Analytic Solutions of Nonlinear Difference Equation

愛知学泉大学 経営学部 鈴木麻美（Mami SUZUKI）

College of Business Administration，Aichi Gakusen Univ．

1 Introduction

We consider the following second order nonlinear difference equation，

$$
\begin{equation*}
u(t+2)=f(u(t), u(t+1)) \tag{1.1}
\end{equation*}
$$

where f is a holomorphic function for $u(t), u(t+1)$ ．Put u^{*} as a equilibrium point of（1．1）． And we suppose that（1．1）has a equilibrium point $u^{*}=0$ and $f(x, y)=-\beta x-\alpha y+g(x, y)$ ， （ α, β are constants，$\beta \neq 0$ ），where g is higher order terms for x, y such that $g(x, y)=$ $\sum_{i, j \geqq 0, i+j \geqq 2} b_{i, j} x^{i} y^{j}$ ．Here we consider analytic solutions such that $u(t) \rightarrow 0$ when $t \rightarrow+\infty$ or $t \rightarrow-\infty$ ．

The Characteristic equation of（1．1）is

$$
\begin{equation*}
D(\lambda)=\lambda^{2}+\alpha \lambda+\beta=0 \tag{1.2}
\end{equation*}
$$

Let λ_{1}, λ_{2} be roots of the characteristic equation and $\left|\lambda_{1}\right| \leqq\left|\lambda_{2}\right|$ ．Then we consider following two case i）$\left|\lambda_{1}\right|<1$ ，and ii）$\left|\lambda_{2}\right|>1$ ．Of course，some characteristic equations have properties both i）and ii）．

Here we consider solutions such that i）$u(t) \rightarrow 0, \quad$ as $\mathbb{R}[t] \rightarrow+\infty$ ，and ii）$u(t) \rightarrow$ 0 ，as $\mathbb{R}[t] \rightarrow-\infty$ ．

2 Existence of an analytic solution

If（1．1）is a real Model，then the＂t＂of equation（1．1）represent＂time＂and t is of course a real variable．But in this section we consider t to be a complex variable，and we will prove existence of an analytic solution of（1．1）which converge to 0 with methods of complex analysis．

When we consider a real Model，after we have solutions of（1．1），we take t such as $t \in \mathbb{R}$ ．Then we can have solutions which are real values．

2.1 A formal solution

In case i) we put $\lambda=\lambda_{1}$, in case ii) we put $\lambda=\lambda_{2}$. Then we can define a firmal solution such as

$$
\begin{equation*}
u(t)=\sum_{n=1}^{\infty} \alpha_{n} \lambda^{n t} \tag{2.1}
\end{equation*}
$$

in both cases. Where α_{1} : arbirary, $\alpha_{k} \cdot D\left(\lambda^{k}\right)=C_{k}\left(\alpha_{1}, \cdots, \alpha_{k-1}\right),(k=2, \cdots)$, and $C_{k}\left(\alpha_{1}, \cdots, \alpha_{k-1}\right)$ are polynomials for $\alpha_{1}, \cdots, \alpha_{k-1}$ with coefficients $b_{i, j} \lambda^{l}, 0 \leqq i \leqq k$, $0 \leqq j \leqq k, 0 \leqq l \leqq k, 2 \leqq i+j \leqq k$. Here we suppose that $\alpha_{1} \neq 0$.

2.2 Map T and its Fixed Point

Here we put $u(t)=s, u(t+1)=w, u(t+2)=z$, and $H(s, w, z)=-z+f(s, w)$. Then the equation (1.1) can be written such as $H(u(t), u(t+1), u(t+2))=0$.
$H(s, w, z)$ is holomorphic in a neighborhood of $(0,0,0)$, and we have $H(0,0,0)=0$, easily. Furthermore we have

$$
\frac{\partial H}{\partial s}(0,0,0)=\left.\frac{\partial f}{\partial s}\right|_{s=w=0}=-\beta \neq 0
$$

So we have a holomorphic function ϕ such that $s=\phi(w, z)$ for $|w|,|z| \leqq \rho$, (for $\exists \rho>$ $0)$. Furthermore we have a constant K such that $|s|=|\phi(w, z)| \leqq K(|w|+|z|)$ for $|w|,|z| \leqq$ ρ.

Let N be a positive integer. Put the partial sum of formal solution as $P_{N}(t)=$ $\sum_{n=1}^{N} \alpha_{n} \lambda^{n t}$, and put $p_{N}(t)=u(t)-P_{N}(t)$. Here we rewrite $p(t)=p_{N}(t)$.

Moreover we define following sets,

$$
\begin{gathered}
S(\eta)=\left\{t \in \mathbb{C}:\left|\lambda^{t}\right| \leqq \eta\right\} \\
J(A, \eta)=\left\{p: p(t) \text { is holomorphic and }|p(t)| \leqq A\left|\lambda^{t}\right|^{N+1} \text { for } t \in S(\eta)\right\} .
\end{gathered}
$$

in which $A>0$ and $\eta, 0<\eta<1$, are constants to be determined later.

2.2.1 The case i) $|\lambda|<1$

In this case, our aim is to prove the existence of $u(t)$ when $\mathbb{R}[t] \rightarrow \infty$, such that

$$
u(t)=\phi(u(t+1), u(t+2))
$$

If we have the analytic solution $u(t)$, then it is the solution of (1.1), and have a solution p of following equation,

$$
p(t)=\phi\left(p(t+1)+P_{N}(t+1), p(t+2)+P_{N}(t+2)\right)-P_{N}(t)
$$

Conversely if $p(t)$ which satisfies above equation would exist, then we have a solution $u(t)$ of (1.1) which has the expansion (2.1) by $u(t)=p(t)+P_{N}(t)$.

For $p(t) \in J(A, \eta)$, put

$$
T_{1}[p](t)=\phi\left(p(t+1)+P_{N}(t+1), p(t+2)+P_{N}(t+2)\right)-P_{N}(t)
$$

Lemma 1. We have a fixed point $p(t)=p_{N}(t) \in J(A, \eta)$ of T_{1}, which depends on N.
Proof. Since ϕ is holomorphic on $|w| \leqq \rho,|z| \leqq \rho$ we have

$$
\left|\frac{\partial \phi}{\partial w}\right|,\left|\frac{\partial \phi}{\partial z}\right| \leqq \frac{8 K}{\rho} \quad \text { for } \quad|w|,|z| \leqq \frac{\rho}{2}
$$

Next we take A, and take η sufficiently small such that $A \eta^{N+1}<\frac{\rho}{4}$. Then for sufficiently large t, we have $|p(t)| \leqq A\left|\lambda^{t}\right|^{N+1}<\frac{\rho}{4},|p(t+1)| \leqq A|\lambda|^{N+1}\left|\lambda^{t}\right|^{N+1}<\frac{\rho}{4},|p(t+2)| \leqq$ $A|\lambda|^{2(N+1)}\left|\lambda^{t}\right|^{N+1}<\frac{\rho}{4}$. Furthermore we can obtain $|w|,|z| \leqq \frac{\rho}{2}$. So we have

$$
\begin{equation*}
\left|T_{1}[p](t)\right| \leqq\left(\frac{16 K}{\rho} A|\lambda|^{N+1}+K_{2}\right)\left|\lambda^{t}\right|^{N+1} \tag{2.2}
\end{equation*}
$$

where K_{2} is constant, depends on N. Hence we have If we suppose N is so large that $\frac{16 K}{\rho}|\lambda|^{N+1}<\frac{1}{4}$, furthermore we take A so large that $A>\frac{4}{3} K_{2}$, then

$$
\left|T_{1}[p](t)\right|<A\left|\lambda^{t}\right|^{N+1}
$$

So we obtain that T_{1} maps $J(A, \eta)$ into itself, The map T_{1} is continuous if $J(A, \eta)$ is endowed with topology of uniform convergence on compact set in $S(\eta)$, and $J(A, \eta)$ is convex, and is relatively compact set.

Thus by Schauder's fixed point theorem in [2], we obtain the existence of a fixed point $p(t)=p_{N}(t) \in J(A, \eta)$ of T_{1}.

2.2.2 The case ii) $|\lambda|>1$

In this case, our aim is to prove the existence of $u(t)$ when $\mathbb{R}[t] \rightarrow \infty$, such that $u(t)=$ $f(u(t-2), u(t-1))$.

If we have an the analytic solution $u(t)$, then it is the solution of (1.1). And we have a solution p of following equation,

$$
p(t)=f\left(p(t-2)+P_{N}(t-2), p(t-1)+P_{N}(t-1)\right)-P_{N}(t)
$$

Conversely if $p(t)$ which satisfies above equation would exist, then we have a solution $u(t)$ of (1.1) which has the expansion (2.1) by $u(t)=p(t)+P_{N}(t)$.

For $p(t) \in J(A, \eta)$, put

$$
T_{2}[p](t)=f\left(p(t-2)+P_{N}(t-2), p(t-1)+P_{N}(t-1)\right)-P_{N}(t)
$$

Lemma 2. We have a fixed point $p(t)=p_{N}(t) \in J(A, \eta)$ of T_{2}, which depends on N.
Proof. Here we put $s=u(t-2), w=u(t-1), z=u(t)$. Since f is holomorphic on $|s| \leqq \rho,|w| \leqq \rho$ we have Hence we have

$$
\left|\frac{\partial f}{\partial s}\right|,\left|\frac{\partial f}{\partial w}\right| \leqq \frac{8 K_{1}}{\rho} \quad \text { for } \quad|s|,|w| \leqq \frac{\rho}{2}
$$

where K_{1} is a constant. Next we take A, and take η sufficiently small such that $A \eta^{N+1}<\frac{\rho}{4}$.
Then for sufficiently large $-t$, we have

$$
\left|T_{2}[p](t)\right| \leqq\left(\frac{16 K_{1}}{\rho} A|\lambda|^{-(N+1)}+K_{3}\right)\left|\lambda^{t}\right|^{N+1}
$$

with a constant K_{3} which depends on N.
If we suppose N is so large that $\frac{16 K_{1}}{\rho}|\lambda|^{N+1}<\frac{1}{4}$, and we take A so large that $A>\frac{4}{3} K_{3}$, then

$$
\left|T_{2}[p](t)\right|<A\left|\lambda^{t}\right|^{N+1} .
$$

So we obtain that T_{2} maps $J(A, \eta)$ into itself, T_{2} maps $J(A, \eta)$ into itself, The map T_{2} is continuous if $J(A, \eta)$ is endowed with topology of uniform convergence on compact set in $S(\eta)$, and $J(A, \eta)$ is convex, and is relatively compact set.

Thus by Schauder's fixed point theorem in [3], we We obtain the existence of a fixed point $p(t)=p_{N}(t) \in J(A, \eta)$ of T_{2}.

2.3 Uniqueness of the Fixed Point

We can have following two lemmas.
Lemma 3. The fixed point $p_{N}(t) \in J(A, \eta)$ of T_{1} is unique for each N.
Lemma 4. The fixed point $p_{N}(t) \in J(A, \eta)$ of T_{2} is unique for each N.

2.4 Proof that the solution $u(t)=p_{N}(t)+P_{N}(t)$ is independent of N

Finally we will show that the solution $u(t)$, given by $u(t)=p_{N}(t)+P_{N}(t)$ does not depend on N. Then we obtain that (2.1) gives an exact solution of (1.1).

Lemma 5. The solution $u_{N}(t)=p_{N}(t)+P_{N}(t)$ of (1.1) is independent of N.

2.5 the analytic solution $u(t)$ of (1.1)

From lemma 1-lemma 5, we have proved that a solution $u(t)$ is defined and holormorphic in $S(\eta)$ for a $\eta>0$, which has the expansion $u(t)=\sum_{n=1}^{\infty} \alpha_{n} \lambda^{n t}$. Hence we have the following Theorem 6.

Theorem 6. Let λ_{1}, λ_{2} be roots of the characteristic equation of (1.1) and $\left|\lambda_{1}\right| \leqq\left|\lambda_{2}\right|$. If $\left|\lambda_{1}\right|<1$ or $\left|\lambda_{2}\right|>1$, then we have the holomorphic solution $u(t)$ of (1.1) in $S(\eta)$ for a $\eta(>0)$, which has the expansion $u(t)=\sum_{n=1}^{\infty} \alpha_{n} \lambda^{n t}$.

However, we cannot assume the condition $\frac{\partial H}{\partial s}(s, w, z) \neq 0$, for all So in case i), if $\frac{\partial H}{\partial s}(s, w, z)=0$, for some, w, z, then the (w, z) are branch points. The solution $u(t)$ can be continued analytically by making use of the relation

$$
u(t-2)=\phi(u(t-1), u(t))
$$

keeping out of branch points, up to $\mathbb{R}[t] \geqq 0$. The solution obtained may be multivalued.

3 Analytic General Solutions

Theorem 7. Suppose that $u(\tau)$ is the solution of (1.1) which we have in Theorem 6, and has the expansion $u(t)=\sum_{n=1}^{\infty} \alpha_{n} \lambda^{n t}$. Further suppose that $\chi(t)$ is an analytic solution of (1.1) such that $\chi(t+n) \rightarrow 0$ as when $\lambda<1, n \rightarrow+\infty$, and as when $\lambda>1, n \rightarrow-\infty$ uniformly on any compact set.

Then there is a periodic entire function $\pi(t),(\pi(t+1)=\pi(t))$, such that

$$
\chi(t)=\sum_{n=1}^{\infty} \alpha_{n} \lambda^{n\left(\frac{\log \pi(t)}{\log \lambda}+t\right)}=\sum_{n=1}^{\infty} \alpha_{n} \pi(t)^{n} \lambda^{n t}
$$

where $\pi(t)$ is an arbitrarily periodic function whose period is one.
Conversely, if we put

$$
\chi(t)=\sum_{n=1}^{\infty} \alpha_{n} \lambda^{n\left(\frac{\log \pi(t)}{\log \lambda}+t\right)}=\sum_{n=1}^{\infty} \alpha_{n} \pi(t)^{n} \lambda^{n t}
$$

where π is a periodic function whose period is one, then $\chi(t)$ is a solution of (1.1).
Proof. Here we prove in the case $\lambda<1$.
Let $u(\tau)$ be the solution of (1.1) in above argument. And suppose $\chi(t)$ be a solution of (1.1) such that $\chi(t+n) \rightarrow 0$ as $n \rightarrow+\infty$ uniformly on any compact set.

We put

$$
u(t)=\sum_{n=1}^{\infty} \alpha_{n} \lambda^{n t}=U\left(\lambda^{t}\right), \quad \alpha_{1} \neq 0
$$

then U, χ are open maps, and $U(0)=0$. So we have $\chi(t)=U(\tau)=U\left(\lambda^{\sigma}\right) \quad\left(\right.$ for $\left.\exists \tau=\lambda^{\sigma}\right)$. Since $\alpha_{1} \neq 0$, we have $\sigma=\log _{\lambda} U^{-1}(\chi(t)):=l(t)$.

Here according to [3], ([5]), we can prove existence of Ψ such that

$$
\Psi(F(\chi, \Psi(\chi)))=G(\chi, \Psi(\chi))
$$

where $F(s, w)=w, G(s, w)=f(s, w)$. Then we obtain the following first order difference equation from (1.1)

$$
\chi(t+1)=\Psi(\chi(t))
$$

And we obtain

$$
l(t)=t+\pi(t) \quad(\pi: \quad \text { arbitrarily period one }) .
$$

Now we put $\lambda^{\pi(t)}$ into $\pi(t)$. Then $\chi(t)$ can be written as

$$
\chi(t)=\sum_{n=1}^{\infty} \alpha_{n} \lambda^{n\left(\frac{\log \pi(t)}{\log \lambda}+t\right)}=\sum_{n=1}^{\infty} \alpha_{n} \pi(t)^{n} \lambda^{n t}
$$

where π is an arbitrarily periodic function whose period is one.

References

[1] L.V. Ahfors," Complex Analysis", New York : McGraw-Hill, 1966.
[2] D.R. Smart," Fixed point theorems", Cambridge Univ. Press, 1974.
[3] M.Suzuki, "Holomorphic solutions of some functional equations", Nihonkai Mathematical Journal, 5 ,1994,109-114.
[4] M.Suzuki, "On some Difference equations in economic model", Mathematica Japonica, 43, 1996, 129-134.
[5] M. Suzuki, "Holomorphic solutions of some system of n functional equations with n variables related to difference systems", Aequationes Mathematicae, 57, 1999, 21-36.
[6] M. Suzuki, "Difference Equation for A Population Model", Discrete Dynamics in Nature and Society, 5, 2000, 9-18.
[7] N. Yanagihara, "Meromorphic solutions of some difference equations", Funkcial. Ekvac., 23, 1980, ,309-326.

