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1 Introduction 

Let fl be a bounded domain in 町 (n~3) with smooth boundary叩.We consider 

the following doubly nonlinear degenerate and singular parabolic equation 

{叫lul•-'u) -die (I▽ ul'-'▽ u)~ 入(L)lul'-'u in 瓜：~(O,oo)xO
(1.1) u = uo on Opfloo 

llu(t)llq+l = 1, t~0 

where 2 :S: p < n, q = 
np --1  n-p , and u = u(t, x) is a real-valued function defined for 

(t, X) E叫， v'"'=fJ / OX a, a = 1, ... , n, v'u = (v'"'u) is the spatial gradient of a function 

u, 1Vul2 =どい(v'四）2 and如 isthe derivative on time t. The initial and boundary 

data u0 = u0(x) is in the Sobolev space W古町fl)and satisfies uo > 0 in fl and lluollq+l = 1. 

By multiplying the equation by u and integration by parts on space, 

d q 

dtq + l 
llu(t)ll~tt + II▽ u(t) 11名＝入(t)llu(t) ll~tt • 入(t)= II▽ u(t) 11ふ

where IIJIIP is the p-th powered integral norm on fl of a measurable function f, E(u) := 

IIVull~/p is the p-energy of a function u. The corresponding stationary elliptic type 

equation is concerned with a nonlinear eigenvalue problem and but, has only trivial zero 

solution, by the so-called Pohozacv identity and Hopf's maximum principle, provided that 

the domain fl is star-shaped with the origin, and thus, a solution of the evolution equation 

may have any concentration point of volume, local (q + 1)-th powered integral, at infinite 
time, by the volume conservation llu(t)llq+l = 1. Our main purpose is to study such 

asymptotic behavior of a solution to the evolution equation above. 

We report the following main theorem in this paper. The definition of a weak solution 

of the p-Sobolev flow (1.1) is given in Definition 1 in Section 2.3. 

Theorem 1 Let n be a bounded domain with smooth boundary. Suppose that the initial 

data u。ispositive in n, belongs to w; 化(fl)n L00(rl), and satisfies the volume constraint 
lluollぃ+1(!1)= 1. Let u be a weak solution of (1.1) in 000三 0x (0, oo) with the initial and 

boundary data u。.Then, u is positive and bounded in 000 and, together with its spatial 

gradient, are locally Holder continuous in 000. Moreover, fort E [O, oo), 

(1.2) 入(t)= 11▽ u(t) llf順）； 入(t)::; 入(0).

The global existence of the p-Sobolev flow and its asymptotic behavior, that is the 

volume concentration at infinite time, will be treated in our forthcoming paper, based 

on the a-priori regularity estimates for the p-Sobolev flow, obtained in the main theorem 

above. 

We show the boundedness and non-negativity of a solution by a comparison type argu-

ment, and derive fill expansion of positivity of a solution by some local energy estimates. 

(•) This report is based on the joint work with Kenta Nakamura, a doctor student in Kyushu University 
and Tuomo Kuusi in University of Helsinki, Finland. The work is partially supported by the Grant-in-Aid 
for Scientific Research (C) No.18K03375 at Japan Society for the Promotion of Science 



72

2 Preliminaries 

We prepare some notations皿 dtechnical analysis tools, which are used later. 

2.1 Notation 

Let n be a bounded domain in町 (n2 3) with smooth boundary an and for a 

positive T ::; oo let Dr := n x (0, T) be the cylindrical domain. Let us define the parabolic 
boundary of巧 by

apnr := (an x [o,T)) u (n x {t = o}). 

We recall some function spaces, defined on space-time region. For 1 :::; p, q ::; oo, 

Lq(t1, t2; LP(f!)) is a function space of measurable real-valued functions on a space-time 

region f1 X (t1, t叫witha finite norm 

where 

llvllい(,,,,,, v(n)) ,~{ (f llv (t) Iii叩） dt)'1' 

sup llv(t)lb(n) 
t1:<=t:<=t2 

llv(t)IIL呵：~{~I~~•,;;『,1x)'1'

(l:::;q<oo) 

(q = oo) 

(l:<:'.p<oo) 

(p = oo) 

When p = q, we write L町flX (t凶））＝び(t1,t2; L叩）） for brevity. For 1 :::; pく (X)

the Sobolev space W1• 叩） is consists of measurable real-valued functions that are weakly 

differentiable and their weak derivatives are p-th integrable on 0, with the norm 

llvllw1,P(!1) := (/げ+I▽vlP dx) 1/p' 
!1 

where▽ V = (vの1,... , vxJ denotes the gradient of v in a distribution sense, and let w; ふ叩）
be the closure of C0(0) with resptect to the norm II・llw1,p. Also let Lq(t1, t2; w; 化(0))
denote a function space of measurable real-valued functions on space-time region with a 

finite norm 
t2 

llvllい(t1h;WJ国））：= (l llv(t)II似,P(!1) dt) 1/q . 

Let B = Bp(xo) := {x E ]Rn : Ix -xol < p} denote the open ball with radius p > 0 

centered at some point x0 E ]Rn. Let E c ]Rn be a bounded domain. For a real number 

k and a function v in L1(E), we define the truncation of v by 

(2.1) (v -k)+ := max{(v -k), O}; (k -v)+ := max{(k -v), O}. 

For a measurable function v inじ(E)and a pair of real numbers k < l, we set 

En {v > l} := {x EE : v(x) > l}, En {v < k} := {x EE  : v(x) < k}, 

(2.2) En {k < v < l} := {x EE : k < v(x) < l}. 

Let z = (x, t) E ]Rn x 1R be a space-time variable and dz = dxdt be the space-time 
volume element. 
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2.2 Technical tools 

The following is called De Giorgi's inequality (see [5]). 

Proposition 2 (De Giorgi's inequality) Let v E W1•1(B) for a ball B c IRn and let 

k < l be real numbers. Then there exists a positive constant C depending only on p, n such 

that 

(2.3) 
p n+l 

(l-k)IBn{v>l}l~C j IVvldx. 
IE n {v < k}I Bn{k<v<l} 

Since v E W1,1(B), of course, -v E W1,1(B). Let k > l be any pair of real numbers. 

Applying {2.3) above for -v and -l > -k, we have 

p n+l 
(k-l)IBn{v<l}IさC j IVvldx. 

IB n {v > k}I Bn{l<v<k} 

Let q = np/(n -p) -1 as before. Following [5], we define the auxiliary function 

砂 kqlq () (2.4) が (k,u) := lq (e/q -k) dも A-(k,u):= k-e/q+d( 

for u 2 0 and k 2 0. Changing a variable T/ = e/q, we have 

•(u-k)+ 
が (k,u) = q 1 k (TJ -k)+TJq-l dTJ = q 1c。(k-u)+(TJ -k)q-IT/ dT]; 

A-(k,u)=qf (k-TJ)+TJ『 1dTJ = q (k -TJ)q-IT/ dTJ, f。
Then we formally get 

(2.5) 
fj fj研 fj fj研
玩ず(k,u) =万―(u-k)十＇ 玩A―(k,u) =―可(k-u)+・

If k = 0, we abbreviate as 

A囁）＝が(0,u), A―(u) = A―(0, u). 

Let O < t1く t2::; T and let K be any domain in 0. We denote a parabolic cylinder by 

Kい：= K x (t叫） • We recall the Sobolev embedding of parabolic type. 

Proposition 3 ([5]) There exists a constant C depending only on n,p, r such that for 

every v E L00(t1, t江 (K))nび (t叫； W討(K))

(2.6) j Iv万 dz::;C (! I▽ vlPdz) (sup j Iv「dx)* 
k打，t2 K打，,2 ti <t<t2 n 

The so-called fast geometric convergence is crucially used later. See [5] for details. 

（ Lemma 4 Fast geometric convergence, [5]) Let {Ym}孟0be a sequence of positive 

numbers, satisfying the recursive inequlities 

(2.7) Ym+l::; C籾 Yょ+a, n=0,1, ... , 

where C, b > 1 and a > 0 are given constants independent of m. If the initial value Yo 
satisfies 
(2.8) Yo ::::; c-1/"'b―1/c:,2' 

then lim Ym = 0. 
m→OO 
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The following fundamental algebraic inequality, associated with the p -Laplace operator 

is well-known(see [4]). 

Lemma 5 For every p E (1, oo) there exist positive constants C1 and C2 depending only 
on p and n such that for any~, T/ E Rnk 

(2.9) 

ll~lp-2~- IT1lp-2T/I::::: C1(l~I + IT1l)P-2I~- T/I, 

(l~lp-2~- IT/lp-2T/)·(~- T/) 2: C2に一T/I見

where dot・denotes the inner product in 1R匹

2.3 A weak solut10n 

We state the definition of weak solutions of the'[rSobolev flow (1.1) here. We will study 

a weak solution of the JrSobolev flow (1.1). 

Definition 1 A measurable function u defined on 000 is called a weak solution to (1.1} 
if the following conditions (i)-(iv) are satisfied. 

(Dl) u E£00(0, oo; fV; ド(O)); 姐lulq-lu)Eび（叫）；

(D2) There exists a function入(t)E£1(0, oo) such that, for every'PE C/f叫），

-Loo lulq-1匹 tdz+fo00 I▽ ulp-2▽u 匹 dz=、OO入(t)lulq-1叩 dz,

where dz = dxdt ; 

(D3) llu(t)lb+1(0) = 1 for all t 2 0; 

(D4) llu(t) -uolb+i(o)→ 0 as t→ 0. 

3 Fundamental properties of the p-Sobolev flow 

In what follows, we consider some fundamental properties of the JrSobolev flow (1.1). 

3.1 Nonnegativity and boundedness 

Firstly, we claim that any weak solution to (1.1) must be nonnegative under nonnega-

tivity of the initial value uo. 

Lemma 6 (N onnegativ1ty) Suppose u0 2 0 in 0. Then, a weak solution u of (1.1) 

satisfies 

(3.1) u 2 0 in noo, 

Proof Let O < t1 < t ::; oo be arbitrarily taken and fixed. Put仇，t= 0 x (t1, t). Let <5 

be any positive number such that <5 ::; (t -ti)/3. We define a Lipschitz cut-off function 

on time, O"t,,t such that 

0::; O"t,,t ::; 1, びt,,t=l in (t1+<5,t-<5) and (叩） C (t1,t). 

The function -(-u)+叩 isan admissible test function in (D2), since Ot(lulq-lu) E 

L瓜） by (Dl) and, -(-u)+叩 isin£q+1(0 x (t1, t)). Thus, we have 

J。:,.(lulq-l(-u))(-u)立 t,,tdz + IVulP-2▽ (-u). ▽ ((-u)立 t,,t)dz 

叫 i::::入(T)lul'-'(-u)(-u)匹,,,,dz. 
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and thus, 

t 
q j (-u(t))t+l dxさJ

q+ 1 n 
入(r)j (-u(r))t+1dxdr. 

o n 

From the Gronwall lemma it follows that 

j (-u(t))t+l dx.::; 0, 
n 

since by (D4), (-u(t))+→ 0 in Lq+l (!1) as t ¥, 0. Therefore we have -u(x, t) .::; 0 for 

(x, t) E瓜 andthe claim is actually verified. ロ

Here, we recall that入(t)is explicitly computed as follows: 

Proposition 7 Let u be a nonnegative weak solution to (1.1). Then 

入(t)= IIVu(t)lltP(rl)'t E [O, oo). 

The proof is done as in Introduction, where we note that 8t(lulq-lu) Eび(!too)by (Dl) 
and u E£00(0, oo; Lq+l(D)) by (Dl) and the Sobolev embedding of w; 炉(!1)into Lq+l(D). 

We next derive the boundedness of the 1rSobolev flow (1.1). 

Proposition 8 (Boundedness) Let u be a nonnegative weak solution of the p-Sobolev 

flow {1.1). Then u is bounded from above in 000 

llu(t)IIL00(0) :S ect/qlluollL00(0), 

with c := sup II▽ u(t) 111{噸）・
O<t<oo 

Proof Let u be a nonnegative weak solution of (1.1). Since u E£00(0, oo; wJ,P(n)), 

II▽ u(t)lliv(fl) E L00(0,oo) and thus, by Proposition 7, 入(t)= II▽ u(t)lliP(fl) E L00(0, oo). 

Thus, the weak solution u to (1.1) is the weak subsolution, satisfying in the weak sense 

馴— div (1▽ ulp-2▽ U) :S: C研， c:= sup 入(t).
O<t<oo 

We will follow the similar argument as in [I]. Set M := lluollLoo(fl) and, for a small 5 > 0, 
let us define the Lipschitz truncated function必(u)by 

叫）：= min{ 1, (e―叫q〗 -M)+}'

where the support of必 is{lul > ectfqM}, 必(u)E L00(rlr) and必(0)= 0 and, 必(u)E 

炉 (O,T;vV;炉(fl))since叫） is Lipschitz on u. Let O < t1 < t ::; T and at,,t be the 
same time cut-off function as in the proof of Lemma 6. The function e-ctびt,,t的(u)is an 

admissible test function in (D2). Thus, we have 

(3.3) k,,,, 8t(e―ctl叩）叩，t向(u)dz+ k,,,, I▽ ulp-2▽ U・ ▽ (e-ct吐，t向(u))dz:s;O. 

The first term of (3.3) is computed as 

(3.4) J 叫e―叫叩）min { 1, 
(e―ct/qlul -M)+ 

Oti,t J } uい，tdz. 
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Since, on the support of¢0, {lul > e虹 M},

1 
▽ U・ ▽四(u)= JX{ect/qM<lul::;ect/q(M+o)}I▽ ul汽

the integrand in second term of (3.3) is estimated from below as 

(3.5) 
I▽ ulP -ct 
O X{ect/qM<lul::oect/q(M+o)}びt1,te 2: 0. 

From (3.3), (3.4) and (3.5), we obtain 

(3.6) j Bt(e―ctlulq) min { 1 
(e―ct/qlul -M)+ 

叫, 0 } a-ti,t dzさ0.

Since by (Dl) 8t(lulq-lu) = 8tlulq Eび(D)it holds that幼(e-ctlulq)Eび（幻） • Taking 
the limit as t5 ¥. 0 in (3.6), by the Lebesgue dominant convergence theorem, we have that 

J姐e―ctlulq)X{iul>ect/qM}dz ::; O; 

J尻，'8t(e―ctlulq-Mq)+dxdt ::; 0. 
Q打，t

By (D3) 

k(e―ct1lu(t1)lq -Mり心：：：：：： k (lu(t1W -Mq)+dx→ O 

as t1 ¥,, 0. Hence, pass to the limit as t1 ¥,, 0 in (3. 7) to have 

j (e―ctlu(tW-Mり+dxS 0 
N 

if and only if lu(t)I < ect/qM in Ox [O, T] - '  and we arnve at the assertion. 

3.2 Energy equality 

口

Here, we derive the energy equality for a weak solution to (1.1). Firstly, we need the 

existence of a四 inび(!too)-

Lemma 9 Let u be a nonnegative solution to {1.1). Then there exists Btu in a weak sense, 

such that如 Eび（叫）．

The proof of this lemma is by a Lipschitz approximation with the non-negativity of a 

solution and integrability that 8tuq in (Dl). 
By using the lemma above and Proposition 8 we have the following energy equality: 

Proposition 10 (Energy equality) Let u be a nonnegative solution to {1.1). Then the 

following estimates hold true: 

In particular, 

(3.8) 

1 1 
q j uq-1(如）2dz+ —入(t) =—入(0), t E [O, oo). 

Q。,t p p 

入(t):S入(0), t E [O, oo). 
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Proof The function O"れが加 isan admissible test function in (D2) by a usual regularization, 

Proposition 8 and Lemma 9. By a test functionびぃ如 in(D2), we have 

L,1,, 亨）叩如dz+1網，'I▽ulp-2如・ ▽ (O"ti,t如） dz 

(3.9) = j 入(t)uqO"虞 'tudz.
Q打，t

Note that the integral on the right hand side in (3.9) is finite by Proposition 8 and Lemma 

9. Using the Lebesgue dominated convergence theorem with Proposition 8 and Lemma 9, 

the first term on the left hand side of (3.9) is computed as 

J 如尻，tOtudz
0,1,t 

q j uq-1(知）2互，tdz
0,1,t 

(3.10) → q j uq-1(如）2 dz as 
flt1,t 

o~O. 

The second term on the left hand side of (3.9) is treated as 

j IVulP-2▽ u・V (c,t1,t如） dz 
Q打，t

/ I⑮ ip-2如・政叫，tdz

I: ゜,(¾1▽nlP)•,,,,d, 

j _!_lv'ulP叩，tdXt-J _!_I▽ ulPo呵，tdZ
!1 p t1 !1ti,t p 

(3.11) 

→ f½1v1u(: )『dx-k½ 団 (t1)1Pdx 邸 8¥; 0 

—入(t) -—入(t1),
p p 

where the manipulation in the second and third lines is justified by a usual regularization. 

By the volume conservation fo u(t)q+l = 1, t 2: 0, the right hand side of (3.9) is calculated 
as 

J糾 t入(t)u尻，t如 dz = 1: 入(t)ut1,t羞(In::: dx) dt 

(3.12) = 0. 

From (3.10), (3.11) and (3.12), it follows that 

1 1 
q j uq-1(如）2dz+ —入(t) -—入(t1) = 0. 

flt1,t p p 

Passing to the limit as t1~0, we have the desired result. ロ

According to Proposition 7 and (3.8), Proposition 8 concerning the boundedness is 
quantitatively written as follows: 

Proposition 11 Let u be a nonnegative weak solution to (1.1) and put入。：＝入(0).Then 

llu(t)IIL°"(r!)::; e入at/qlluollL°"(r!), t E [O, oo). 
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4 Expansion of positivity 

In this section, we will establish the expansion of positivity of a nonnegative solution of 

the p-Sobolev flow (1.1). A nonnegative solution of the p-Sobolev flow is a supersolution, 

satisfying in the weak sense 

(4.1) 馴— div(1▽ ulp-2如） 2': 0, 

since u 2 0 by Lemma 6 and入(t)2: 0 for any t E [O, oo) by Proposition 7 
We make local estimates to show the expansion on space-time of positivity of a weak super 

solution in (4.1). For any positive numbers p, T and any point zo = (xo, to) E Or, a local 
parabolic cylinder of radius p and height T with vertex at zo is denoted by 

Q(T, p)(zo) := Bp(xo) x (to -T, to), 

For brevity, we write Q(T, p) as Q(T, p)(O). Following the argument in [6] (also see [5] and 

[24]), we proceed our local estimates. 

4.1 Local energy estimates 

We present the local energy estimates, called Caccioppoli type estimates, which have a 

crucial role in De Giorgi's method (see Section 4). 

Let K be a subset compactly contained in 0, and O < t1 < t2 :<:: T. Here we use 

the notation Kい=K x (t直）• Let (be a smooth function such that 0さく:<::1 and 

(= 0 outside Kt,,t2. By use of A+(k,u) and A-(k,u), the local energy inequality can be 

derived. 

Lemma 12 Let k 2: 0. Let u be a nonnegative weak supersolution in (4-1). Then there 

exists a positive constant C depending only on p, n such that 

sup j A―(k, u)(P dx + I▽ (k -u)+(IPdz 

,,≪ くむ K:{; Lv,iA―(k, u);-;::+ C /, 厄,,(k -u)ど1叫 d,

(4.2) +c Jが (k,u)(P-1 l(tl dz. 
底，'2

Proof Since OtUq Eび（切） by (Dl) and the nonnegativity of u in切， wechoose a test 

function r.p as -(k -u)+びin(D2) to have 

(4.3) -1知，,Otuq(k -u)ぐ dz-1知，'I▽ulp-2▽ U・ ▽ ((k -u)ぐ）dz:<:: 0. 

By the formula (2.5), the first term of (4.3) is computed as 

-! 馴 (k-u)ぷPdz
k打，t

Jい (k,u)(P dz 
k打，t

(4.4) J 
t 

KA-(k,u)びdxt1 -p 1屈，,A-(k, u)(P-1l(tl dz. 

By use of Young's ineq叫 ity,the second term of (4.3) is estimated from below by 

1 
(4.5) ぅJ底，'I▽(k -u)ん dz-Ci底，'(k-u)印▽(IP dz. 
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Gathering (4.3), (4.4) and (4.5), we obtain, for any t E (t1,t2), 

fKx{t}ず (k,u)(P dx + 1底，'I▽(k -u)+Iで dz

::::; C Lx{ti} A―(k,u)(Pdx+C 1見，'A―(k,u)(P-1l(tl dz 

+c j (k-u)』▽(IP dz. 
k杜，t

Thus, we arrive at the conclusion. 

The so-called Caccioppoli type estimate follows from Lemma 12. 

Proposition 13 (Caccioppoli type estimate) Let k 2 0. Let u be a nonnegative weak 

supersolution in (4.1). Then, there exists a positive constant C depending only on p, n such 

that 

ロ

農贔fKx{t}(k -u)t+l(国 +i知 '2I▽ (k -u)+(IPdz 

:::; C Lx{t1}戸 (k-u)幻 dx+Ci屈 ,2(k -u)~I▽⑰ dz 

(4.6) +c J 戸 (k-u)tl(tl dz. 
k打，'2

k 

Proof We estimate A-(k,u) = q j (k -rJ)+rJq-ldrJ defined as in (2.4). The lower 
u 

boundedness is obtained as follows: 

Case 1 (u 2". k/2) : Since'T/ 2': k -rJ 2". 0 for~:::; u :::; rJ :::; k, it holds that 

(4.7) A―(k, u) 2': q fu¥k -rJ)q drJ = q ! 1 (k -u)q+l_ 

Case 2 (u < k/2) : Since O < k k _ _ -TJSrJfor互ST/ S k, it holds that 

A―(k, u) = q jk/¥k -TJ)+が―ldrJ+qJk (k-TJ)+が―1dTJ 
u k/2 

2 q1;/k-TJ)囁=q!l Gr+l 

(4.8) 2 
q l 

q + l 2q+l 
(k -u)q+l, 

where, in the last line, k > k -u 2 0 since O S u S k/2. Also, the upper boundedness 
follows from 

(4.9) 

A―(k,u) = qi 
(k-u)+ 

(k -17)q-l1] d17 

゜:s; qkq-l J 
(k-u)+ 

1] d17 = qkq-l (k -u)t 
0 2 . 

From Lemma 12, (4.7), (4.8) and (4.9), we obtain the conclusion. ロ
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4.2 Positivity estimates 

Proposition 14 Let u be a nonnegative weak supersolution in (4.1). Let Bp(x0) c [! 
with center x0 E n and radius p > 0, and t0 E (0, T]. Suppose that 

(4.10) IBp(xo) n {u(to) 2 L}I 2 alBpl 

holds for some L > 0 and a E (0, 1]. Then there exists positive numbers 8, c E (0, 1) 
depending only on p, n and a and independent of L such that 

(4.11) IBp(xo) n {u(t)~EL}I~ >IBpl

for all t E [to, to+§Lq+l-p炉].

The proof is omitted (refer to [6]). 
The following estimate is crucial for the positivity of a solution. 

Lemma 15 Let u be a nonnegative weak supersolution in (4.1). Let Q叫zo):= B叫x0)x 
(to, to+ JLq+l-p炉） C巧， where§isselected in Proposition 14. Then for any v E (0, 1) 
there exists a positive number E:v depending only on p, n, a, J and v such that 

IQ叫zo)n {u < EvL}I < vlQ叫

Proof We may assume zo = 0 as before. By Proposition 14, there exist positive numbers 
J, c E (0, 1) such that, for all t E [0, §Lq+l-p炉],

(4.12) 
a 

IB4p n {u(t)~cL}I~-4―nlB叫
2 

Set 0 =§Lq+l-p and let (= ((x) be a piecewise smooth cutoff function satisfying O s 
(S 1, (= 0 oustside Bsp, (= 1 in B4p, and IV(I S (4p)-1 . Let朽=21cL (j = 0, 1, ...). 
Applying the Caccioppoli type inequality (4.6) for the truncated solution (kJ―u)+ over 

Q4p with the level kJ, we obtain 

J IV(kj―u)+IP(P dz 
Q4p 

::; 1恥 {t=D}kr¥kj―u)誓 dx+ C hsp (kj ― u)~IV⑰ dz 
::; C (kt1IB8pl +応IQ釧(4p)-P)

::; Ckf u+i-plBBpl (1 + rPo) 

(4.13) 
炉 kP

::; Cユ-IQ釧=Cユ-IQ叫，
釘如 8炉

where the constant C depends only on n, p and independent of p, L. By De Giorgi's 
inequality in Proposition 2 to k = kJ+1 and l = kj, we have, for all t, 0さt::; t5Lq+l-p炉＝

0炉，

(4.14) (k1―kj+1)IA1+1(t)I < Cpn+l j 
-IB4p ¥Aj(t)I B4pn{kJ+1<u(t)<朽｝

I▽ u(t)I dx, 

where let A1(t) := B4p n {u(t) <朽}.By (4.12), it holds that 

(4.15) 
a 

IB4p ¥Aj(t)I > -4―nlB叫- 2 

Combining (4.15) and (4.14), we have that 

k・pn+l  
才IA1+1(t)I ::::; J 団 (t)Idx 

叫¥Aj(t)I B4pn{k;+i<u(t)<朽｝

(4.16) 
C ：：：：—pf 団(t)I dx. 
a B4pn{k;+1 <u(t)<朽｝
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Integrating (4.16) in t E (0, 0炉） yields 

k 
J IA1+1I < 

C 
万―Pf I▽ ul dz, 

- a Q4pn{k;+1 <u<朽｝
(4.17) 

where we put IA』:=! ゚炉凶(t)Idt = IQ4p n {u(t) < kj}I. By use of Holder's inequality, 

゜(4.13) and (4.17), we have 

K・

』 IAH1I
2 

VI 

VI 

(4.18) 

C l 

訳 [/4.pI▽ (kj―u)平 dzrIAj ¥Aj+1Iデ

C k・ 1 =! 
-p+IQ4pげ(IA』-IAj+1I) P 

ct 5砂
C 1 

一丑』Q4p仔(IAjl- Aj+1I) 号
a:5,; 

and thus, 
_.E.__ 

IAH1I;& :S い'.¼rー 1 IQ4p戸 (IAjl-IAH1I)・ 

Let JEN be determined later. Summing (4.19) over j = 0, 1, ... , J -1, we obtain 

(4.19) 

(4.20) 

_E_ 

JIAJI六 s::(cl) p-l IQ4p戸．
al5P 

Indeed, by use of IA。I2:: IA』2::AJI for j E {O, 1, ... , J}, we find that 

J-1 

L IAj+ll凸 2:JIAJI五
j=O 

Therefore, from (4.20), it follows that 

J-1 

区(IA』-IAH1I)::; IAol::; IQ叫
j=O 

(4.21) 
1 C 

IAJI :s; 庁い） IQ叫・

Thus, for any v E (0, 1), we choose sufficiently large JEN satisfying 

(4.22) J 士(~)~1 C 戸(~) :::;v~ 

c 
Here we note that J depends only on p, n, a, o and v. We finally take E:11 = - and then 

2J 
(4.21) yields that 

IQ4p n {u < EvL}I 

IQ叫
< v, 

which is the desired assertion. ロ

Remark 16 Noting that the parameters ,5 and c in the proof of Proposition 14 are suffi-

ciently small, we can choose c such that 

(4.23) E=信） q+Lv 
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for some large positive integer I. In the proof of Lemma 15 and the choice of kj, we also 
choose kj as follows: 

(4.24) 
EL 

朽= j for j = 0, 1, ... , J. 
2q+l-p 

b 
0 q+l-p 

Under such choice as a ave we note that kJ = ( =  2I+J) L and obtain that 
oLq+l-p炉

(kJ)q+l-p炉

2J+I, which is a positive integer. Following a similar argument to /6, p. 76}, we next divide 

Q4p(zo) into finitely many subcylinders. For any v E (0, 1), let J be determined in (4.22). 

We divide Q叫zo)along time direction into parabolic cylinders of number so := 2I+J with 

each time-length k 
q+l-p 
J 炉， andset 

Q(R) :=B叫xo)x (t。+Rk'.}+1-p炉， to+(£+l)k'.}+1-p炉）

for£= 0, l, ... , so -1. Then there exists a Q(R) such that 

(4.25) IQ化） n {u < kJ}I < vlQ(Rll, 

Under the preparation above, the positivity of a solution in (4.1) is obtained in a small 

interval. 

Theorem 17 (Expansion of local positivity) Let u be a nonnegative weak supersolu-

tion in (4.1). Let Bp(xo) C O with center xo E O and radius p > 0, and to E (0, T]. 

Suppose that (4.10). Under (4.25) there exists a positive number rJ < 1 such that 

(4.26) u::::: 叫 a.e. B2p(xo) x (to+ (£ 十2)砂1-p炉， to+(£+l)k'.}H-pゲ）．
Proof Hereafter we fix the parameters p, £and kJ. By translation we may assume to 

shift (x0, t0 + (£+ l)k'.}H-p炉） to the origin and thus, Q(l) is transformed to B叫x0)x 

(-k'.}+l-p炉，0).Form= 0, 1, 2, ... , let 

加 =~(1 +~) , Pm = 2p (1 +~) ; Em := E4pm, Qm := Em X (-0加， 0),

q+l-p 
where 0 := k 

J'  
and also set 

Then, we have 

叫：＝什+2~+1) 幻

炉=TQ?: Tm¥,, 国＝炉/2, 4p = Po ?: Pm ¥,, Poo = 2p; 

Q。=Q(f)コQm¥,, Qoo = B2p X (0, 0炉/2);

幻="'O?: "'m ¥,, 辰＝幻/2.

The cutoff function (is taken of the formく(x,t) = (1(x)(2(t), where (i (i = 1, 2) are 

Lipschitz functions such that (1 = 1 in Bm+l, (1 = 0 in JR八Emand I▽ (11 S 1/(Pm -

Pm+1) = 2m+2 / p and, (2 = 0 for t S ー 0加， (2= 1 for t > -0加 +1and O S く2,t
さ1/0(Tm-Tm+1)S 2P(m+2l/0炉.Applying the local energy inequality (4.6) over Em and 
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Qm to the truncated solution (Km -u)+ and above(, we obtain 

-0こ覧。J叫（邸— u(t))i+lび dx+ km  I▽ (Km -u)心 dz

::; C j (Km -』IV⑰ dz+ C 1,, 盆ー1(Km-u)21(tl dz 
Qm J釦
(2m+2 P q+l-p 

::;c P ) "'ぶし (1+"'m。) X{(,;,m-u)+>O} dz 

2m+2 P 

(4.27) ::; C (p)  K,~km X{(,;m—叫>D} dz, 
q+l-p Km Km 

q+l-p 
where we used that 。=(k) さ1.Combining Proposition 3 and (4.27), we 

J 
have 

km  l(Km -u)+(lq+l dz= km  l(Km -u)+(IPn+~+i dz 

::;c(/4年 IV[(Km-u)+く］化dz)(。Tm<t<Olm l(Km -u(t))+(lq+l dz)名

(4.28) ::; C (炉:+2r(l十!)kj(l十!)(km X{(,;m—叫>D} dz) i十舟'

where q + 1 = 
p(n+q+l) . 

m the second line. n 

The left hand side of (4.28) is estimates from below as 

hm  [(Km -叫F+ldz 2: h m  [(Km -u)+く]q+lX{(i<m+l-ul+>O} dz 

2: I氏m-Km+ilq+l j X{(i<m+i-叫 >O}dz 
Qm+l 

（幻 q+l
2m+2) J X{(i<m+1-叫 >O}dz. 

Qm+l 
(4.29) 

Hence, by (4.28) and (4.29), we have 

J C[2p(l十岳）+q+l匹 p(l+;)-(q+l) 1十舟
Qm+l X{(i<m+l -u)+>D} dz ::::; 炉(1+岳）朽 (lmX{(i<m-u)+>D} dz) , 

(4.30) 

where we compute 

C(~)—(q+l) (二）p(l十召） e(l十岳） = c[2P(l+;)+q+l]m kp(l十;)-(q+l)
2m+2 p J 炉(1+;) J ・

Dividing the both side of (4.30) by IQm+il > 0, we have 

1 J X{("m+l -u)+>O} dz ::; C[2p(l十名）+q+l匹(1 J 1十召

X{(氏m-u)+>O}dz)' 
IQm+il Qm+l IQ叫 Qm

(4.31) 

where 
IQ叫1十舟

IQm+il 
::;c炉(1十名）(k'.}+1-p)舟
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and p(l +~) -(q + 1) + (q + 1 -p)~= 0 are used. 

Letting Ym := J X{(,.,,m-u)+>O} dz/IQ叫， theabove inequality (4.31) is rewritten as 
Qm 

Y 
1+E. 

m:S;C籾 Ymn, m = 0, 1, ... , 

where b := 2p(l十*)+q+l.From Lemma 4, we find that, if the initial value Yo satisfies 

(4.32) 

then 

(4.33) 

Yo:::; c-C即ぃ印2 =: 乃

Ym→ 0 as m→ 00. 
Eq.(4.25) is equivalent to (4.32) by taking v = v0, and then (4.33) leads to the conclusion 

(4.26) by putting T/ =祝<1. ロ

If a solution is positive at an initial time, the positivity of a solution may expand from 

the initial time into some positive time-interval, without any "waiting time". This follows 

from a minor modification of the proof of Theorem 17 above. 

Corollary 18 Let u be a nonnegative weak supersolution in (4.1). Suppose that u(t0) > 0 

almost eve内wherein B叫x0)c D. Then there exist positive numbers T/o and To such that 

u:::::: 叩 a.e. in B2p(xo) x (to, to+ To)-

The positivity of a solution may also hold true even on a non-convex domain. Here 

we note that the De Giorgi's inequality is valid only on a convex domain. Let D'be 

a subdomain contained compactly in D. We use Theorem 17 and a method of chain 

of finitely many balls as the so-called Harnack chain used in Harnack's inequality for 

harmonic functions, [7, Theorem 11, pp.32-33] and have the following theorem. Here we 

use the special choice of parameters, as explained before Theorem 17. 

Theorem 19 Let u be a nonnegative weak supersolution in (4-1). Let D'be a subdomain 

contained compactly in D. Let to E (0, T]. Suppose that 

(4.34) IO'n {u(to) 2:: L}l 2: alfl'I 

holds for some L > 0 and a E (0, l]. Then, there exist positive integer N = N(D') 

and positive real number families {如｝似。，｛珈｝岱且 C(0, 1), {Jm}似。， Um}似。 cN
depending on p, n, a and independent of L, a time応 >to such that 

u~'T/N+1L a.e. in n'x (tN + (k + D ON(;~N~::l-p 炉， tN + (k + 1) ON(; ェり：:1-p炉）

for some k E { 0, 1, ... , 砂 +IN-1 }, where tN is written as 

tN = to十t(c+D <Sm-! 四—:f}q~l-p 炉
m=l 

for some CE {O, 1, ...'2Jm-l +Im-1 }. 

As mentioned in Corollary 18, if a solution in (4.1) is positive almost everywhere in O' 

at some time t0, its positivity expands in space—time without "waiting time". 
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Corollary 20 Let u be a nonnegative weak supersolution in (4-1). Let n'be a subdomain 

contained compactly in n. Suppose that u(t0) > 0 almost everywhere in n'for some 

t0 E [O, T). Then there exist positive numbers 170 and To such that 

U~1]0 a.e. in i1'X (to, to+ To)-

In general, the solution to the fast diffusion equation of the same type nonlinearity as 

the equation of (1.1) may vanish at a finite time. However, under the volume constraint as 

in (1.1), the solution may positively expand in all of times. This is actually the assertion 
of the following proposition. 

Proposition 21 (Interior positivity by the volume constraint) Let n'be a subdo-

main compactly contained in n and very close to n. Let T be any positive number and 

Assume that uo > 0 inn. Let u be a nonnegative weak solution of (1.1). Then there exists 

a positive constant fj such that 

u(x, t) 2 fi in O'x [O, T]. 

Proof By the volume constraint and Proposition 11, letting M := e入。T/qlluollL00(!1),we 

have, for a positive number L < M and any t E [O, T] 

1 = J戸 (t)dx 

i'n{u(t)~L} uq+l(t) dx + 1叩 {u(t)<L}uq+l(t) dx + k¥〇,uq+l(t) dx 

：：：：： Mq+ll!J'n {u(t) 2 L}I + u+1110'1 + Mq+ll!J¥O'I; 

and thus, 
1-Lq+11n'1-Mq+11n¥n11 

――十1 :::; ID'n {u(t) 2: L}I-

Choose D'such that ID ¥D'I :::; 4M1q+1 and L > 0 satisfying Lq+l ID'I <¼- Under such 
choice of D'and L, we find that, for any t E (0, Tl, 

(4.35) air!':::; ID'n {u(t) 2: L}I, 

1 
where a := 

2Mq+llf2'1" 
By (3.8), a nonnegatvie weak solut10n u of (1.1) is a weak 

supersolution in (4.1). Thus, from Theorem 19, there exist positive integer N = N(rl') and 
positive number families {伽｝似。， {TJm}:月C (0, 1), {Jm}似。， {Im}岱=OC N depending 
on p, n, a and independent of L, a time tN > t such that, for any t E [O, Tl, 

u 2'.'f/N+lL a.e. inn'X埒(t),

where'I炉(t):= (tN+ (k+ ら）む~fNLJご―p 炉， tN+(k+l)8N望r;りご―p伊） for some k E 

{ 0, 1, ... , 砂 +IN-l }, and tN is written as 

N 

tN = t十芦(£+D Om-~t~;J;::~~l-p炉

for some R, E {O, 1, ... , 2誓 1+fm-l_ 1}. ロ
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We finally state the positivity near the boundary for ]rSobolev flow (1.1). 

Proposition 22 (Positivity near the boundary) Suppose that u0 > 0 in 0. Let u be 

a nonnegative weak solution of (1.1). Then u is positive near the boundary {)0. 

Proof For the doubly nonlinear equation of the same type as p-Sobolev flow (1.1) we 

have the comparison principle. Thus, the usual comparison argument near boundary can 

be applied (refer to [l]). ロ

5 Holder and gradient Holder continuity 

Here we will study the Holder and gradient Holder continuity of the solution to p-

Sobolev flow (1.1) with respect to space-time variable. 

Suppose uo > 0 in 0. Then by Propositions 21 and 8 (or 11), for any O'compactly 
contained in 0, we can choose positive constants c and M such that 

(5.1) O<cさu:::;M in O'x[O,T]. 

Note that the constant M depends only on T, 入。， lluollL00(!1)p and v and, c depends only 

on M, St',p and n. Under such positivity of a solution in the domain as in (5.1), we can 

rewrite the first equation of (1.1) as follows : Set v :=訊 whichis equivalent to u = v q 

and put g :=却l/q-land then, we find that the first equation of (1.1) is equivalent to 
q 

(5.2) 如— div(IVvlP-2gp-l▽v) =入(t)v in n'x [0, T] 

and thus, v is a positive and bounded weak solution of the evolutionary p-Laplacian 

equation (5.2). By (5.1) g is uniformly elliptic and bounded in D:X,. Then we have a local 

energy inequality for a local weak solution v to (5.2) (see [5]). 

The following Holder continuity is proved via using the local energy inequality and 

standard iterative real analysis methods. See [5, Chapter III] or [24, Section 4.4, pp.44-
47] for more details. 

Theorem 23 Let v be a positive and bounded weak solution to (5.2). Then v is Holder 

continuous in fl~with a Holder exponent (3 E (0, 1) on a space-time metric lxl + 1tl1/P for 
any T > 0. 

By a positivity and boundedness as in (5.1) and a Holder continuity in Theorem 23, 

we see that the coefficient gP-l is Holder continuous and thus, obtain a Holder continuity 

of its spacial gradient. 

Theorem 24 Let v be a positive and bounded weak solution to (5.2). Then, there exist a 

positive exponent a < l depending only on n, p, (3 and a positive constant C depending only 

on n, p, c, M, >.(O), (3, II▽ vllLP(得）， [g]/3,!1~and [v]13,11, such that▽ Vis Hold er continuous in 

硝 withan exponent a on the usual parabolic distance. Furthermore, its Holder constant 

is bounded above by C, where [J]13 denote the Holder semi-norm of a Holder continuous 

function f with a Holder exponent (3. 

By an elementary algebraic estimate and a interior positivity, boundedness and a Holder 

regularity of v and its gradient▽ v in Theorems 23 and 24, we also have a Holder regularity 

of the solution u and its gradient▽ u. 
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Theorem 25 (Holder and Gradient Holder continuity) Let u be a positive and 

bounded weak solution to the p-Sobolev flow (1.1}. Then, there exist a positive exponent"(< 

l depending only on n,p, /3, a and a positive constant C depending only on n,p, c, M, ..¥(0), 
/3, a, II置IILP⑰)， [g]fJ,f!~and [v]fJ,f!'such that u and▽ u is Holder continuous in n'with 

an exponent'Y on a parabolic metric lxl + ltl1/P and on the parabolic one, respectively. The 

Holder constants are bounded above by C, where [flfJ denote the Holder semi-norm of a 

Holder continuous function f with a Holder exponent /3. 
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