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Abstract

We give a necessary and sufficient condition for the boundedness of the commutators
of fractional integral operators on mixed Morrey spaces. Furthermore, we show the
sharp maximal inequality of the mixed Morrey norm. This inequality is one of the key
inequalities of the main theorem.

1 Introduction

The aim of this paper is to obtain a necessary and sufficient condition for the boundedness of
the commutators generated by BMO and the fractional integral operator I, on mixed Morrey
spaces defined in [15]. Let 1 < g < p < oo. Define the Morrey norm || - ||y by

||f|/\/15551110{|62|$é (/Qf(x)qu)q : (Qis a cube in R"}

for a measurable function f. The Morrey space M5(R™) is the set of all measurable functions
[ for which ||| e is finite. The mixed Morrey space M7(R") is the function space which
combines mixed Lebesgue spaces [4] and Morrey spaces [13].

Definition 1.1. [15] Let ¢= (q1,...,¢n) € (0,00]™ and p € (0, oo] satisfy
j=1

We define the mized Morrey space ./\/lg(R”) to be the set of all f € L°(R") satisfying the
following norm || - ||, is finite:
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Remark 1.2. (i) When each ¢; = ¢, then ME(R") = ME(R").
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(i) 0< §<7F<o00,0<p<oo, —+---+— >—. Then,
(&} Tn p

ME(R") © ME(R™).

Let 0 < @ < n. Define the fractional integral operator I, of order a by

Iaf(w)z/ Ly)dy, z € R"

ge |2 =y

for f € LL.(R") as long as the right-hand side makes sense. The commutator [a, I,] is given
by

wnh = [ Ty, ser

as long as the integral makes sense.
The following is our main theorem.

Theorem 1.3. Let0<a<nand 1l <p< iy Assume that
o)

a
2B =1, n).
o (j=1,...,n)

"B =

n
p

"1 n "1 1
qu—j, ;S;S—j, T

Then, the following conditions are equivalent:
(a) b € BMO(R").
(b) [b,1a] is bounded from ME(R") to ME(R™).
(c) [b, 1] is bounded from MVS(R”) to MLR™).
Here, MZ(R") is the ME(R™)-closure of C°(R™).
Recall that BMO(IR™) is the John—Nirenberg space. That is, BMO(R™) is a Banach space,

modulo constants, with the norm || - ||pmo defined by

o
[Blasio = sup 2 [ [b(x) ~ bold
Q |Q| Jg
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where

1
bo = — [ b(y)d
Q Q|/Q(y)y

and the supremum is taken over all cubes @ in R™.

Throughout the paper, we use the following notation. The letters p, ¢, 7, ... will denote
n-tuples of the numbers in [0,00] (n > 1), 0= (p1,-- -, Pu)s 0= (q1,- -, @n), 7 = (1, ., T0)-
By definiton, the inequality, for example, 0 < p < oo means that 0 < p; < oo for each i.
Furthermore, for p'= (p1,...,p,) and r € R, let

1 1 1 P_(p Pn -
_—a_(—?"'?_>7 _:<_a“'7_)7 p/:(plla7p'ln)a
p P1 Pn r r r
P
pj—1
and radius r, whose sides are parallel to the cordinate axes and Q denote the set of all cubes
in R™. |Q] denotes the volume of the cube @ and ¢(Q) denotes the side length of the cube
Q. By A < B, we denote that A < C'B for some constant C' > 0, and A ~ B means that
A< Band B < A
We showed that the Hardy Littlewood maximal operator M and the fractional integral
operator I, are bounded on mixed Morrey spaces [15]:

where p; = is the conjugate exponent of p;. Let Q = Q(x,r) be a cube having center x

1
Theorem 1.4. [15] Let 1 < §< 00 and 1 < p < oo satisfy L < E — . Then

— 4,

=1 1

1M v S 1 e
for all f € LY(R™).

Theorem 1.5. [15] Let 0 < a < n,1 < §,§< o0 and 1 < p,r < co. Assume that

n n

S S
p

1 n
U )
r ;7 r p on

n
PTG

R R

=1

Then, for f € MZR"),
o fllae, S 11F 1 ae-

The above two theorems extend the classical case. Chiarenza and Frasca [5] showed the
boundedness of the Hardy-Littlewood maximal operator M on M?(R") for 1 < ¢ < p < oo.
Adams [1] pointed out that I, is bounded from ME(R™) to M;(R") whenever 1 < ¢ < p < oo,

t 1 1 «
1<t§5<oo,g:—and—:———.
S s p n

We compare our results with the classical ones. Usually, when we handle commtators,

the sharp maximal operator is a useful tool as was done in [6, 8, 18]. The sharp maximal
operator, defined in [7], is a good operator to control singularity of the integral operators.
To control the sharp maximal operator, we use the “so-called” good A-inequality described



in [21]. However, the layer cake formula, which is also described in [21], is not available
in the mixed-norm setting. So, we need a new device. We make use of the dyadic local
sharp maximal function defined in [12] together with a key formula [12, Theorem 2.2]. What
is new in this paper is to investigate the duality of mixed Morrey spaces. In [2, 17, 19]
a duality formula is obtained. In particular in [16] Rosenthal and Schmeisser applied this
formula to the boundedness of operators acting on Morrey spaces. By borrowing their ideas
[2, 16, 17, 19] we will obtain a new characterization of the boundedness of the commutators.

2 Predual of mixed Morrey spaces

In the proof of the main theorem, we use the duality of mixed Morrey spaces and its predual.
So in this section, we introduce the predual spaces of mixed Morrey spaces. Here we follow
the idea of Zorko [22].

n "1
Definition 2.1. Let 1 < p < oo and — < E —. A measurable function A is said to be a
— qj
j=1
(p, ¢)-block if there exists a cube @ that supports A such that

1 n o1 )_1
n =1 q; P

n 1
Definition 2.2. Let 1 < p < oo and n < Z—. Define the function space ’H?(R”)
p — qj
j=1

Allg < |@

as the set of all f € LP(R™) for which f is realized as the sum [ = Z/\jAj with some
=0

A= {\; }en, € £1(Ng) and a sequence {4, };en, of (p, ¢)-blocks, where the convergence takes

place in LP(R"). Define the norm || f]|3z for f € HE(R™) as

Hwaqi = i&lf”/\th

where A = {\;},en, runs over all the above expressions

We shall give one simple property of the function space H?(R”). By this lemma, we can

regard the element of LI(R") as a (p/, ¢/)-block modulo multiplicative constants.

n 1 ;
Lemma 2.3. Let 1 <p < oo and n < E —. Let A be an LY (R™) function supported on a
— 4j
j=1
cube Q). Then,

(s )
Al < 11 (5 8) N

We can extend the result by Zorko [22] to mixed Morrey spaces.
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n

1 /
Theorem 2.4. Suppose that 1 < p < oo and n < Z —. Then, 7—[27 (R™) is a predual space
p

=1 9

of the mixzed Morrey space M?(R”) More precisely,
(i) Any f € MER") defines a continuous functional Ly by:
Ly: Hg(]R”) S9— 8 f(z)g(z)dz € C

on ’Hg (R™).

(ii) Conversely, every continuous functional L on ’H;i: (R™) can be realized with f € ME(R").

(i) The correspondence
T MURY)S fr— Ly € (H;(R”))
is an isomorphism. Furthermore,

£l = s {| [ staratoaa

9 € KR, Il =1
q/

and

ol = max{\ [ stz

In the proof of Theorem 2.4, we obtain the following duality inequality:

f(@)g(x)de

< Wl

Example 2.5. Let 1 < p < o0, % < Z?zl qij. Then, we have

: &
IXallsg = 1Q17,  lIxally = Q17"

3 Sharp maximal inequality

Let f € L} _(R"). Sharp maximal operaor is defined by

1
() = sup — — T ™.
f7(z) pQ|/Q|f(y) foldy, (zeR")

zEQ

To show the main theorem, we need the following sharp maximal inequality:

1 g S 17 -

To prove this inequality, we use the dyadic local sharp maximal operator Mf;o

7 € MR, g =1
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Definition 3.1. Let f € L°(R") and Q € Q.
1. The decreasing rearrangement of f on R™ is defined by
f@)=Hp>0: pe(p) >t} (0<t<o0),
where pr(p) = [{z € R” : |f(z)] > p}|.

2. The local mean oscillation of f on @ is defined by

(1 Q) = It ((f — na) (AQD) (0<A<27).

3. Assume that the function f is real-valued. the median of f over @), denoted by m(Q),
is a real number satisfying

freQ: @] >m@Y, 1z €@ : f@)] <mQ} < el

Denote D(Qy) the set of all dyadic cubes with respect to the cube Qp. For 0 < A < 271
and Qo € Q, the dyadic local sharp mazximal operator M ffgo is defined by

MES f@)= sup wi(f; Qxglz), xR fe L'(R").
QeD(Qo)

Moreover, we use the following sharp maximal operator:

Mf’df(x) =sup sup wy(f;Q)xg(x), xR feL'R").
QoEQ QED(Qo)

Jawerth and Torchinsky proved a pointwise equivalence between these two types of the
sharp maximal operators : in [11]

M [MEf] (@) ~ @) (@R (5)
for sufficiently small A.
1
Theorem 3.2. Let 0 < ¢ < o0, 0 < p < oo salisfy n < Z —. Then, for any f € L°(R")
p — 4
J=1

satisfying M f € Mf}g (R™) for some 4o = (qo,1-- -, qon) € (0,00)" and 0 < py < co with

n
n 1
- S )
Po ) qo,j

we have .
g ~ 321, S 17
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One of the key theorem is the following one, which represent a norm equivalence similar
to [14, 18].

Theorem 3.3. Let 0 < ¢ < 0o and 0 < p,s < oo satisfying
n "1 .
— <> = s<min(g,.... D)
p — 4j

Then, for all f € L°(R™), it holds that
1l ~ || 32245, + 1 ae

The term || f|| s in Theorem 3.3 is an auxiliary one although this explains how Morrey
spaces can be used to control operators acting on Lebesgue spaces. We can remove this term
under a resonable condition using the idea by Fujii [9].

n

1
Theorem 3.4. Let 0 < ¢ < oo and 0 < p < oo satisfying n < g —. Assume that
p el
Jj=1
f € LY%R") satisfies
mr(2/Q) - 0 (£ — )

for any Q € Q and for some medians {m(2°Q)}sen,. Then, we have

d d
190 ~ a1, < [Jaae] -

The condition proposed by Fujii [9] can be verified as follows:

Lemma 3.5. Let f € L(R"). Assume that Mf € MER") for some 0 < § < oo and
0 < p < oo satisfying

Then, for any Q € Q and any medians {m(2‘Q)}eer,, it holds that

lim m;(2°Q) = 0.

l—00

Finally, we evaluate the sharp maximal function of the commutator [b, [,]f. The following
estimate is also important to show the main theorem.
Lemma 3.6. Let 0 < o <n and 1 <n < oco. Then,
([b, L] £)* () < [Ibllmao (M P [Lof](2) + M f(x))
for allb € BMO(R"), f € MZR") and x € R". Here,
) £ () — 1 g )
Mna f(.’l?) = sup Tl ‘f(y)‘ dy .
Q" Ja

T€EQ
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Note that a similar lemma to this is proved in [3, 20]. Shirai showed this estimate
for f € C°(R™) [20, Lemma 4.2], and Arai and Nakai showed a similar estimate for the
element of generalized Campanato spaces and generalized Morrey spaces [3, Proposition 5.2],
respectively.

4 Proof of main theorem

(a) = (b): Let 1 <n < min(sy,...,s,,7) and f € ME(R"). Put so = min(sy,...,s,) and
o = min(gi, . .., ¢n). Since f € MER") = Mb (R"), [b, o] f € My (R") = Mgz 5 (R).
———

n times
Then, we see that M([b, [,]f) € Mg, . s, (R"). Thus, the assumption of Theorem 3.2 is
I )

n times
satisfied. Then, by virtue of Theorem 3.2 and Lemma 3.6, we have

R AClTvg ((CEATRL v
< bllenio [[M ™ (Za f1+ MR £

< ellssio { 1M L flllagg + 1M1 e }

< lbllsyo § [Ha(Lf DIl + IIIna(IfI")IIL,z
Using Theorem 1.5, we conclude
[, L) (H)llae, < Nblleyo § 1 1laez + |||f|"||i4£ = [[bllsyo ]l fll e

3k 3

(b) = (c): It is clear since we only restrict the domain.

(c) = (a): We use the same method as Janson [10]. Choose z, € R such that |z| = 5.
Then, since 0 ¢ Q(zo,2), |z|"* € C*(Q(20,2)) for x € Q(z9,2). Hence, we choose a function
© € C®(R™) which is 7 periodic and satisfies p(z) = |z|"* for all z € Q(z0,2). Then, we
can expand this function into the absolutely convergent Fourier series on Q(zo,2);

2" X Q02 (B) = Y am€™ ™ Xq(z02 (@) (6)

mezn

with > |am| < co. For any 2o € R” and t > 0, let Q = Q(xo,t) and Q' = Q(xo + zot, 1).

Let
s(a) =sen ([ 0) = o))
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If v € Qand y € Q', then

4 ; T e Q(z0,2). Hence, we have

/Q b(x) — byl = /Q (b(a) — b)s(@)d

- 7 | ([ 0t by )
o

=— /Qs(x) (//(b(x) —b(y))|z — y| e

r—y

dy) dx.

By (6), we get
/Q|b(m) — by |dx
=0 L5 (] 0 bl =l ey ) e

mezn

<ty

mezZn

on [ @b LYE" ) vala)e e

Applying (4), we obtain

1) btz < 3 fanl [ ) i xe)

mezn

v Il

<07 3 Jam 10 Zad Lt ez I ez I
mezn °

< t Z ‘a’m‘ ”[b/ [a]HM{}%Mgt; t%
mezm s

~ " ||[b, 1) ||M;HM;; :
Thus, we have

2
€L / b(z) — boldz < = / 16(2) — bl < 1o To]ll or s e -
Q[ Jo QI Jo i

This implies that b € BMO.
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