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Analytic Solutions of Nonlinear Difference Equation

BAFERRE BEFHR #AMRE (Mami SUZUKD

College of Business Administration, Aichi Gakusen Univ.

1 Introduction

We consider the following second order nonlinear difference equation,

u(t+2) = f(u(t), u(t + 1)), ()

where f is a holomorphic function for u(t), u(t+1). Put u* as a equilibrium point of (1.1).
And we suppose that (1.1) has a equilibrium point 4* = 0 and f(z,y) = —fz—ay+g(z,y),
(o, B are constants,  # 0), where g is higher order terms for z, y such that g(z,y) =
> i.i20,i4522 bijz'y’ . Here we consider analytic solutions such that u(t) — 0 when t — 400
ort — —oo.

The Characteristic equation of (1.1) is

D) =X+ar+8=0. (1.2)

Let A1, A2 be roots of the characteristic equation and |A;| £ |Az]. Then we consider
following two case i) |A;] < 1, and ii) |Az| > 1. Of course, some characteristic equations
have properties both i) and ii).

Here we consider solutions such that i) u(t) — 0, as R[t] & +oo, and ii) u(t) —
0, as R[t] » —o0.

2 Existence of an analytic solution

If (1.1) is a real Model, then the ”t” of equation (1.1) represent ”time” and ¢ is of course a
real variable. But in this section we consider ¢ to be a complex variable, and we will prove
existence of an analytic solution of (1.1) which converge to 0 with methods of complex
analysis.

When we consider a real Model, after we have solutions of (1.1), we take ¢ such as
t € R. Then we can have solutions which are real values.
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2.1 A formal solution

In case i) w e put A = Ay, in case ii) w e put A = Ay. Then we can define a firmal solution
such as

oo
u(t) =) anX™, (2.1)
n=1
in both cases. Where ; : arbirary, ox - D(M\*) = Cx(as, -+ ,0%-1), (K = 2,--+), and
Ck(o,+ -+ ,ak-1) are polynomials for oy, ,ak_; with coefficients bi;A, 0 S i Sk,
0SSk, 0515k 25i+j<k. Here we suppose that a; # 0.

2.2 Map T and its Fixed Point

Here we put u(t) = s,u(t+1) = w,u(t+2) = z, and H(s,w, z) = —z+ f(s, w). Then the
equation (1.1) can be written such as H(u(t), u(t + 1), u(t +2)) = 0.

H(s,w, z) is holomorphic in a neighborhood of (0,0,0), and we have H(0,0,0) = 0,
easily. Furthermore we have

oH af

55 (0:0,0) = == =—B#0.

s=w=0

So we have a holomorphic function ¢ such that s = ¢(w,2) for |w|, |z| £ p, (for Ip >
0). Furthermore we have a constant K such that |s| = |¢(w, 2)| £ K(jw|+|2]) for |w]|,|z| =

p-

Let N be a positive integer. Put the partial sum of formal solution as Py(t) =
SN A", and put py(t) = u(t) — Py(t). Here we rewrite p(t) = pn(t).

Moreover we define following sets,

St ={teC:|X|=n}
J(A,n) = {p: p(t) is holomorphic and |p(t)| < AN |N*!for t € S(n)}.

in which A > 0 and 7, 0 < < 1, are constants to be determined later.

2.2.1 The casei) |\ <1

In this case, our aim is to prove the existence of u(t) when R[t] = oo, such that
u(t) = d(u(t + 1), u(t + 2)).

If we have the analytic solution u(t) , then it is the solution of (1.1), and have a solution
p of following equation,

p(t) = o(p(t + 1) + Py(t + 1), p(t + 2) + Pn(t + 2)) — Pn(2).
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Conversely if p(t) which satisfies above equation would exist, then we have a solution
u(t) of (1.1) which has the expansion (2.1) by u(t) = p(t) + Pn(t).
For p(t) € J(4,7), put

Ti[p)(t) = ¢(p(t + 1) + Py(t + 1),p(t + 2) + Pn(t + 2)) — Pn(2).

Lemma 1. We have a fized point p(t) = pn(t) € J(A,n) of T1, which depends on N.
Proof. Since ¢ is holomorphic on |w| £ p, |z| £ p we have

a¢| |8

ow|’ |8z

8K p
< — fi < -
<2 for Jullds3

)

Next we take A, and take 7 sufficiently small such that Ap™V*! < %\.{ Then for sufficiently
large ¢, we have |p(t)] £ ANV T! < 2, |p(t + 1)] £ ANVFXNAL < &4, [p(t +2)] S
A|NPWHD BN+ < 2. Furthermore we can obtain Jwl, |2| £ §. So we have

ITlpl()] = (%AI/\IN et Kz) X (2:2)

where K, is constant, depends on N. Hence we have If we suppose NN is so large that
l%’£|)\|” +1 < 1 furthermore we take A so large that A > $Kj, then

ITalpl ()] < APV

So we obtain that 7; maps J(4,n) into itself, The map T} is continuous if J(A,n) is
endowed with topology of uniform convergence on compact set in S(n), and J(4,7) is
convex, and is relatively compact set.

Thus by Schauder’s fixed point theorem in [2], we obtain the existence of a fixed point
p(t) = pn(t) € J(A,n) of T1.U

2.2.2 The case i) |A| > 1

In this case, our aim is to prove the existence of u(t) when R[t] & oo, such that u(t) =

flu(t = 2),ut - 1)).
If we have an the analytic solution u(t) , then it is the solution of (1.1). And we have
a solution p of following equation,

p(t) = f(p(t — 2) + Pn(t — 2),p(t — 1) + Pn(t — 1)) — Pn(t).

Conversely if p(t) which satisfies above equation would exist, then we have a solution
u(t) of (1.1) which has the expansion (2.1) by u(t) = p(t) + Pn(%).
For p(t) € J(A,n), put

Tlp)(t) = f(p(t = 2) + Pn(t = 2),p(t — 1) + Py (t — 1)) — Pn(2).



107

Lemma 2. We have a fized point p(t) = pn(t) € J(A,n) of Ta, which depends on N.
Proof. Here we put s = u(t — 2), w = u(t — 1), z = u(t). Since f is holomorphic
on |s| £ p, |[w| £ p we have Hence we have

9f
0s

of
ow

< 8K
Top

3

<P
for |s|,|w| = 5

where K is a constant. Next we take A, and take 7 sufficiently small such that Ap™*! < &,
Then for sufficiently large —t, we have

16K
ITalpl(8)] = (—‘
p
with a constant K3 which depends on N.
If we suppose IV is so large that 251 |\|[V+! < 1, and we take A so large that A > K,

then

AI’\l_(N+1) +K3) ‘/\th+1_

I Talpl(2)] < AP+

So we obtain that 75 maps J(4,7) into itself, 75 maps J(A,n) into itself, The map T3 is
continuous if J(A,n) is endowed with topology of uniform convergence on compact set in
S(n), and J(A,n) is convex, and is relatively compact set.

Thus by Schauder’s fixed point theorem in [3], we We obtain the existence of a fixed
point p(t) = pn(t) € J(A,n) of 1.0

2.3 Uniqueness of the Fixed Point

We can have following two lemmas.
Lemma 3. The fized point pn(t) € J(A,n) of T1 is unique for each N.
Lemma 4. The fized point pn(t) € J(A,n) of T3 is unique for each N.

2.4 Proof that the solution u(t) = pn(t) + Pn(t) is independent
of N

Finally we will show that the solution u(t), given by u(t) = pn(t)+ Pn(t) does not depend
on N. Then we obtain that (2.1) gives an exact solution of (1.1).
Lemma 5. The solution uy(t) = pn(t) + Pn(t) of (1.1) is independent of N.

2.5 the analytic solution u(t) of (1.1)

From lemma 1-lemma 5, we have proved that a solution u(t) is defined and holormor-
phic in S(n) for a n > 0, which has the expansion u(t) = Y ., 0, A™. Hence we have the
following Theorem 6.
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Theorem 6. Let A, Ay be roots of the characteristic equation of (1.1) and [A\1] < |Ael.
If M| < 1 or |Ag| > 1, then we have the holomorphic solution u(t) of (1.1) in S(n) for a
n(> 0), which has the expansion u(t) = Y .o axA™.

However, we cannot assume the condition %‘E’—(s,w,z) # 0, for all So in case i), if
%%(s, w,2) = 0, for some, w, z, then the (w, z) are branch points. The solution u(t) can
be continued analytically by making use of the relation

u(t — 2) = (u(t — 1), u(?)),

keeping out of branch points, up to R[¢] 2 0. The solution obtained may be multivalued.

3 Analytic General Solutions

Theorem 7. Suppose that u(t) is the solution of (1.1) which we have in Theorem 6, and
has the ezpansion u(t) = 3 .o, onA™ . Further suppose that x(t) is an analytic solution
of (1.1) such that x(t +n) — 0 as when A < 1, n = 400, and as when A > 1, n - —c0
uniformly on any compact set.

. Then there is a periodic entire function 7(t), (w(t + 1) = n(t)), such that

o0 00
X(t) — E anAn(l ig§t2+t) — Zanﬂ.(t)nAﬂt,
n=1 n=1

where 7 (t) is an arbitrarily periodic function whose period is one.
Conversely, if we put

o0 oo
xX@) =3 oA mEE = 3 g r()mA,
n=1

n=1
where T is a periodic function whose period is one, then x(t) is a solution of (1.1).

Proof. Here we prove in the case A < 1.
Let u(7) be the solution of (1.1) in above argument. And suppose x(t) be a solution
of (1.1) such that x(¢t + n) — 0 as n — +oo uniformly on any compact set.
We put

u(t) =) e X =U(X), a #0,
n=1
then U, x are open maps, and U(0) = 0. So we have x(t) = U(r) = U(A?) (for 37 = X°).

Since oy # 0, we have o = log, U~ (x(t)) := I(2).
Here according to [3], ([5]), we can prove existence of ¥ such that

U(F(x, ¥(x))) = G(x, ¥(x)),
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where F'(s,w) = w, G(s,w) = f(s,w). Then we obtain the following first order difference
equation from (1.1)

x(t+1) = ¥(x(?)).
And we obtain
[(t) =t+m(t) («: arbitrarily period one).

Now we put A™® into m(t). Then x(t) can be written as

o0 o0
x(®) = 3 X" = 3 gun(t)n A,

n=1 n=1

where 7 is an arbitrarily periodic function whose period is one. (]
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