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1 Introduction to the Besov space and Leibniz rule

Let us recall homogeneous and inhomogeneous Besov spaces. For that purpose, we first introduce
the Littlewood-Paley decomposition of functions defined on R" in terms with the partition
{j }]O-‘;_OO of unity in the Fourier variables. We take ¢ € C§°(R™) in such a way that supp ¢ =
{¢eRyL < ¢ <2} satisfying D oo #(279¢) = 1 for all & # 0. The functions p; are
defined as Fp;(§) = ¢(277¢),j € Z, where F denotes the Fourier transform. Let ¢ be as
Fip€) =1— Z;il #(279¢). For 1 < p < oo and s € R, the homogeneous Besov space By, is

defined by B = {f € S'/P; Hf”ng < oo} with the seminorm

pq —

j=—o0

1
Ul =4 AZ2w@les s fl)}? for1<q<oo,
| supgen 29l s Sl for = oo,

where P is the set of polynomials in R™. We also define the corresponding inhomogeneous Besov

space B, by B, = {f € S|/ f|;, < co} with the norm

1

Il fllor + {52 0@ s  fllun)t | for 1< g < oc,

£z, = _
1% fllze + supjen 2% || @ * fllze  for g = oco.

For more precise, see e.g., Bergh-Lofstrom [2]. The following lemma is a fundamental property
of Besov spaces.

Proposition 1.1 (i) If ¢1 < g2, then it holds that B;’ql C By,

(ii) It holds the continuous continuous embedding

forall1 <p<oo and s € R.

By, CHy CBj
for all 1 <p<oo and s € R, where

Hy ={f € §'/P:|If 75 = (=A)3 fllz» < oo}

U KELE (GBA) ¥ & AR (RRRHA) ¥ 0LFRZ 8.
VARG (GHA) ©&FHAR (RAREA) & 0ERPIZE (8],
KR (FA) ¥ RESZE (GHA) © oILEEFZE [10], [11], [12).



If sg # s1, we have
(H;“,H;l)aq = B;q for1<pg<ooand0<6 <1,

where s = (1 — 0)sg + s16.
(iii) If s > 0, then it we have that

By, =1PNBy,
for all 1 < p,q < 0.
We next consider the embedding theorem.

Proposition 1.2 Let 1 <p < p; < o0, and s1,s2 € R satisfy

n n
— — 5= — —5].
p p1
Let 1 < q < q1 <oo. Then it holds that
Brg € Bpla Bpa © By

Finally, we consider the Leibnitz rule in the homogeneous Besov space.

Lemma 1.1 ([8, Proposition 2.2]) (i) Let 1 < p,q < 00, s >0, a >0 and 3 > 0. Assume that
L<pi,pop1 2 < 0o satisfy : = 2+ L =L+ Lo IffeByfanB, " andge B2 nByY,
then we have fg € B, , with the estimate

1760155, < COLageg Iolage + 17 5_llolgese) (11)
where C' = C(p,p1,p2,ﬁ1,p~2,q,S,CV,/B)-
(ii) Let 1 < p,q < o0 and s > 0. Assume that 1 < p1,pa, p1,02 < 00 satisfy 1_17 = le + pLQ —
p% + p%. If f € B;hq NILP and g € LP2 N B;—M, then we have fg € B;q with the estimate

I£9llgy , < CUF gy, Molizes + 1 F e llgllss ) (1.2)

where C = C(p, p1,p2, P1, P2, ¢, 5).

Proof. (1) We make use of the following paraproduct formula of fg due to Bony [3]. Our method
is related to Christ-Weinstein [4, Proposition 3.3] and Kozono-Shimada [7, Lemma 2.1].

frg = D (xHPg)+ D, Pef)lepxg)+ >, > (epxfleixg)
k=—00 k=—00 k=—o0 [l—k|<2
= h1 + }LQ + }L3, (13)

where Prg = Zf:foo w1 * g. We first consider the case 1 < ¢ < 0o. Since

supp F((¢x * )(Prg)) C {€ € R™ € 2F72 < [¢] < 22},
supp Fo; = {£ € R 2771 < [¢] < 271,
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we have that

(o) q
Iy, = § 22 @7lws Ml
Jj=—0
= 3> > e * (o * )(Prg))
j=—00 k=—00 Lp
ay L
[e's) q
= 3 Y [ 29] D0 wix((en* ) Prg)
j==oc Ik—j|<2 I

Since ¢;(x) = 27"(F~1¢)(2/z) for all j € Z, it holds by the Hausdorfl-Young and the Holder
inequalities that

(o * ) (Peg)llize < IF 0l pallor = fllze || Pegl e

s * ((on * F)(Prg)lle < ll@j

for all j, k € Z. Hence it follows from the Minkowski inequality that
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o0 i—3 ay ¢
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i=—00 k=—00
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1=—00 =3

= Cligllgpe 1l pgras (1.4)



where C' = C(n,p,p1,p2, ¢, S, @). In the above estimate it should be noted that $°7°,27% < oo
since a > 0. In the case ¢ = oo, we see similarly to (1.4) that

oo
IFalls, . < Csup2™ iy x gllies sup 2y fllims 3727 = Cllls 111
’ S i€

p2,00
=3
with C' = C(n,p, p1, p2, s, @), from which and (1.4) it follows that
1hill gy < Cllgll gpo Ml ggra forall 1 < g <oc, (1.5)

where C' = C(n7p7p17p27 q, S, Oé).
Replacing the role of f by g, we obtain similarly to (1.4) and (1.5) that

Ihallsg, < Cllfls-o_llgllgaso for all 1< g < o, (16)

where C' = C(nvpvﬁhﬁQv q, S, B)
Next we treat hg in B, ;. Let us consider the case 1 < ¢ < co. Since

supp F (i * f)(1 % 9)) C {€ € R [¢] < 2mxthl2),

we have that

o .
hsll sy, = > @]ps # b v)?
: =
= Y 29 DY D eixleexHlaxg)
j=—00 k=—00 [I—k|<2 p
- a4
=< Y |2v > D> i (er* e g)
j=—00 max{k,l}>j—2|l—k|<2 p
. q
= Y 29> > Nl * (@i * F)(@jre % 9)
j=—o00 r>—4|t[<2 p
. %
< 9290 D s+ (ir # Hpsarie + 9l

j=—00 r>—4|t[<2

By the Hausdorff-Young and the Holder inequalities, it holds that

s * (Pjrr * ) @jrrte * Dl < @il l(@jer * )(Pjarte * 9)llLe
< NF ' Blpalljer * flloenll@j4re * gl Lee
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for all j,r,t € Z. Hence it follows from the Minkowski inequality that

1Pl g
o0 A
< C Z 2% Z Z |€0j+r*fHLP1||90j+r+t*gHLp2
Jj=— r>—4t|<2
. 1
< O30 @l * flum @i * glle)?
r>—4jr|<2 | j=—o
1
oo ) ) q q
= 03 232 3 (2 g x flln 2T gy % g1 )
rz—4 lt]<2 j=—00
o0 ‘
< Csup2|grsgllpe Y 27 ZQM{ > (2(3+“)k|90k*f|m)q}
ez r>—4 [t/<2 k=—oo
= C||9|‘B;2‘§m‘|f||35ma (1.7)

where C' = C(n, p,p1,p2,4, 5, @). In the above estimate it should be noted that >~ . ,27°" < o0
since s > 0. In case ¢ = oo, similarly to (1.7), we have that

HhBHBf,oo < CSllp 2—&1”@1 * glle2 Z 275" Z gat sup 2(S+a)k‘|tpk * f”LPl
: lez, ST e hez

Ollgll oo 1711 s

P1,%0
with C' = C(n,p, p1,p2, s, @), from which and (1.7) it follows that
3| 2 < e Hsto <g< .
Ihallgy, < Cllgllgye Il forall 1<q < ox, (19)
where C' = C(n,p, p1,p2,q, s, ). Now the desired estimate (1.1) is a consequence of (1.5), (1.6)
and (1.8).

(ii) We also make use of the paraproduct formula (1.3). Let us first consider the case
1 < ¢ < oo. In the same way as in (1.4), we have

1
o q
sy, < 022_51{Z(2”|%*fllellBgllm)q}

[1<2 i=—00
1
[ee] ] q
< Csuwp|Pigllur { > (@i » f|m>q} : (1.9)
i€ 1=—00

It should be noticed that

k

Y wile) =29(28) = dy-i(a), VkELZ,

l=—00
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where f.(z) = e f(x/e) for £ > 0. Hence we have || S35 @illp = || 11 for all k € Z, and
it holds that

i-3
1Piglizes = || D wixg|| = llvaios % gllzee < [$llptllgllzre  for all i € Z,
l=—00 P2
from which and (1.9) it follows that
b < o .
Ihall sy, < Cllglls 715, (1.10)

where C' = C(n7p7p17p27 q, 8)
In case ¢ = 0o, we have that

1hillps < Csup || Pigl e sup 2% @i * flle < Cllgllpra | fllps
Poo i€ i€Z P10

from which and (1.10) it follows that
Iill, < Cllgllall s, . Torall 1<q < oo, (111)

where C' = C(n,p, p1,p2,¢.5).
Replacing the role of f by g, we have similarly to (1.11) that
1h2llgy , < Cllflloliglisy - foralll<g<oo, (1.12)

where C' = C(nvpvﬁhﬁ??(b S)' .
Concerning the estimate of h3 in B, , for 1 < ¢ < co, we have similarly to (1.7) that

oo q
Isllgy, < € 322773 D0 U lgir s flimlegere < glies)?
r>—4 [t]<2 | j=—o0
~ :
< Copliare ol X0 { 3 @l sy}
€z r>—4 i=—00
< Clgllzelifllg, - (1.13)

where C' = C(n’paplvp% q, 8)'
In case ¢ = 0o, we have similarly to the above that

Ihsllsy . < C D02 > sup2 0 llgjr s fllunllgsirse *gloes

r>—4 lt|<2 7€
< Csupllps * gllLes sup 27 % fllom » 27
i€Z ez =
< .
< Cllglualfllz, .
from which and (1.13) it follows that
||h3||35)q < C”gHL”?”fHB;M for all 1 < g < oo, (1.14)

where C' = C'(n,p,p1,p2,5). Now the desired estimate (1.2) is a consequence of (1.11), (1.12)
and (1.14). This proves Lemma 1.1. Il
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2 Application to the stationary Navier-Stokes equations

Let us consider the stationary Navier-Stokes equation in R" for n > 3;

f.Au+u-Vu+V7r:f, (NS)
div u = 0,
where v = u(z) = (u'(z), - ,u"(z)) and 7 = 7(x) denote the unknown velocity vector and
the unknown pressure at the point = (z1,---,x,) € R", respectively, while f = f(x) =
(fY (), -+, f*(x)) denotes the given external force. we rewrite (NS) to the generalized form

by means of the abstract setting of the functional analysis. Let P be the projection operator
from LP onto the solenoidal space Ly = {u € LP;divu = 0}. It is known that P has the
expression P = {Pji}i<jr<n With Py, = 65 + RjRy, j,k = 1,--- ,n, where §;;, denotes the
Kronecker symbol and Ry = %k(fA)’% denotes the Riesz transform. Since Ry, k =1,2,--- ,n
is a bounded operator in LP for 1 < p < oo, P is also bounded from LP onto L} for 1 < p < oo.

However, P is unbounded in LP for p =1 and for p = co. On the other hand, we have

Proposition 2.1 P is bounded in the homogeneous Besov space Bf;'q foralll <p<oo,1<
q < o0 ands e R.

Proof. For the proof, it suffices to show that the Riesz transforms Ry(k = 1,2,---,n) are
bounded in B;, forall 1 < p < o0, 1 < g < ooands € R. It should be noted by the
Hausdorff-Young inequality that

Jj+1
o * Riflle = || D2 or* Rilps * /)
1=j—1 o
j+1 ity
< X F! (SZJZ(E)E) i f
I=j—1 r
J
< 3[|@kllplles * flize, k=1,---.n

for all 1 < p < oo and for all j € Z with &, = f*1(¢>(£)%) in L', from which we see that Ry,

k=1,---,nis bounded in Bf)’q even for p =1 and p = oo. This proves Proposition 2.1. Il

~ Since we need to find the solution u of (NS) with div.u = 0, let us introduce the space
B,, = PB,,. Since Pu = u, P(Vr) = 0 and since P commutes with —A, application of
P to both sides of (NS) yields that —Au + P(u - Vu) = Pf. Since div u = 0, it holds that
u-Vu=V-u®u, and hence we see that u can be expressed by
u=(=A)"P(u-Vu) + (=A)"LPf

=P(=A)7'V - (u@u) + P(=A)7'f

=K(u®u)+P(—A)"'f, (E)
where K = P(—A)7'V- may be regarded as the Fourier multiplier with the differential order
—1. More precisely, Kg = (Kg1,- -, Kgp) has an expression

1 . , 1
Kyj(x) = ' /]Rn DY <5jk' - %) Wi&fgkz(f)dfv J=1--,n

(27m)> k=1




for n x n tensors g = (gri)1<k,i<n. Then we have the following proposition.

Proposition 2.2 ([8, Proposition 1.1]) Let 1 < p < pg and —oo < sop < s+ 1 < oo satisfy
so—n/pp—1=s—n/p. Let1 < q<oco. K is a bounded operator from By, to By with the
estimate

1Kgll g0, < Cllgl 2.1)

for all g € B;q, where C = C(n,p, po, q, S, So0)-

Proof. Since the projection P is bounded from B;gq onto B;g’q, it suffices to show that K’ =
(—=A)~1V with the expression

/ 1 iwe 1 n
ng(l'):w'/ne 5@;zflfgkl(§)d§7 k=1,---,n

is a bounded operator from B"Is,’q to B;;g’q with such an estimate as (2.1).

Let us first consider the case 1 < ¢ < co. We define 1 <r <ocoby 1/r=1—(1/p—1/po).
By the Hausdorff-Young inequality, we have that

1
q
j q
HK/g”ng& = Z(ZSOJHQJ'*K/QHLPO)
JEZ
i
= Z(QSOJH%*%*K'gHLpo)q
JEZ
i
= O (2K B % 9y x gl wo )
JEL
i
< DT @K Gl s glle) b (2.2)
JEL

where @j = pj_1 + ¢j + ¢j+1. It is easy to see that
n . 1
'Gi(x) =272 (2z) with v=) F! (%{2 ) ¢(2_kf)> ;
=1 k=—1

which yields that

1_ 1

13l < 279200 < 027730 = a0,

where C = C(n, p, pp) is independent of j € Z. Notice that U € S because supp lec=—1 #(27k¢)
{€ e R 272 < |¢] < 22}, Hence it follows from (2.2) that

1K gl < CS Y (291105 +glln)” ¢ = Cllgll,
JEZ
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where C'= C(n,p, po, q, s, 50). In case ¢ = oo, the proof is quite similar to the above, so we may
omit it. This proves Proposition 2.2. |

Our main result in this section now reads as follows.

Theorem 2.1 (/8, Theorem 1.2]) Let n > 3. For every 1 < p <n and 1 < g < oo there is a
ayn
constant § = §(n,p,q) > 0 such that if f € Bpg+

P satisfies Hf||B,3+% < 0§, then there exists a

pq
n

O .
solution u € Bpg ¥ of (E). Moreover, there exists a constant n = n(n,p,q) > 0 such that if u

—14+2
and v are two solutions of (E) in the class Bpq * satisfying HuHB,H% <n, HUHB,H% <n, then
P,q P,q

it holds that u = v.

In the case n/2 < p < n, a similar result to Theorem 2.1 has been obtained by Cunanan-
Okabe-Tsutsui [5]. An immediate consequence of the above theorem is the existence of self-
similar solutions.

n

.3
Corollary 2.1 (/8, Corollary 1.3]) Let n > 3. Let 1 <p <n and g =o0. If f € B ,o:” is a
homogeneous function with degree —3, i.e., f(\x) = X3 f(x) for all x € R™ and all X > 0 and if
f satisfies Hf||3_3+% < 0, then the solution u given by Theorem 2.1 is a homogeneous function
p,00

with degree —1, i.e., u(Ax) = X" u(x) for all x € R™ and all A\ > 0, which means that v may be
regarded as a self-similar solution of (NS).

The following lemma of the bilinear estimate plays an important role for the proof of our main
theorem.

n

.

Lemma 2.1 (/8, Lemma 2.3]) Let n >3 and let 1 <p <n, 1 <q < oco. Foru,v e Bp,q+p we
14

have K(u ®v) € Bp,qu” with the estimate

1K 0}l 1o < Clull s loll e (2.3)

P,q P,q

where C' = C(n,p,q).

Proof. Taking p = pg, s = —2 + n/p in Proposition 2.2, we have that sg = —1 + n/p, and so it
holds that

1K (u & v) SCllu®v]  —2a, (2.4)
Bp,q v

I8
where C' = C(n,p, q).
Let us first consider the case for n > 3 and 1 < p < n/2. Take p; and py in such a way

p
pr=p, n<py, p=—-<p
p—1

We define py and sy by



Since 1 < p < n/2, we have that

L<po<p, 0<so, <—2+E>—E:so—£. (2.6)
p p Do

It should be noted that the above (2.6) yields 1 < pyp < p < n/2, which necessarily implies that
n > 3. Hence it follows from Proposition 1.2 that

Hu@<>v||B;§+% < CH“’@QU”BS&Q- (2.7)
Since n < p2, we have a = 1 — n/py > 0, and we have by Lemma 1.1 (i) that
s ol ggg, < Ol gl g, + Nl gz, Nl ) (25)
Since p = p1, p < p2 and since

so—&—a—ﬁ:—l:(—l—l—E)—
b1 p p

it follows from Proposition 1.2 that

s
|
o
[
|3
1
[
iR
1
/T\
—
Jr
I3
N———
[
=]

L —142 . 142 B
Bpg " = B Bpg T = B
Hence we obtain from (2.8) that
||U®U‘|B;gwq < C”UHB;?%H'UHB;?%- (2.9)

Now, the desired estimate (2.3) is a consequence of (2.4), (2.7) and (2.9).
We next consider the case for n > 3 and n/2 < p < n. In such a case, we take p; and pa so
that

pr=p, n<p2< .
2p—n

Define py and sy by (2.5). Since

1
P po p p2 n N
1 2 1
et (Lo (221)) 00
Po D2 n . p

we have (2.6), so it holds (2.7). Since & =1 — n/pa > 0, implied by n < pa, in the same way as
in the above case, we obtain (2.9), which yields the desired estimate (2.3). This proves Lemma
2.1. 11
Proof of Theorem 2.1. We first prove the existence of the solution to (E). We solve (E) by
the successive approximation. For that purpose, let us define the approximating solutions {u;}
of (E) by
= P(-A)7!
uQ ( ) fa . (210)
wjp1 = K(uj @ uj) +ug, j=0,1,--.
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n n n

R .
. Assume that u; € By, 7. By Lemma 2.1, we have

. L =342 =1+
Since f € Byq " , We see that ug € Bpq *

that w1 € By, " with the estimate

2
HWHHB;y% < Cl\ujIIB;;+% + HUOHB;;*%’ (2.11)

.14
where C' = C(n,p,q) is independent of j. By induction, it holds that u; € B,, ” for all
j=0,1,---. Taking M; = ||Uj||B_1+%7 we have by (2.11) that

p,q

Mjg1 < CM; + My, j=0,1,---. (2.12)
By the standard argument we see from (2.12) that under the condition
1
My < — 2.13
0 107 ( )
the sequence {A;}72 is subject to the estimate
1—+/1—4CM
Mj<a=—Y"_""2"0 5-01,--. (2.14)
2C
Take w; = uj41 — uj, and we have
wj = K(uj 0 u;) = K(uj1®uj1)
= K(Uj 9] ’wjfl) + K(w]‘,1 [} Ujfl).
Letting L; = Hw]-HB,H%, we have similarly to (2.12) that
pq
Lj < C(Mj+ Mj1)Lj
S QCOCLJ'_L
Therefore, it holds that _
Lj < (2Ca)Lo. j=1,2,---.
By the definition of « in (2.14), we see that
2Ca=1—+/1—-4cMy < 1,
and hence it holds that -
> Lj <o, (2.15)
j=0
R
which implies that u; converges to some u in Bp7q+p . Since
o 1Al
Mo = AP Sl 1o < ISl oo < O (2.16)

with C'= C(n,p), by taking 6 = d(n, p, ¢) sufficiently small, we see from the above estimate that
the condition (2.13) is fulfilled provided Hf||B,3+% < 4. Now, letting j — oo in (2.10), we see

P,q
n

J .
from Lemma 2.1 that the limit v € B, 4  is a solutions of (E).



n n

14 SR
We next consider the uniqueness. Let v € Bpq * and v € By, ” be the solutions of (E)
such that ||u||B,1+% <, ||v||B,1+% <. It follows from Lemma 2.1 that
Pq Pq

lu—=vll —1vg = K (u® (u=2))+ K((w—v) @)

[
P
P,q BP»G

IN

Clul 1o + ol o)l =il 1oy

IN

2C - gy
nllu UHBP,?P

By taking 1 > 0 sufficiently small to satisfy 2Cn < 1, we obtain v — v = 0. This completes the
proof of Theorem 2.1. |

3 LP — L7 estimates of the Stokes semigroup in Besov spaces

We first investigate the behavior of the heat semigroup in the homogeneous Besov spaces.

Proposition 3.1 (i) Let 1 Sp< g o0, 1 S7 <00 and so < sy It holds that
nol 1 1
HetAaHle § Ct75(575)75<81730)||a||BSO
q.r DT

for all a € B;“T and all 0 < t < oo with a constant C' = C(n,p,q,T, S0, S1).
(ii) Let so < s1, 1 < p < oo. It holds that

A I
lle* aHB;}I <ot i so)HaHB:?OO

for all a € B;?oo and for all 0 < t < co with a constant C' = C(n,p, so, 51).
(iii) Let sg < s1 and 1 < p < g < co. 1t holds that

_nel 1y 1 _
le*all gy < O 26T 72 70 g o

for all a € B;?Oo and for all 0 < t < oo with a constant C = C(n,p,q, o, 51)-

For the proof, see [10, Lemma 2.2] and [9, Lemma 2.2].

The following theorem characterizes the class of the initial data ¢ in the homogeneous Besov
space in the case that e'®a belongs to the Serrin class in the generalized Lorentz space in time.

n

. )
Theorem 3.1 ([12, Lemma 2.1]) (i) Let n <p < oo and 1 = q = oco. Fora € Bp,q+” it holds
that e®a € L“’q(07oo;BS71) for allp < r < oo and 2 £ a < oo satisfying % + % =1 with the
estimate ’

A
where C = C(n.p,q,7). In particular, ifa € Bps " for % —Q—% =1 withn < p < oo, then it holds
that e!®a € L*(0, 00; 3371).

A
le2all o < Cllall 113 (3.1)
7 pP.q

Le»4(0,00)
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ii) Assume that a € S’ satisfies
(i)
ePa e L0, 00; L").

forn<r§ooand2§a<oowith%+%:1andf0r1<q§oo. Then it holds that

a€ B;qH: with the estimate
lall -1z < Clle"all Lo, (3:2)
4
where C = C(n,r,q).

Proof. The special case when ¢ = « was proved by [1, Theorem 2.34]. Here we give another
proof based on the real interpolation.
(i) We take po,p1 and 0 < 6 < 1 in such a way that

Po P1

1 1-6 6
n<po<p<p oo, —=
P

n

For every a € B;:,oo P11 =0,1, it follows from Proposition 3.1(iii) that

_n(l_ 1yl (_qin _nf1_ 1,1 1 .
HetAaHBgl <cCt 5(5=57)—3(0—( +pi))||a||371+#i =Ct 2(p rTa pl)”“” Sl i=0,1.
: .00 p,00
(3.3)
Let us define g and 4 in such a way that

1 11 1 1
_:ﬁ<___+___>, i=0,1. (3.4)
i 2\p r n p;
Since n < pp < p < p1 and since p < r < oo, we easily verify that 1 < a; < oo for i = 0, 1, and
obtain from (3.3) that the mappings

51t tA ;00 :

Bpoo "3 a|le aHBol € LY%*(0,00), i=0,1.
are bounded sub-additive operators. Here L*9(0, 00) denotes the Lorentz space on (0, co) (see,
e.g., Bergh-Lofstrom [2, Chapter 5]). Then it follows from the real interpolation theorem that

'71+% '71+ﬁ tA p,00 1,00
(B ™ By ™o 3 0+ |l gy € (L0(0,00), LV¥(0.00))oy  (35)

is also bounded sub-additive. Since

> 71+% > 71+£ 515 ap,00 Q1,00 a,q
(Bp,oo 7Bp,oo )G,q = Bp,q ) (L ’ (07 oo)? Lo (07 OO))qu =L (07 OO)
with « defined by
1 1-6 0 n 1
T W o 2r 2

we conclude from (3.5) that

Boa P 30 el s € L0, 00)
P, BY, 0
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is a bounded sub-additive operator for % + 2 =1 with p £ r £ oo, which implies (3.1). This
proves (i).
(ii) Let us first consider the case 1 < ¢ < co. We make use of the following characterization

of the equivalent norm of the homogeneous Besov space B:,_q,? due to Triebel [13]:

/g

1
*© _l_n sdt) @
lell g = [T @ 3D a0, E (3.6)

where we have used the relation % + 2 =1withl-2= % > 0.
For a € §', we take a dual coupling with ¢ € S. Since

t bl t
Py — o= / —eBpdr = —/ (=A)e ™ pdr,
0 07 0
@ is expressed by ¢ = ey + fot(—A)eTAcp dr. We consider the coupling
t
[{a, )| £ [(a, )] +/0 {a, (=A)e™p)|dr =: (1) + L (t). (3.7)
By (3.6) and the Holder inequality, it holds that
t
B() £ [ (380, (-a)eE3)jdr
0

t
TA TA
< [ ekl l-a)er ol e

A

t 1,1 11 -
[ et DAY

=

1

[t 1,1 n - q L1 14n T / !
§ /(T71+?+§(1*7)||65Aa||Lr)da:| [/ (7_1 7 5(1 T)H(iA)EEAL)OHLT/)q dT:|q

L/ 0O 0

[/t La—2y, zA da % 't 1-1a-m) A q/dT ‘1%
s | [ (20 lez%al|pr)T — (r 20 [(=A)ez 2| )T —

L/o T Jo T

1

WE drla
< i TA r 7 1.
< | [ettean Z] el

Since {e™®},>0 is a contraction semigroup in L, we see that t € (0,00) — |e!®a|zr is a
non-negative and non-increasing function. Hence it is easy to see that

1
a [t 1 dr]a
[— [ e aloe —} — €] o 0
q .Jo T

which yields that
1(t) £ Clleal oot 12l -
7./,[1/
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for all 0 < t < oo and all p € § with C = C(n,r,q). Since a € &’ and ¢ € S, it is easy to see
that I;(t) — 0 as t — oo. Hence, letting ¢ — oo in both sides of (3.7), we obtain that

A
l{a, )| < C|¢* al| eva(o,00:Lr) Il 41~

sl

. .14 PRy i . . . 1,
for all ¢ € S. Since BmﬁT = (B, /)" and since S is dense in B, 7, it follows from the above
estimate that
A
lall ;-1+2 = sup (@, )| = Clle"allLoao,00;17);
md €S, ol ;- n=1
B g
which implies (3.2).
. ]an .1
Next, we consider the case ¢ = co. Notice that Bnojr = (B, ,")*. Again by the character-

n

. . . 17
ization of the norm B, ; ", we see that

> 1-1(1-2) tA dt
ol j-n = [ 7207 (=A)e ol —. (3.8)
Br’,l 0 t
Since

tA LA
le"2all Lo (0,002 = sup tallealLr,
0<t<oo
in the same manner as in the above case 1 < ¢ < 0o, we see easily that

A
12(t) £ Ol all o 0.0 ol 12
1
for all 0 < t < oo and all ¢ € S with C = C(n,r), from which, as in the same way as the above
case, we obtain the desired estimate. ll

We next consider the maximal regularity theorem for the heat equation in the homogeneous
Besov space. To this end, let us first consider the homogeneous heat equation.

Proposition 3.2 ([11, Lemma 2.1]) Let 1 < p < o0, 1 < a < 00, 1 < ¢ < o0 and s € R.

Assume that 1 < r < p satisfies

n o _n 2 n
— < —< =4 -
p

r oo p

Fora € :Bﬁq

with k =2+ n/r — (2/a+n/p—s), it holds that
AetPa e L“’q(O,oo;B;’l)

with the estimate
I 1A€al 5, llzonome) < Cllallgg .

where C' = C(n,p,,s,q).



Proof. Since n/r < 2/a + n/p, we have that k < s+ 2. Hence taking 6 € (0,1) and ko < k <
k1 < s+ 2so that k = (1 — 0)ko + 0k;. By Proposition 3.1(iii) it holds that

nol 1 1 .
eCallps = |leall psre < Ct 2V /2 all ke
A tA B tA ot < Ct ( ) (s+2—k;)
p; b, T
for i = 0,1, and hence we see that the mapping

a € Bffoo — HActAaHBS € L*°°(0, 00)
P,

is a bounded sub-additive operator for

1.1
— )4 =(s+2—k), i=0,1.

1
roop 2

_25(

i
Then it follows from the real interpolation theorem that

2k
a € (Br,(]oc’ 00

Bto)oq — 1A al e € (L2(0,00), L*(0, 00))g,q-
D,

Since (Bko

7,007

1 1-40 0 n(l 1 1 n/{l 1 1

Bf}oo)qu = Bf’q and since (L**°(0, 00), L*(0, 00))g,q = L*(0, 00), implied by

we conclude that the mapping
a€ qu — |Ae'2al 5 € L*9(0, 00)
’ P,

is a bounded sub-additive operator, which yields the desired result. This proves Proposition 3.2.

Now, we are in a position to state the maximal regularity theorem for the Stokes equations.

Theorem 3.2 ([11, Theorem 1]) Let 1 < p < oo, 1 < a<o00,1 < <00,1<qg< 0 and
s € R. Assume that 1 < r < oo satisfies

< =< —+ (3.9)

23
2w

SRS
SES

For every a € Bﬁq with k = 24+ n/r — (2/a+ n/p — s) and every f € L*9(0,T; B;ﬂ) with
0 < T < oo, there exists a unique solution u of

du .
() E_A71’7Pf a.e. t €(0,T) in By 4,
u(0) =a in B,’?’q

2217
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in the class )
ug, Au € L0, T3 B; 5).

Moreover, such a solution u is subject to the estimate

Hut”La,q(O,T;B;j) + HAuHLa,q(oyT;Bzﬁ) < C(H“”Bﬁq + Hf”La,q(O,T;B;?ﬁ))v (3.10)
where C = C(n,p, a,q, 3,s,7) is a constant independent of 0 < T < 0.

Proof. Step 1. Let us first prove in case a = 0. By the usual maximal regularity theorem in H;
for so < s < s1 < k+2, for every f € L*(0,T; HIfZ) (1 =0,1) with 0 < T" < 00, there exists a
unique solution u of (S) in the class

ug, —Au € L¥0,T; H;‘)
with the estimate
Nl pao.rmziy + 18Ul oo rizzy < Ol paoriziy,  #= 051

where C' = C(n, p, «, sg, $1) 1s independent of T'. For the detail, see, e.g., Giga-Sohr [6, Theorem
2.1]. This implies that the mapping

S f € L*0,T5 Hy') — (ug, —Au) € L*(0,T5 H31)?, i =0,1

is a bounded linear operator with its operator norm independent of 7. Hence by the real inter-
polation, S extends a bounded operator from L*(0, T (H,°, Hy')g ) to L*(0,T; (Hz°, Hy! )o.5)>
forall 1 < g < oo.

Since (H,°, Hy')o,5 = B, 5 with s = (1 — 0)sg + fs1, we see that

S:f€L*0,T;B54) — (u, —Au) € L*(0,T; B 4)

is a bounded operator with its operator norm independent of 7. Taking oy < a < a; and
0< 0 <1sothatl/a=(1—-60)/ag+ 0/a1, we see that

St f e (L*0,T; B3 5), L(0,T; BS 5))o.q
— (ug, —Au) € (L*(0,T; By 5), L*(0,T; BS 5))7 4

is a bounded operator with its operator norm independent of T". Since
(L(0.T5 By 5), L (0,75 By 5))o.g = L™(0.T: B ),
we obtain the desired result with the estimate (3.10) for a = 0.
Step 2. For a € Bﬁq and f € L*(0,T; Bﬁﬁ)7 we see that
u(t) = a4+ Sf(t), 0<t<T

solves (S). Since B;ﬁl C B; g+ the desired result with the estimate (3.10) is a consequence of

Proposition 3.2 and the argument of the above Step 1. This completes the proof of Theorem
3.2. 11
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