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Analytic Solutions of Nonlinear Difference Equation

愛知学泉大学 経営学部 鈴木麻美 (Mami SUZUKI)

College of Business Administration, Aichi Gakusen Univ.

1 Introduction
We consider the following second order nonlinear difference equation,

$u(t+2)=$ $\mathrm{u}(\mathrm{t}),$ $u(t+1))$ , (1.1)

where $f$ is a holomorphic function for $u(t)$ , $u(t+1)$ . Put $u^{*}$ as a equilibrium point of (1.1).
And we suppose that (1.1) has a equilibrium point $u^{*}=0$ and $f(x, y)=-\beta x-\alpha y+g(x, y)$ ,
( $\alpha$ , $\mathrm{d}$ are constants, $\mathrm{d}$ $\neq 0$), where $g$ is higher order terms for $x$ , $y$ such that $g(x, y)=$
$\sum_{i,j\geqq 0,i+j\geqq 2}b_{i_{\dot{\theta}}}x^{i}y^{j}$ . Here we consider analytic solutions such that $u(t)arrow 0$ when $tarrow$p $+\mathrm{o}\mathrm{o}$

or $tarrow$r $-\infty$ .
The Characteristic equation of (1.1) is

$D(\lambda)=\lambda^{2}+\alpha\lambda+$ a $=0.$ (1.2)

Let $\lambda_{1}$ , $\lambda_{2}$ be roots of the characteristic equation and $|\lambda_{1}|\leqq|\lambda_{2}|$ . Then we consider
following two case i) $|$ ’$1|<1,$ and $\mathrm{i}\mathrm{i}$ ) $|\lambda_{2}|>1$ . Of course, some characteristic equations
have properties both i) and $\mathrm{i}\mathrm{i}$ ).

Here we consider solutions such that i) $u(t)arrow 0,$ as $\mathrm{R}[t]arrow+\mathrm{o}\mathrm{o}$ , and $\mathrm{i}\mathrm{i}$ ) $u(t)arrow$

$0$ , as $\mathbb{R}[t]arrow-\infty$ .

2 Existence of an analytic solution
If (1.1) is a real Model, then the ”

$t$
” of equation (1.1) represent “time” and $t$ is of course a

real variable. But in this section we consider $t$ to be a complex variable, and we will prove
existence of an analytic solution of (1.1) which converge to 0 with methods of complex
analysis.

When we consider a real Model, after we have solutions of (1.1), we take $t$ such as
$t\in$ R. Then we can have solutions which are real values.
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2.1 A formal solution
In case i) $\mathrm{w}\mathrm{e}$ put A $=$ Ai, in case $\mathrm{i}\mathrm{i}$ ) $\mathrm{w}\mathrm{e}$ put $\lambda=\lambda_{2}$ . Then we can define a firmal solution
such as

$u(t)= \sum_{n=1}^{\infty}\alpha_{n}\lambda^{nt}$ , (2.1)

in both cases. Where $\alpha_{1}$ : arbirary, $\alpha_{k}$
$D(\lambda^{k})=C_{k}(\alpha_{1}, \cdots, \alpha_{k-1})$ , $(k=2, \cdots)$ , and

$C_{k}(\alpha_{1}, \cdot\cdot \mathrm{r}, \alpha_{k-1})$ are polynomials for $\alpha_{1}$ , $\cdot\cdot 1$ , $\alpha_{k-1}$ with coefficients $b_{i,j}\lambda^{l}$ , $0\leqq i\leqq k,$

$0\leqq j\leqq k$ , $0\leqq l\leqq k$ , $2\leqq i+j\leqq k.$ Here we suppose that $\alpha_{1}\neq 0.$

2.2 Map $T$ and its Fixed Point
Here we put $u(t)=s$ , $\mathrm{u}(\mathrm{t})1)=w$ , $\mathrm{u}(\mathrm{t} )=z$, and $H$(s, $w,$ $z$ ) $=-z+f(s, w)$ . Then the
equation (1.1) can be written such as $H(u(t), u(t+1),$ $u(t+2))=0.$

$H(s, w, z)$ is holomorphic in a neighborhood of (0, 0, 0), and we have $H(0,0,0)=0,$
easily. Furthermore we have

$\frac{\partial H}{\partial s}(0,0,0)=\frac{\partial f}{\partial s}|_{s=w=0}=-\beta\neq 0$ .
$\partial$

So we have a holomorphic function $\phi$ such that $s=\phi(w, z)$ for $|w|$ , $|z|\leqq\rho$ , (for $\exists\rho>$

0). Furthermore we have a constant $K$ such that $|s|=|6(\mathrm{t}\mathrm{t}, z)|\leqq K(|w|+|z|)$ for $|\mathrm{t}\mathrm{p}\mathrm{l}$ $|z|\leqq$

$\rho$ .
Let $N$ be a positive integer. Put the partial sum of formal solution as $P_{N}(t)=$

$\mathrm{i}_{n=1}^{N}$ $\alpha_{n}\lambda^{nt}$ , and put $p_{N}(t)=$ u(t)-pN(t). Here we rewrite $p(t)=p_{N}(t)$ .
Moreover we define following sets,

$S(\eta)=$ $\{t\in \mathbb{C}:|\lambda’|\leqq\eta\}$

$J(A, \eta)=\{p$ : $\mathrm{p}$ { $\mathrm{t})$ is holomorphic and $|p(t)|\leqq A|\lambda^{t}|^{N+1}$ for $t\in S(\eta)$ }.

in which $A>0$ and 77, $0<$ y7 $<1,$ are constants to be determined later.

2.2.1 The case i) $|$ A $|<1$

In this case, our aim is to prove the existence of $u(t)$ when $\mathrm{R}[t]arrow\infty$ , such that

${}^{\mathrm{t}}\mathrm{J}(t)$ $=\phi(u(t+1), u(t+2))$ .

If we have the analytic solution $u(t)$ : then it is the solution of (1.1), and have a solution
$p$ of following equation,

$\mathrm{p}(\mathrm{t})=$ $6(p(t +1) + 7 N(t+1),p(t+2)$ $+P_{N}(t+2))$ $-P_{N}(t)$ .
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Conversely if $p(t)$ which satisfies above equation would exist, then we have a solution
$u(t)$ of (1.1) which has the expansion (2.1) by $u(t)=p(t)+P_{N}(t)$ .

For $\mathrm{p}(\mathrm{t})\in \mathrm{J}(\mathrm{A}, \eta)$ , put

$T_{1}[p](t)=\phi(p(t+1)+P_{N}(t+1),p(t+2)+P_{N}(t+2))-P_{N}(t)$ .

Lemma 1. We have a fixed point $p(t)=p_{N}(t)E$ $J(A, \eta)$ of $\mathrm{y}_{1}$ , which depends on $N$ .
Proof. Since $\phi$ is holomorphic on $|w|\leqq\rho$, $|z|\leqq\rho$ we have

$| \frac{\partial\phi}{\partial w}|$ , $| \frac{\partial\phi}{\partial z}|\leqq\frac{8K}{\rho}$ for $|w|$ , $|$ : $| \leqq\frac{\rho}{2}$ .

Next we take $A$ , and take $\eta$ sufficiently small such that $\mathit{1},N+1<e4^{\cdot}$ Then for sufficiently
large $t$ , we have $|\mathrm{p}(\mathrm{t})$ $|\leqq 4|)^{t}|^{N+1}<g4’$ $|p(t+1)|\leqq A|\lambda|^{N+1}|\lambda^{t}|^{N+1}<$ e4’ $|p(t+2)$ $|\leqq$

$4|)|^{2(N+1)}|)^{t}|^{N+1}<e4^{\cdot}$ Furthermore we can obtain $|w|$ , $|z|\leqq g2^{\cdot}$ So we have

$|T_{1}$ $[p](t)| \leqq(\frac{16K}{\rho}A|\lambda|^{N+1}+K_{2})|$ A$t|^{N+1}$ . (2.1)

where $K_{2}$ is constant, depends on $N$ . Hence we have If we suppose $N$ is so large that
$\frac{16K}{\rho}|\lambda|^{N+1}<\frac{1}{4}$ , furthermore we take $A$ so large that $A> \frac{4}{3}K_{2}$ , then

$|$ $\mathrm{j}_{1}$ $[p](t)|<A|\lambda^{t}|^{N+1}$

So we obtain that $T_{1}$ maps $J(A, \eta)$ into itself, The map $T_{1}$ is continuous if $J(A, \eta)$ is
endowed with topology of uniform convergence on compact set in $S(\eta)$ , and $J(A, \eta)$ is
convex, and is relatively compact set.

Thus by Schauder’s fixed point theorem in [2], we obtain the existence of a fixed point
$p(t)=p_{N}(t)\in J(A, \eta)$ of $T_{1}.\square$

2.2.2 The case $\mathrm{i}\mathrm{i}$ ) $|$ A $|>1$

In this case, our aim is to prove the existence of $u(t)$ when $\mathbb{R}[t]arrow\infty$ , such that $u(t)=$

$f(u(t-2), u(t-1))$ .
If we have an the analytic solution $u(t)$ , then it is the solution of (1.1). And we have

a solution $p$ of following equation,

$\mathrm{p}(\mathrm{t})=f$ ($p(t-2)+$ PN $(t-2)$ , $p(t-1)+P_{N}(t-1)$ ) $-$ p(t).

Conversely if $p(t)$ which satisfies above equation would exist, then we have a solution
$u(t)$ of (1.1) which has the expansion (2.1) by $u(t)=p(t)+P_{N}(t)$ .

For $p(t)\in/(A, \eta)$ , put

$7\mathrm{Z}\mathrm{P}(\mathrm{t})=f\{p(t-2)+P_{N}(t-2),$ $p(t-1)+P_{N}(t-1))$ $-$ p(t).
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Lemma 2. We have a fixed point $p(t)=p_{N}(t)\in J(A, \eta)$ of $T_{2}$ , which depends on $N$ .
Proof. Here we put $s=u(t-2)$ , $w=u(t-1)$ , $z=u(t)$ . Since $f$ is holomorphic

on $|s|\leqq\rho$ , $|w|\leqq\rho$ we have Hence we have

$| \frac{\partial f}{\partial s}|$ , $| \frac{\partial f}{\partial w}|\leqq\frac{8K_{1}}{\rho}$ for $|s|$ , $|w| \leqq\frac{\rho}{2}$ ,

where $K_{1}$ is a constant. Next we take $A$ , and take $\eta$ sufficiently small such that $A\eta N+1<g4^{\cdot}$

Then for sufficiently large $-t$ , we have
where $K_{1}$ is constant. Next we take $A$ , and take $\eta$ sufficiently small such that $A\eta N+1<g4^{\cdot}$

Then for sufficiently large $-t$ , we have

$|T,B[p]$ $(t)| \leqq(\frac{16K_{1}}{\rho}A|)$ $|^{-(N+1)}$ $+K_{3})|$ A$t|^{N+1}$

with a constant $K_{3}$ which depends on $N$ .
If we suppose $N$ is so large that $\underline{1}6K\vec{\rho}|\lambda|^{N+1}<\frac{1}{4}$ , and we take $A$ so large that $A> \frac{4}{3}K_{3}$ ,

then
$|T2[p](t)|<A|\lambda^{t}|^{N+1}$ .

So we obtain that $T_{2}$ maps $J(A, \eta)$ into itself, $T_{2}$ maps $J(A, \eta)$ into itself, The map $T_{2}$ is
continuous if $J(A, \eta)$ is endowed with topology of uniform convergence on compact set in
$S(\eta)$ , and $J(A, \eta)$ is convex, and is relatively compact set.

Thus by Schauder’s fixed point theorem in [3], we We obtain the existence of a fixed
point $p(t)=p_{N}(t)\in J(A, \eta)$ of $7_{2}.\mathrm{E}1$

2.3 Uniqueness of the Fixed Point
We can have following two lemmas.

Lemma 3. The fixed point $p_{N}(t)\in$ J(A, $\eta$) of $T_{1}$ is unique for each $N$ .
Lemma 4. The fixed point $p_{N}(t)\in$ $\mathrm{J}(\mathrm{A}, \eta)$ of $T_{2}$ is unique for each $N$ .

2.4 Proof that the solution $u(t)=p_{N}(t)+P_{N}$ (t) is independent
of $N$

Finally we will show that the solution $u(t)$ , given by $u(t)=p_{N}(t)+7’ N(t)$ does not depend
on $N$ . Then we obtain that (2.1) gives an exact solution of (1.1).

Lemma 5. The solution $u_{N}(t)=p_{N}(t)+P_{N}(t)$ of (Ll) is independent of $N$ .

2.5 the analytic solution $u$ ( $t\mathit{5}$ of (1.1)
From lemma 1-lemma 5, we have proved that a solution $u(t)$ is defined and holormor-
phic in $S(\eta)$ for a y7 $>0,$ which has the expansion $\mathrm{u}(\mathrm{i})=\sum_{n=1}^{\infty}\alpha_{n}\lambda^{nt}$ . Hence we have the
following Theorem 6.
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Theorem 6. Let Ai, $\lambda_{2}$ be roots of the characteristic equation of (1.1) and $|\lambda_{1}|\leqq|\lambda_{2}|$ .
If $|\lambda_{1}\cdot|<1$ or $|\lambda_{2}|>1_{f}$ tten we have the holomorphic solution $u(t)$ of (1.1) in $\mathrm{S}(\mathrm{r}\mathrm{j})$ for $a$

$\eta(>0)$ , which has the expansion $u(t)= \sum_{n=1}^{\infty}$ $\alpha_{n}\lambda^{nt}$ .

However, we cannot assume the condition $\frac{OH}{\partial s}(s, w, z)\neq 0,$ for all So in case $\mathrm{i}$), if
$\frac{\partial H}{\partial s}(s, w, z)=0,$ for some, $w$ , $z$ , then the $(w, z)$ are branch points. The solution $u(t)$ can
be continued analytically by making use of the relation

$u(t-2)=\phi(u(t-1), \mathrm{u}\{\mathrm{t} )$

keeping out of branch points, up to $\mathbb{R}[t]\geqq 0.$ The solution obtained may be multivalued.

3 Analytic General Solutions
Theorem 7. Suppose that $u(\tau)$ is the solution of (1.1) which we have in Theorem 6, and
has the expansion $u(t)= \sum_{n=1}^{\infty}$ $\alpha_{n}\lambda^{nt}$ Further suppose that $\chi(t)$ is an analytic solution
of (1.1) such that $\mathrm{x}\{\mathrm{t}+n$ ) $arrow 0$ as when $\lambda<1,$ $narrow+\infty$ , and as when $\lambda>1$ , $narrow-\infty$

uniformly on any compact set.
Then there is a periodic entire function $\pi(t)$ , $(\pi(t+1)=\pi(t))$ , such that

$\chi(t)=\sum_{n=1}^{\infty}\alpha_{n}\lambda^{n(^{\frac{1\mathrm{o}\mathrm{g}\pi(t}{1\mathrm{o}\mathrm{g}\lambda}}+t)}=\sum_{n=1}^{\infty}\alpha_{n}\pi(t)^{n}\lambda^{nt}$,

where $\pi(t)$ is an arbitrarily periodic function whose period is one.
Conversely, if we put

$\chi(t)=\sum_{n=1}^{\infty}\alpha_{n}\lambda^{n(\frac{1\mathrm{o}\mathrm{g}\pi}{1\mathrm{o}\mathrm{g}}\zeta\underline{t}}\lambda=\sum_{n=1}^{\infty}1_{+t)}\alpha_{n}\pi(t)^{n}\lambda^{nt}$,

where $\pi$ is a periodic function whose period is one, then $\mathrm{x}(\mathrm{t})$ is a solution of (Ll).where $\pi$ is a periodic function whose period is one, then $\mathrm{x}(\mathrm{t})$ is a solution of (1.1).

Proof. Here we prove in the case A $<1.$

Let $\mathrm{u}(\mathrm{t})$ be the solution of (1.1) in above argument. And suppose $\chi(t)$ be a solution
of (1.1) such that $\chi(t+n)arrow 0$ as $narrow+\mathrm{o}\mathrm{o}$ uniformly on any compact set.

We put

$u(t)= \sum_{n=1}^{\infty}\alpha_{n}\lambda^{nt}=U(\lambda^{t})$ , $\alpha_{1}\neq 0,$

then $U$, )( are open maps, and 17(0)=0. So we have $\chi(t)=U(\tau)=U(\lambda^{\sigma})$ (for Br $=\lambda^{\sigma}$).
Since $\alpha_{1}\neq 0,$ we have $\sigma=\log_{\lambda}U^{-1}(\chi(t)):=$ u{t).

Here according to [3], ([5]), we can prove existence of $\Psi$ such that

I($F$ ( $\chi$ , I $(\chi))$ ) $=G(x, \Psi(x))$ ,
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where $F(s, w)=w$ , $G(s, w)=$ F(s, $w$ ). Then we obtain the following first order difference
equation from (1.1)

$\chi(t+1)=$ I $(\chi(t))$ .

And we obtain
$l(t)=t+$ l(t) ( $\pi$ : arbitrarily period one ).

Now we put $\lambda^{\pi(t)}$ into $\pi(t)$ . Then $\chi(t)$ can be written as

$\chi(t)=\sum_{n=1}^{\infty}\alpha_{n}\lambda^{n(_{\mathrm{o}\mathrm{g}\lambda}+t)}\frac{1\circ}{1}\mathrm{g}\pi[perp] t)=\sum_{n=1}^{\infty}\alpha_{n}\pi(t)^{\mathrm{n}}\lambda^{nt}$ ,

where $\pi$ is an arbitrarily periodic function whose period is one. $\square$where $\pi$ is an arbitrarily periodic function whose period is one. $\square$
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