Fractional integrals and their commutators on martingale Orlicz spaces

茨城大学大学院理工学研究科 新井 龍太郎 Ryutaro Arai
Department of Mathematics，Ibaraki University
茨城大学大学院理工学研究科 中井 英一 Eiichi Nakai
Department of Mathematics，Ibaraki University
大阪教育大学教育学部 貞末 岳
Gaku Sadasue
Department of Mathematics，Osaka Kyoiku University

1 Introduction

This is an announcement of［2］．
It is well known as the Hardy－Littlewood－Sobolev theorem that the fractional integral operators I_{α} on the Euclidean space \mathbb{R}^{n} is bounded from L_{p} to L_{q} for $1<p<q<\infty, 0<\alpha<n$ and $-n / p+\alpha=-n / q$ ．For any BMO func－ tion b ，Chanillo［4］proved the same boundedness of the commutator $\left[b, I_{\alpha}\right]$ ． Paluszyński［19］proved that，for any β－Lipschitz function $b, 0<\beta<1$ ，the commutator $\left[b, I_{\alpha}\right]$ is bounded from L_{p} to L_{q} for $-n / p+\alpha+\beta=-n / q$ and from L_{p} to the Triebel－Lizorkin space $\dot{F}_{p, \infty}^{\beta}$ ．

In martingale theory，based on the result by Watari［23，Theorem 1．1］，Chao and Ombe［5］proved the boundedness of the fractional integrals for H_{p}, L_{p}, BMO and Lipschitz spaces of the dyadic martingales．These fractional integrals were defined for more general martingales in $[14,20]$ and studied in $[6,15,16]$ ．In this paper we investigate the fractional integrals on martingale Orlicz spaces．

Let (Ω, \mathcal{F}, P) be a probability space and let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be a nondecreasing sequence of sub－σ－algebras of \mathcal{F} such that $\mathcal{F}=\sigma\left(\bigcup_{n} \mathcal{F}_{n}\right)$ ．We suppose that every σ－algebra \mathcal{F}_{n} is generated by countable atoms，where $B \in \mathcal{F}_{n}$ is called an atom（more precisely a（ \mathcal{F}_{n}, P ）－atom），if any $A \subset B$ with $A \in \mathcal{F}_{n}$ satisfies $P(A)=P(B)$ or $P(A)=0$ ．Denote by $A\left(\mathcal{F}_{n}\right)$ the set of all atoms in \mathcal{F}_{n} ．The
expectation operator and the conditional expectation operators relative to \mathcal{F}_{n} are denoted by E and E_{n}, respectively.

We say a sequence $\left(f_{n}\right)_{n \geq 0}$ in L_{1} is a martingale relative to $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ if it is adapted to $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ and satisfies $E_{n}\left[f_{m}\right]=f_{n}$ for every $n \leq m$. It is known as the Doob theorem that, if $p \in(1, \infty)$, then any L_{p}-bounded martingale converges in L_{p}. Moreover, if $p \in[1, \infty)$, then, for any $f \in L_{p}$, its corresponding martingale $\left(f_{n}\right)_{n \geq 0}$ with $f_{n}=E_{n} f$ is an L_{p}-bounded martingale and converges to f in L_{p} (see for example [17]). For this reason a function $f \in L_{1}$ and the corresponding martingale $\left(f_{n}\right)_{n \geq 0}$ will be denoted by the same symbol f.

We first recall the definition of generalized fractional integrals of martingales.
Definition 1.1 ([16]). Let $\left(\gamma_{n}\right)_{n \geq 0}$ be a non-increasing sequence of non-negative bounded functions adapted to $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$. For a martingale $\left(f_{n}\right)_{n \geq 0}$, its generalized fractional integral $I_{\gamma} f=\left(\left(I_{\gamma} f\right)_{n}\right)_{n \geq 0}$ is defined as a martingale by

$$
\left(I_{\gamma} f\right)_{n}=\sum_{k=0}^{n} \gamma_{k-1}\left(f_{k}-f_{k-1}\right)
$$

with convention $\gamma_{-1}=\gamma_{0}$ and $f_{-1}=0$.
Our definition of I_{γ} is based on the notion of martingale transform in the sense of Burkholder [3]. For quasi-normed spaces M_{1} and M_{2} of functions, we denote by $B\left(M_{1}, M_{2}\right)$ the set of all bounded martingale transforms from M_{1} to M_{2}, that is, $I_{\gamma} \in B\left(M_{1}, M_{2}\right)$ means that

$$
\sup _{n \geq 0}\left\|\left(I_{\gamma} f\right)_{n}\right\|_{M_{2}} \leq C \sup _{n \geq 0}\left\|f_{n}\right\|_{M_{1}}
$$

for all M_{1}-bounded martingales $f=\left(f_{n}\right)_{n \geq 0}$.
Let

$$
\begin{equation*}
\beta_{n}=\sum_{B \in A\left(\mathcal{F}_{n}\right)} P(B) \chi_{B}, \quad n=0,1,2, \cdots \tag{1.1}
\end{equation*}
$$

For $\alpha>0$, let $\gamma_{n}=\beta_{n}^{\alpha}, n \geq 0$. Then $I_{\gamma} f$ is the fractional integral of f introduced in [14].

In this paper we prove $I_{\gamma} \in B\left(L_{\Phi}, L_{\Psi}\right)$ for the Orlicz spaces L_{Φ} and L_{Ψ} under suitable conditions. Moreover, we consider the commutator $\left[b, I_{\gamma}\right]$ generated by a function b. For $f \in L_{\infty}$, which is regarded as an L_{∞}-bounded martingale $f=\left(f_{n}\right)_{n \geq 0}$ with $f_{n}=E_{n} f,\left(\left(I_{\gamma} f\right)_{n}\right)_{n \geq 0}$ is also an L_{∞}-bounded martingale. We denote by $I_{\gamma} f$ the limit function, that is, $I_{\gamma} f=\left(\left(I_{\gamma} f\right)_{n}\right)_{n \geq 0}$. In this case the commutator $\left[b, I_{\gamma}\right] f=b I_{\gamma} f-I_{\gamma}(b f)$ is well-defined for all $b \in L_{\infty}$. In this paper we prove that, for functions b in Campanato spaces and $f \in L_{\Phi},\left[b, I_{\gamma}\right] f$ is well-defined and bounded from L_{Φ} to L_{Ψ} under suitable conditions.

The definition of the Campanato space is the following:

Definition 1.2. For $p \in[1, \infty)$ and $\psi:(0,1] \rightarrow(0, \infty)$, let

$$
\mathcal{L}_{p, \psi}^{-}=\left\{f \in L_{p}:\|f\|_{\mathcal{L}_{p, \psi}^{-}}<\infty\right\},
$$

where

$$
\|f\|_{\mathcal{L}_{p, \psi}^{-}}=\sup _{n \geq 0} \sup _{B \in A\left(\mathcal{F}_{n}\right)} \frac{1}{\psi(P(B))}\left(\frac{1}{P(B)} \int_{B}\left|f-E_{n-1} f\right|^{p} d P\right)^{1 / p} .
$$

We say that a function $\theta:(0,1] \rightarrow(0, \infty)$ satisfies the doubling condition if there exists a positive constant C such that, for all $r, s \in(0,1]$,

$$
\begin{equation*}
\frac{1}{C} \leq \frac{\theta(r)}{\theta(s)} \leq C, \quad \text { if } \quad \frac{1}{2} \leq \frac{r}{s} \leq 2 . \tag{1.2}
\end{equation*}
$$

We say that θ is almost increasing (resp. almost decreasing) if there exists a positive constant C such that, for all $r, s \in(0,1]$,

$$
\begin{equation*}
\theta(r) \leq C \theta(s) \quad(\text { resp. } \theta(s) \leq C \theta(r)), \quad \text { if } r<s \tag{1.3}
\end{equation*}
$$

The stochastic basis $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is said to be regular, if there exists a constant $R \geq 2$ such that

$$
\begin{equation*}
f_{n} \leq R f_{n-1} \tag{1.4}
\end{equation*}
$$

holds for all $n \geq 1$ and all nonnegative martingales $\left(f_{n}\right)_{n \geq 0}$.
It is known by [12, Theorem 2.9] that, if $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is regular and ψ is almost increasing, then

$$
\begin{equation*}
\|f\|_{\mathcal{L}_{1, \psi}^{-}} \leq\|f\|_{\mathcal{L}_{p, \psi}^{-}} \leq C_{p}\|f\|_{\mathcal{L}_{1, \psi}^{-}} . \tag{1.5}
\end{equation*}
$$

2 Orlicz spaces

First we define a set $\bar{\Phi}$ of increasing functions $\Phi:[0, \infty] \rightarrow[0, \infty]$ and give some properties of functions in $\bar{\phi}$.

For an increasing function $\Phi:[0, \infty] \rightarrow[0, \infty]$, let

$$
a(\Phi)=\sup \{t \geq 0: \Phi(t)=0\}, \quad b(\Phi)=\inf \{t \geq 0: \Phi(t)=\infty\},
$$

with convention $\sup \emptyset=0$ and $\inf \emptyset=\infty$. Then $0 \leq a(\Phi) \leq b(\Phi) \leq \infty$. Let $\bar{\Phi}$ be the set of all increasing functions $\Phi:[0, \infty] \rightarrow[0, \infty]$ such that

$$
\begin{align*}
& 0 \leq a(\Phi)<\infty, \quad 0<b(\Phi) \leq \infty, \tag{2.1}\\
& \lim _{t \rightarrow+0} \Phi(t)=\Phi(0)=0, \tag{2.2}\\
& \Phi \text { is left continuous on }[0, b(\Phi)), \tag{2.3}\\
& \text { if } b(\Phi)=\infty, \text { then } \lim _{t \rightarrow \infty} \Phi(t)=\Phi(\infty)=\infty, \tag{2.4}\\
& \text { if } b(\Phi)<\infty, \text { then } \lim _{t \rightarrow b(\Phi)-0} \Phi(t)=\Phi(b(\Phi))(\leq \infty) . \tag{2.5}
\end{align*}
$$

In what follows, if an increasing and left continuous function $\Phi:[0, \infty) \rightarrow$ $[0, \infty)$ satisfies (2.2) and $\lim _{t \rightarrow \infty} \Phi(t)=\infty$, then we always regard that $\Phi(\infty)=\infty$ and that $\Phi \in \bar{\Phi}$.

Definition 2.1. A function $\Phi \in \bar{\Phi}$ is called a Young function (or sometimes also called an Orlicz function) if Φ is convex on $[0, b(\Phi))$.

By the convexity, any Young function Φ is continuous on $[0, b(\Phi))$ and strictly increasing on $[a(\Phi), b(\Phi)]$. Hence Φ is bijective from $[a(\Phi), b(\Phi)]$ to $[0, \Phi(b(\Phi))]$. Moreover, Φ is absolutely continuous on any closed subinterval in $[0, b(\Phi))$. That is, its derivative Φ^{\prime} exists a.e. and

$$
\begin{equation*}
\Phi(t)=\int_{0}^{t} \Phi^{\prime}(s) d s, \quad t \in[0, b(\Phi)) \tag{2.6}
\end{equation*}
$$

For $\Phi, \Psi \in \bar{\Phi}$, we write $\Phi \approx \Psi$ if there exists a positive constant C such that

$$
\Phi\left(C^{-1} t\right) \leq \Psi(t) \leq \Phi(C t) \quad \text { for all } t \in[0, \infty]
$$

Definition 2.2. (i) Let Φ_{Y} be the set of all Young functions.
(ii) Let $\bar{\Phi}_{Y}$ be the set of all $\Phi \in \bar{\Phi}$ such that $\Phi \approx \Psi$ for some $\Psi \in \Phi_{Y}$.
(iii) Let \mathcal{Y} be the set of all $\Phi \in \Phi_{Y}$ such that $a(\Phi)=0$ and $b(\Phi)=\infty$.

For $\Phi \in \bar{\Phi}$, we recall the generalized inverse of Φ in the sense of O'Neil [18, Definition 1.2].

Definition 2.3. For $\Phi \in \bar{\Phi}$ and $u \in[0, \infty]$, let

$$
\Phi^{-1}(u)= \begin{cases}\inf \{t \geq 0: \Phi(t)>u\}, & u \in[0, \infty) \tag{2.7}\\ \infty, & u=\infty\end{cases}
$$

Let $\Phi \in \bar{\Phi}$. Then Φ^{-1} is finite, increasing and right continuous on $[0, \infty)$ and positive on $(0, \infty)$. If Φ is bijective from $[0, \infty]$ to itself, then Φ^{-1} is the usual inverse function of Φ. Moreover, we have the following proposition, which is a generalization of Property 1.3 in [18].

Proposition 2.1 ([22]). Let $\Phi \in \bar{\Phi}$. Then

$$
\begin{equation*}
\Phi\left(\Phi^{-1}(u)\right) \leq u \leq \Phi^{-1}(\Phi(u)) \quad \text { for all } u \in[0, \infty] \tag{2.8}
\end{equation*}
$$

For functions $P, Q:[0, \infty] \rightarrow[0, \infty]$, we write $P \sim Q$ if there exists a positive constant C such that

$$
C^{-1} P(t) \leq Q(t) \leq C P(t) \quad \text { for all } t \in[0, \infty]
$$

Then, for $\Phi, \Psi \in \bar{\Phi}$,

$$
\begin{equation*}
\Phi \approx \Psi \quad \Leftrightarrow \quad \Phi^{-1} \sim \Psi^{-1} \tag{2.9}
\end{equation*}
$$

For a Young function Φ, its complementary function is defined by

$$
\widetilde{\Phi}(t)= \begin{cases}\sup \{t u-\Phi(u): u \in[0, \infty)\}, & t \in[0, \infty) \\ \infty, & t=\infty\end{cases}
$$

Then $\widetilde{\Phi}$ is also a Young function, and $(\Phi, \widetilde{\Phi})$ is called a complementary pair. For example, $\Phi(t)=t$, then

$$
\widetilde{\Phi}(t)= \begin{cases}0, & t \in[0,1] \\ \infty, & t \in(1, \infty]\end{cases}
$$

Definition 2.4. For a function $\Phi \in \bar{\Phi}_{Y}$, let

$$
\begin{aligned}
L_{\Phi} & =\left\{f \in L^{0}: E[\Phi(\epsilon|f|)]<\infty \text { for some } \epsilon>0\right\} \\
\|f\|_{L_{\Phi}} & =\inf \{\lambda>0: E[\Phi(|f| / \lambda)] \leq 1\} \\
\mathrm{w} L_{\Phi} & =\left\{f \in L^{0}: \sup _{t \in(0, \infty)} \Phi(t) P(\epsilon f, t)<\infty \text { for some } \epsilon>0\right\} \\
\|f\|_{\mathrm{w} L_{\Phi}} & =\inf \left\{\lambda>0: \sup _{t \in(0, \infty)} \Phi(t) P(f / \lambda, t) \leq 1\right\} \\
& \text { where } P(f, t)=P(\{\omega \in \Omega:|f(\omega)|>t\})
\end{aligned}
$$

Remark 2.1. It is known that

$$
\begin{equation*}
\sup _{t \in(0, \infty)} \Phi(t) P(f, t)=\sup _{t \in(0, \infty)} t P(\Phi(|f|), t) \tag{2.10}
\end{equation*}
$$

see [7, Proposition 4.2] for example.
Let $(\Phi, \widetilde{\Phi})$ be a complementary pair of functions in Φ_{Y}. Then it is known that

$$
\begin{equation*}
t \leq \Phi^{-1}(t) \widetilde{\Phi}^{-1}(t) \leq 2 t, \quad t \in[0, \infty] \tag{2.11}
\end{equation*}
$$

It is also known that

$$
\begin{equation*}
E[|f g|] \leq 2\|f\|_{L_{\Phi}}\|g\|_{L_{\tilde{\Phi}}} . \tag{2.12}
\end{equation*}
$$

Lemma 2.2. Let $\Phi \in \Phi_{Y}$. Then, for all $A \in \mathcal{F}$, its characteristic function χ_{A} is in $\mathrm{w} L_{\Phi}$ and

$$
\begin{equation*}
\left\|\chi_{A}\right\|_{L_{\Phi}}=\left\|\chi_{A}\right\|_{\mathrm{w} L_{\Phi}}=\frac{1}{\Phi^{-1}(1 / P(A))} \tag{2.13}
\end{equation*}
$$

Definition 2.5. (i) A function $\Phi \in \bar{\Phi}$ is said to satisfy the Δ_{2}-condition, denote $\Phi \in \bar{\Delta}_{2}$, if there exists a constant $C>0$ such that

$$
\begin{equation*}
\Phi(2 t) \leq C \Phi(t) \quad \text { for all } t>0 \tag{2.14}
\end{equation*}
$$

(ii) A function $\Phi \in \bar{\Phi}$ is said to satisfy the ∇_{2}-condition, denote $\Phi \in \bar{\nabla}_{2}$, if there exists a constant $k>1$ such that

$$
\begin{equation*}
\Phi(t) \leq \frac{1}{2 k} \Phi(k t) \quad \text { for all } t>0 . \tag{2.15}
\end{equation*}
$$

(iii) Let $\Delta_{2}=\Phi_{Y} \cap \bar{\Delta}_{2}$ and $\nabla_{2}=\Phi_{Y} \cap \bar{\nabla}_{2}$.

Remark 2.2. (i) $\Delta_{2} \subset \mathcal{Y}$ and $\bar{\nabla}_{2} \subset \bar{\Phi}_{Y}([10$, Lemma 1.2.3]).
(ii) Let $\Phi \in \bar{\Phi}_{Y}$. Then $\Phi \in \bar{\Delta}_{2}$ if and only if $\Phi \approx \Psi$ for some $\Psi \in \Delta_{2}$, and, $\Phi \in \bar{\nabla}_{2}$ if and only if $\Phi \approx \Psi$ for some $\Psi \in \nabla_{2}$.
(iii) Let $\Phi \in \Phi_{Y}$. Then $\Phi \in \Delta_{2}$ if and only if the set of simple functions is dense in L_{Φ}.
(iv) Let $\Phi \in \Phi_{Y}$. Then Φ^{-1} satisfies the doubling condition by its concavity, that is,

$$
\Phi^{-1}(u) \leq \Phi^{-1}(2 u) \leq 2 \Phi^{-1}(u) \quad \text { for all } u \in[0, \infty]
$$

(v) If $\Phi \in \bar{\nabla}_{2}$, then there exists $\theta \in(0,1)$ such that $\Phi\left((\cdot)^{\theta}\right) \in \bar{\nabla}_{2}([22$, Lemma 4.5]).

3 Main results

We denote by $\mathcal{M}_{L_{\Phi}}$ the set of all L_{Φ} bounded martingales $f=\left(f_{n}\right)_{n \geq 0}$.
Theorem 3.1. Let $\Phi, \Psi \in \bar{\Phi}_{Y}$. Assume that $u \mapsto \Psi^{-1}(u) / \Phi^{-1}(u)$ is almost decreasing and that there exists a positive constant C such that, for all $n \geq 0$,

$$
\begin{equation*}
\sum_{k=0}^{n}\left(\gamma_{k-1}-\gamma_{k}\right) \Phi^{-1}\left(\frac{1}{\beta_{k}}\right)+\gamma_{n} \Phi^{-1}\left(\frac{1}{\beta_{n}}\right) \leq C \Psi^{-1}\left(\frac{1}{\beta_{n}}\right) \tag{3.1}
\end{equation*}
$$

Then, for any positive constant C_{Φ}, there exists a positive constant C_{Φ}^{\prime} such that, for all $f \in \mathcal{M}_{L_{\Phi}}$ with $f \not \equiv 0$,

$$
\begin{equation*}
\Psi\left(\frac{M\left(I_{\gamma} f\right)}{C_{\Phi}^{\prime} \sup _{n \geq 0}\left\|f_{n}\right\|_{L_{\Phi}}}\right) \leq \Phi\left(\frac{M f}{C_{\Phi} \sup _{n \geq 0}\left\|f_{n}\right\|_{L_{\Phi}}}\right) \tag{3.2}
\end{equation*}
$$

Consequently, $I_{\gamma} \in B\left(L_{\Phi}, \mathrm{w} L_{\Psi}\right)$. Moreover, if $\Phi \in \nabla_{2}$, then $I_{\gamma} \in B\left(L_{\Phi}, L_{\Psi}\right)$.
Next, for a function $\rho:(0,1] \rightarrow(0, \infty)$ such that

$$
\begin{equation*}
\int_{0}^{1} \frac{\rho(t)}{t} d t<\infty \tag{3.3}
\end{equation*}
$$

let

$$
\begin{equation*}
\gamma_{n}=\int_{0}^{\beta_{n}} \frac{\rho(t)}{t} d t, \quad \beta_{n}=\sum_{B \in A\left(\mathcal{F}_{n}\right)} P(B) \chi_{B}, \quad n=0,1,2, \cdots \tag{3.4}
\end{equation*}
$$

In this case we denote I_{γ} by I_{ρ}, namely, for a martingale $f=\left(f_{n}\right)_{n \geq 0}$,

$$
\begin{equation*}
I_{\rho} f=\left(\left(I_{\rho} f\right)_{n}\right)_{n \geq 0}, \quad\left(I_{\rho} f\right)_{n}=\sum_{k=0}^{n}\left(\int_{0}^{\beta_{k-1}} \frac{\rho(t)}{t} d t\right)\left(f_{k}-f_{k-1}\right) \tag{3.5}
\end{equation*}
$$

If $\rho(t)=\alpha t^{\alpha}$ and $\alpha>0$, then $\int_{0}^{\beta_{k-1}} \frac{\rho(t)}{l} d t=\left(\beta_{k-1}\right)^{\alpha}$ and I_{ρ} is the fractional integrals introduced by [14] as a generalization of I_{α} on dyadic martingales investigated in [5].

If $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is regular, that is, there exists $R \geq 2$ such that

$$
\begin{equation*}
E_{n} f \leq R E_{n-1} f \tag{3.6}
\end{equation*}
$$

for all non-negative integrable function f, then the inequality $\beta_{n} \leq \beta_{n-1} \leq R \beta_{n}$ holds, see [14, Lemma 3.1]. Hence,

$$
\begin{aligned}
\sum_{k=0}^{n}\left(\gamma_{k-1}-\gamma_{k}\right) \Phi^{-1}\left(1 / \beta_{k}\right) & =\sum_{k=1}^{n} \Phi^{-1}\left(1 / \beta_{k}\right) \int_{\beta_{k}}^{\beta_{k-1}} \frac{\rho(t)}{t} d t \\
& \sim \sum_{k=1}^{n} \int_{\beta_{k}}^{\beta_{k-1}} \frac{\Phi^{-1}(1 / t) \rho(t)}{t} d t \\
& =\int_{\beta_{n}}^{\beta_{0}} \frac{\Phi^{-1}(1 / t) \rho(t)}{t} d t
\end{aligned}
$$

That is, (3.1) is equivalent to

$$
\begin{equation*}
\int_{0}^{\beta_{n}} \frac{\rho(t)}{t} d t \Phi^{-1}\left(1 / \beta_{n}\right)+\int_{\beta_{n}}^{b_{0}} \frac{\rho(t) \Phi^{-1}(1 / t)}{t} d t \leq C \Psi^{-1}\left(1 / \beta_{n}\right) \quad \text { for all } \quad n \geq 0 \tag{3.7}
\end{equation*}
$$

Corollary 3.2. Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular, and let $\Phi, \Psi \in \bar{\Phi}_{Y}$. Assume that $u \mapsto$ $\Psi^{-1}(u) / \Phi^{-1}(u)$ is almost decreasing and that there exists a positive constant A such that, for all $r \in(0,1]$,

$$
\begin{equation*}
\int_{0}^{r} \frac{\rho(t)}{t} d t \Phi^{-1}(1 / r)+\int_{r}^{1} \frac{\rho(t) \Phi^{-1}(1 / t)}{t} d t \leq A \Psi^{-1}(1 / r) \tag{3.8}
\end{equation*}
$$

Then, for any positive constant C_{Φ}, there exists a positive constant C_{1} such that, for all $f \in \mathcal{M}_{L_{\Phi}}$ with $f \not \equiv 0$,

$$
\begin{equation*}
\Psi\left(\frac{M\left(I_{\rho} f\right)}{C_{\Phi}^{\prime} \sup _{n \geq 0}\left\|f_{n}\right\|_{L_{\Phi}}}\right) \leq \Phi\left(\frac{M f}{C_{\Phi} \sup _{n \geq 0}\left\|f_{n}\right\|_{L_{\Phi}}}\right) \tag{3.9}
\end{equation*}
$$

Consequently, $I_{\rho} \in B\left(L_{\Phi}, \mathrm{w} L_{\Psi}\right)$. Moreover, if $\Phi \in \nabla_{2}$, then $I_{\rho} \in B\left(L_{\Phi}, L_{\Psi}\right)$.

For a sequence $\gamma=\left(\gamma_{n}\right)_{n \geq 0}$ of positive measurable functions, let

$$
\begin{equation*}
M_{\gamma} f=\sup _{n \geq 0} \gamma_{n}\left|E_{n} f\right|, \quad f \in L_{1} . \tag{3.10}
\end{equation*}
$$

Theorem 3.3. Let $\Phi, \Psi \in \bar{\Phi}_{Y}$. Assume that $u \mapsto \Psi^{-1}(u) / \Phi^{-1}(u)$ is almost decreasing and that there exists a positive constant A such that, for all $n \geq 0$,

$$
\begin{equation*}
\gamma_{n} \Phi^{-1}\left(1 / \beta_{n}\right) \leq A \Psi^{-1}\left(1 / \beta_{n}\right) \tag{3.11}
\end{equation*}
$$

Then, for any positive constant C_{Φ}, there exists a positive constant C_{Φ}^{\prime} such that, for all $f \in L_{\Phi}$ with $f \not \equiv 0$,

$$
\begin{equation*}
\Psi\left(\frac{M_{\gamma} f}{C_{\Phi}^{\prime}\|f\|_{L_{\Phi}}}\right) \leq \Phi\left(\frac{M f}{C_{\Phi}\|f\|_{L_{\Phi}}}\right) . \tag{3.12}
\end{equation*}
$$

Consequently, M_{γ} is bounded from L_{Φ} to $w L_{\Psi}$. Moreover, if $\Phi \in \bar{\nabla}_{2}$, then M_{γ} is bounded from L_{Φ} to L_{Ψ}.

For the commutator $\left[b, I_{\rho}\right] f=b I_{\rho} f-I_{\rho}(b f)$, we have the following theorem.
Theorem 3.4. Let $\psi:(0,1] \rightarrow(0, \infty)$, and let $\Phi, \Psi \in \bar{\Phi}_{Y}$.
(i) Assume that ψ is almost increasing and that there exists a positive constant A and a function $\Theta \in \bar{\nabla}_{2}$ such that, for all $n \geq 0$,

$$
\begin{align*}
\sum_{k=0}^{n}\left(\gamma_{k-1}-\gamma_{k}\right) \Phi^{-1}\left(\frac{1}{\beta_{k}}\right)+\gamma_{n} \Phi^{-1}\left(\frac{1}{\beta_{n}}\right) & \leq A \Theta^{-1}\left(\frac{1}{\beta_{n}}\right) \tag{3.13}\\
\psi\left(\beta_{n}\right) \Theta^{-1}\left(\frac{1}{\beta_{n}}\right) & \leq A \Psi^{-1}\left(\frac{1}{\beta_{n}}\right) \tag{3.14}\\
\psi\left(\beta_{n}\right) \gamma_{n-1} \Phi^{-1}\left(\frac{1}{\beta_{n}}\right) & \leq A \Psi^{-1}\left(\frac{1}{\beta_{n}}\right) \tag{3.15}
\end{align*}
$$

If $\Phi, \Psi \in \bar{\Delta}_{2} \cap \bar{\nabla}_{2}$, then there exist constants $\nu \in(1, \infty)$ and $C \in(0, \infty)$ such that, for all $b \in \mathcal{L}_{\nu, \psi}^{-}$and all $f \in L_{\Phi}$,

$$
\begin{equation*}
\left\|\left[b, I_{\gamma}\right] f\right\|_{L_{\Psi}} \leq C\|b\|_{\mathcal{L}_{\nu, \psi}^{-}}\|f\|_{L_{\Phi}} . \tag{3.16}
\end{equation*}
$$

Moreover, if $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular, then, for all $b \in \mathcal{L}_{1, \psi}^{-}$and all $f \in L_{\Phi}$,

$$
\begin{equation*}
\left\|\left[b, I_{\gamma}\right] f\right\|_{L_{\Psi}} \leq C\|b\|_{\mathcal{L}_{1, \psi}^{-}}\|f\|_{L_{\Phi}}, \tag{3.17}
\end{equation*}
$$

without the assumption (3.15).
(ii) Conversely, let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be regular and $\alpha>0$. Assume that ψ satisfies the doubling condition and that there exists a positive constant A such that, for all $n \geq 0$,

$$
\begin{equation*}
\Psi^{-1}\left(\frac{1}{\beta_{n}}\right) \leq A \beta_{n}{ }^{\alpha} \psi\left(\beta_{n}\right) \Phi^{-1}\left(\frac{1}{\beta_{n}}\right) \tag{3.18}
\end{equation*}
$$

Assume also that

$$
\begin{equation*}
\|b\|_{\mathcal{L}_{1, \psi}^{-}\left(\mathcal{F}_{0}\right)}=\sup _{B \in A\left(\mathcal{F}_{0}\right)} \frac{1}{\psi(B) P(B)} \int_{B}|b| d P<\infty . \tag{3.19}
\end{equation*}
$$

If $\left[b, I_{\alpha}\right]$ is bounded from L_{Φ} to L_{Ψ} with operator norm $\left\|\left[b, I_{\alpha}\right]\right\|_{L_{\Phi} \rightarrow L_{\Psi}}$, then b is in $\mathcal{L}_{1, \psi}^{-}$and there exists a positive constant C, independently b, such that

$$
\|b\|_{\mathcal{L}_{1, \psi}^{-}} \leq C\left(\left\|\left[b, I_{\alpha}\right]\right\|_{L_{\Phi} \rightarrow L_{\Psi}}+\|b\|_{\mathcal{L}_{1, \psi}^{-}\left(\mathcal{F}_{0}\right)}\right)
$$

For an almost increasing function $\psi:(0,1] \rightarrow(0, \infty)$, we define the sharp maximal function M_{ψ}^{\sharp} by

$$
\begin{equation*}
M_{\psi}^{\sharp} f=\sup _{n \geq 0} \psi\left(\beta_{n}\right)^{-1} E_{n}\left|f-E_{n-1} f\right|, \quad f \in L_{1}, \tag{3.20}
\end{equation*}
$$

with the convention $E_{-1} f=0$. If $\psi \equiv 1$ we denote M_{ψ}^{\sharp} by M^{\sharp}, that is,

$$
\begin{equation*}
M^{\ddagger} f=\sup _{n \geq 0} E_{n}\left|f-E_{n-1} f\right| . \tag{3.21}
\end{equation*}
$$

Then we define the Triebel-Lizorkin-Orlicz space as follows.
Definition 3.1. For $\Phi \in \bar{\Phi}$ and $\psi:(0,1] \rightarrow(0, \infty)$, let

$$
F_{L_{\Phi}}^{\psi}=\left\{f \in L_{1}:\|f\|_{F_{L_{\Phi}}^{\psi}}<\infty\right\}
$$

where

$$
\|f\|_{F_{L_{\Phi}}^{\psi}}=\left\|M_{\psi}^{\sharp} f\right\|_{L_{\Phi}} .
$$

We can extend Theorem 3.4 to Triebel-Lizorkin-Orlicz spaces

References

[1] R. Arai and E. Nakai, Commutators of Calderón-Zygmund and generalized fractional integral operators on generalized Morrey spaces, Rev. Mat. Complut. Published online; https://doi.org/10.1007/s13163-017-0251-4
[2] R. Arai, E. Nakai, G. Sadasue, Fractional integrals and their commutators on martingale Orlicz spaces, in preparation.
[3] D. L. Burkholder, Martingale transforms, Ann. Math. Stat., 37 (1966), 14941504.
[4] S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), No. 1, 7-16.
[5] J.-A. Chao and H. Ombe, Commutators on Dyadic Martingales, Proc. Japan Acad., 61, Ser. A (1985), 35-38.
[6] Z. Hao and Y. Jiao, Fractional integral on martingale Hardy spaces with variable exponents. Fract. Calc. Appl. Anal. 18 (2015), No. 5, 1128-1145.
[7] R. Kawasumi and E. Nakai, Pointwise multipliers on weak Orlicz spaces, preprint.
[8] M. Kikuchi, On weighted weak type maximal inequalities for martingales. Math. Inequal. Appl. 6 (2003), No. 1, 163-175.
[9] M. Kikuchi, Uniform boundedness of conditional expectation operators on a Banach function space. Math. Inequal. Appl, 16, No. 2 (2013), 483-499.
[10] V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1991.
[11] R. L. Long, Martingale spaces and inequalities, Peking University Press, Beijing, 1993. ISBN: 7-301-02069-4
[12] T. Miyamoto, E. Nakai and G. Sadasue, Martingale Orlicz-Hardy spaces, Math. Nachr. 285 (2012), No. 5-6, 670-686.
[13] E. Nakai, On generalized fractional integrals, Taiwanese J. Math. 5 (2001), no. 3, 587-602.
[14] E. Nakai and G. Sadasue, Martingale Morrey-Campanato spaces and fractional integrals, J. Funct. Spaces Appl. 2012 (2012), Article ID 673929, 29 pages. DOI:10.1155/2012/673929
[15] E. Nakai and G. Sadasue, Characterizations of boundedness for generalized fractional integrals on martingale Morrey spaces, Math. Inequalities Appl. 20 (2017), No. 4, 929-947. doi:10.7153/mia-2017-20-58
[16] E. Nakai, G. Sadasue and Y. Sawano, Martingale Morrey-Hardy and Campanato-Hardy Spaces, J. Funct. Spaces Appl. 2013 (2013), Article ID 690258, 14 pages. DOI:10.1155/2013/690258
[17] J. Neveu, Discrete-parameter martingales, North-Holland, Amsterdam, 1975.

ISBN 0720428106
[18] R. O'Neil, Fractional integration in Orlicz spaces. I., Trans. Amer. Math. Soc. 115 (1965), 300-328.
[19] M. Paluszyński, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J. 44 (1995), No. 1, 1-17.
[20] G. Sadasue, Fractional integrals on martingale Hardy spaces for $0<p \leq 1$, Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci. 60 (2011), no. 1 1-7.
[21] G. Sadasue, Martingale Besov spaces and martingale Triebel-Lizorkin spaces, to appear in Sci. Math. Jpn.
[22] M. Shi, R. Arai and E. Nakai, Generalized fractional integral operators and their commutators with functions in generalized Campanato spaces on Orlicz spaces, Taiwanese J. Math. to appear.
https://arxiv.org/abs/1812.09148
[23] C. Watari, Multipliers for Walsh Fourier series, Tohoku Math. J., 16 (1964), 239-251.
[24] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Mathematics, 1568, Springer-Verlag, Berlin, 1994.
ISBN: 3-540-57623-1

Ryutaro Arai
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
16nm101x@vc.ibaraki.ac.jp
araryu314159@gmail.com

Eiichi Nakai

Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
eiichi.nakai.math@vc.ibaraki.ac.jp
Gaku Sadasue
Department of Mathematics
Osaka Kyoiku University
Kashiwara, Osaka 582-8582, Japan
sadasue@cc.osaka-kyoiku.ac.jp

