Then, T' € ®-WB.



Proof. Let f, g be bump functions. Then, we have

[[frlle = R’"inf{)\ >0 | @(&f)') < 1}
JRn

:R’”inf{)\>0| R%(M)g}

o )
B Rinfq X | [ Ry <1l (1 <R),
= 7 (@)l

5

R™inf{ A| [, o(R7+ L&y <11 (0<R<1),

(-
B flle (1< R),
(1L
R flls (0<R<1).
Keeping in ind that ||7(f)||le = ||f||e, applying Lemma 2.6 by Holder’s inequality, we have
|<T7—10(fR)7Tyo(gR)>‘ 5 "TTI[)(fR)H‘}HTy(J(gR)H@
SIfrllellgrlls
_ i SIS
R fllallglly (1< R),
_ R
R fllallglls (0< R<1)
CR™MEETE) (1< R)
CR™™MEETT) (0<R< 1),

IN

As a result, we have the consulsion. C
Next, we define Orlicz type Hardy spaces and BMO.

Definition 3.6. A compactly supported integrable function A is said to be a ®-atom if there exists a ball
B C R™ and satistying following conditions.

(1) supp A C B,
@) llAlle < llxs
(3) [A=0.

-1
I35

Here and below, we denote Ag by the set of all ®-atoms.

Definition 3.7. Let ® be a Young function. We define

Hy(R") =14 feS R | f=_ Naj, {\}el', {a;} C Ag

j=1
o0
1l o= inf S IHA I | f =D Ajag, {as} € A
j=1
Note that for any ®-atom, its L' norm is bounded. So that, we have Hé C L.

Definition 3.8. Let ® be a Young function.

1
(1) M fllemoy = sup 7———If — f5lle,
B lIxzlle

(2) BMOg(R") :={ f € Li,(R™) | [|f[|BMO, < 00} /P.

If ®(r) =P (1 < p < o0), then Hy = H'. Furthermore, if ®(r) = r? (1 < p < 00), then BMOg = BMO
by the John-Nirenberg inequality. Using Holder’s inequality, we can obtain the following easily.



Remark 3.9. For any Young function ®, we have
BMO¢ C BMO.

The following lemma was proved by Guilyev [18, 2014]. However, it is covered by general equivalence
proved by Ho [19, 2012].

Lemma 3.10. If & € Ay, then BMOg = BMO, that is
1£llzmos ~ [1f]IBMo-
Theorem 3.11. Let ® € Ay. If T is a ©-CZ operator, then T* is bounded from L> to BMOg.
To prove Theorem 3.11, we need following two lemmas.
Lemma 3.12. Let ® be a Young function and T be a ®-CZ operator. Then, T is bounded from H} to L.

Proof. From f € H} can be decomposed into the sum of ®-atoms, considering the boundedness of ®-atom.
Let a(z) be a ®-atom bounded on B and B* := 2B. Then,

/ |Ta(x)|dx :/ \Ta(,r)|dzr:+/ |Ta(x)|dx
n B* (B*)c
=1+1.

Thanks to Holder’s inequality, the size condition of a(z) and
el = (@ ()" < 2@ (b)), we have

I 5 Ixsllsllalles)

1 1
<7 ()/2 ()
1B |B*|
<1
Next, we estimate . By (1.2),we obtain
IT:/ / K(x,y)a(y)dy| dx
(B 1B

:/B*y /K(z,y)fK(:r,m)a(y)dy dz

Asly — 20|
y)|dy)dx
/BV/B\PW “Wldy)

dx
< Ayl sy /

)
|z—z0|>2r II - x0|n+
<1 C

Let Lfomp be the set of all L?-functions with compact support.

Lemma 3.13. Let ® € Ay. Then the dual of H} is BMOg. More precisely, we have the following assertions:
(1) If b € BMOyg, then the mapping

fEmepH/j z)dz € C

can be extended to a bounded linear functional on H}. Also, we have

[1el] < 1bllBamoy -



(2) Conversely, if | is a continuous liner functional on H}, then there exists b € BMOyg such that ((f) =
J f@)b(z)dx for all L, and that

comp

[[bllernog < [1€]-

Proof. (1) Let A be any ®-atom supported on B. From the moment condition of A,

éb(A):/bA:/B(b—bB)A.

From Holder’s inequity on Orlicz spaces,
[6(A)] S 116 = b3l Alle < [[bllBMO, -
So, we have ¢, € (H})*.

(2) Let £ € (H})*, B; :== B(0,27), and define
nsy) = {rerrm| [1=o}.
Then /¢ : L@(Bj)o — C is a bounded linear operator. In fact, if supp f € Bj,

CON < N1l gy 1y, S Nl gy« xs; s 11 L s,)

From ® € A, the dual of LY (B;) is Lg’(Bj) So, there exists a unique g; € Lg’(Bj) which satisfies the
following condition for all f € L& (B;)

) = / af s lgslle S el

X5;|e

For j < k and f € LT (B;), we have

/(Qk —mp,(gr)f = /gkf-

Thanks to the uniqueness of g;, we have
95 = (9x —mp; (g)) XB, -
Let hj := gj — mq(1)(g,)- By (2), for 1 < j <k and = € B; we have
hy. — hj = gi. — g; — ms, (gx) +ms, (g;) = 0.

Let

_Jlimj o0 by (if the limit exists),
o (otherwise).
Next, we prove g € BMOg. For any ball B C R", choose j satisfying B C B;. Then, we have

llg; = m(gi)llLe < llgilla < [1ellcery)-llxs; lle
From this, we have g € BMOy,. C

Proof of Theorem 3.11. Immediately from Lemma 3.12 and Lemma 3.13. C



4 Proof of Main teorems

To prove Theorem 1.2 (i), we prepare the following proposition:

Proposition 4.1. For a singular integral operator T : S(R") — S'(R"), If ¢ = n(i — p%) < % and

Te€PWB and T1,7*1 € BMO, then T extends to a bounded operator from W2ENW2—¢ to W2e 4 1W2e,
We leave proof by the convenience of pages.

Proof of Theorem 1.2 (i). Immediately from Proposition 4.1 and Lemma 3.5. C
Next, we prove Theorem 1.2 (ii). At first, we prove the interpolation theorem on Orlicz spaces.

Theorem 4.2. Let ,V € Ay NVy be Young functions such that p+ (V) < p—(P) and T be a -CZ operator.
Then, for f € L* N LY, we have ||Tf||v < 1f]|w-

To prove this theorem, we need some lemmas and a theorem.

Definition 4.3. Let ® be a Young function and f be a measurable function. Then, we define

1
My (f)(x) = sup m——||fll22(q),
@3z lIxelle @
where () moves over all cubes containing x.

Here and below, let M be a Hardy-Littlewood maximal operator. Remark that if a Young function ®
satisfies & € Vs, then M is bounded on L®[15,16].

Lemma 4.4. For a Young function ® € Ay and any non-negative functions, we have
(M(fP)(@)VP~ S Ma(f) () S (M(fP)Y/P,
for all x € R™.
We leave the proof again.
Lemma 4.5. For Young functions ® € Ay and ¥ € Vs, satisfying po () < p_(¥), Mg is bounded on L*.

Proof. From Lemma 3.15, we have

1Ma(F)llw < ||(M(fP+®) 7 ||g

(1 (P (@) oo
= (||pM(frr )H@m)* ;

where W9(r) := ¥(r?). Then, by an easy calculation, we obtain

P (DT =

Consequently Wr+® € V,, that is M is bounded on L™ As result,

1
3 )mr(‘b)
g P+ (P)

- q
(HM(f’J*(‘P’)H@ 1) 7T S (]

P4 (P)
=lfllw-

Finally, we invoke the following theorem:



Theorem 4.6 ([17]). Let d € NU{0}. Assume that ® € Ay N Va. Then, the following are equivalent
(i) F € LT(RM).

(ii) There exist a sequence of functions {aj};il, a sequence of non-negative numbers {)\}Jx’ 1, @ sequence
of cubes {Q;}32, with the following properties

(a) 132721 Aixg,lle < oo,
(b) supp(a;) C Qj,
(c) llajlloo <1,

) Jo, ol

Ye*dz = 0 for all multi-index o satisfying |o| < d,

(e) f=2252, Ajaj in L*(R™).

Proof of Theorem 4.2. Decompose f € L*NLY asin Theorem 4.6. Remark that we archive || Z] 1AiXq; e
[|f||®. Then, for ®-CZ operator T', we get

<

~

Tf(z) = Z/\'Ta-(x)

j=1

Z/\ Taj(z)x2q, (T +Z/\ Taj(x)Xrr\20, (7)

= I(z) + I(z),

in L* N LY. At first, we estimate I(x). Let g be a function such that g € LY with ll9|llg = 1. Then, from
Hblder’s inequality and the boundedness of an Orlicz type maximal operator Mz on LY (assumption and
Lemma 4.5), we have

| @) s [ ZMJXQQ] DlITaye) - gla)ldo

S Z [Nl Tajxzq,
j=1

IF3

> 1
Z [Aj |||a;\|x7

ll9x2;11512Q;]
[Ix20, % QilleI=Hed
o0
/ ZMXQQ] (9)(x)da

SIS Wb, lel1Ma ()l

=1
Sllellg =
Next, we estimate I (z). Since [a; =0, we get

Taj;(z) =

J

K (2, y)a;(y)dy = / (K(2,y) — K (2,;))a;(y)dy,
Qj



10

where z; is the center of @;. Keeping in mind that ||yorg|le = 1/®( E

/R"\2QJ [(x) - g()|de =

K
le‘) <27+ ||xg|| for k > 1, we have

o]

/ I (z) - g(a)\de

k=1 2k+1QJ\2kQJ

< / A / K
k; 2k+1\2ij 721

<3 /
k=

z,xj)la; ()ldy | |g(z)|de

y—x
S| / v f,JM\aj(yndy

k+1Qy\2kQ1 Jj=1

lg()|dz

Nillg(z)|da

=1/,

oo
1
IS Zm\\ Z)\JXQJ”‘I’HQ( 2)llg

Thus, we have Tf € LY, together with the desired estimate. C

Theorem 4.7 ([13]). For a singular integral operator T : S(R™) — S'(R™), If T € WB and T1,T*1 € BMO,
then T' extends to a bounded operator on L.

Proof of Theorem 1.2 (ii). Let ® € Ay N Vy and T be a ®-CZ operator. From Theorem 4.2 and p_ > 1,
there exists p > 1 such that 7" is bounded on LP. Thus, we have T' € WB. Furthermore, from Theorem 3.11

and Lemma 3.10, we have T'1 € BMOg = BMO and T*1 € BMOg

have the desired result.
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