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1 Introduction and Results.

Let us consider the Cauchy problem of the Navier-Stokes equations in R™, n > 2;

9u —Au+u-Vu+Vr=0 inR"x(0,7),
(N-S) o .
divu=0 inR"x (0,7),

ulg—o = a in R",

where u = u(x,t) = (ui(z,t), - ,up(x,t)) and 7 = 7(z,t) denote the unknown velocity vec-
tor and the unknown pressure at the point = (z1,---,x,) € R™ and the time ¢t € (0,7,
respectively, while a = a(x) = (a1(z), -+ ,an(z)) is the given initial velocity vector. It is well-

known that (N-S) is invariant under such a change of scaling as uy(z,t) = Au(\z, A\%t) and
ma(z,t) = A27(Az, A%t) for all A > 0. The Banach space ) of functions with the space and time
variables with the norm || - ||y is called scaling invariant to (N-S) if it holds that ||uy|ly = |Jully
for all A > 0. Since the corresponding scaling law to the initial data a is ax(z) = Aa(Az), it
is suitable to solve (N-S) in the Banach space X for a with such a property as ||a)||x = ||a|x
for all A > 0. Since the pioneer work of Fujita-Kato [8], there have been a number of results to
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enlarge the space X such as Hz '(R"), L"(R"), B;é:n/p(R") with n < p < oo and BMO™!
which are monotonically increasing. See e.g., Kato [11], Giga-Miyakawa [10], Kozono-Yamazaki
[16], Cannone [4], Cannone-Planchon [5] and Koch-Tataru [12]. Amann [1] has established a sys-
tematic treatment of strong solutions in various function spaces such as Lebesgue space LP((),
Bessel potential space H*P(Q), Besov sapce B, ,(2) and Nikol’skii space N*P(2) in general
domains ). On the other hand, in the critical case p = oo, ill-posedness in the sense of break-
down of continuous dependence of the solution mapping for a € Bgo{q of (N-S) was proved by
Bourgain-Pavlovi¢ [3] for ¢ = oo, Yoneda [19] for 2 < ¢ < oo and Wang [18] for 1 < ¢ < 2.

The purpose of this article is to characterize the optimal space of the initial data a for
existence of mild solution u of (N-S) in the generalized Serrin class L*4(0, 0o; L"(R™)) for 242 =
1 withn < r £ 00. In a bounded domain €, a similar investigation has been observed by Farwig-
Sohr-Varnhorn [7] and Farwig-Sohr [6]. Indeed, they proved that for a € L2(12), with L (Q) for
1 < r < oo denoting the closure of compactly supported solenoidal vector fields in L™(§2), the
mild solution u of (N-S) with the homogeneous boundary condition belongs to L*(0,7"; L"(2))
with some 0 < T < oo for such « and r as above if and only if it holds that

B
/0 HeftAZaH%T(Q)dt < oo (1.1)

for some 0 < § < T, where Ay denotes the Stokes operator in L2(). By the real interpolation,
_2
such an initial data a € L2(Q) satisfying the condition (1.1) is characterized as a € By¢ () =

2 2 ’
B o(Q)*, where B ,(Q) = (L (Q),D(Ay))1 0 for ;45 = 1and L + & = 1 with D(A,)

denoting the domain of the Stokes operator A, in L (€2). Since the Stokes semigroup {e=*42};50
in a bounded domain ) exhibits an exponential decay in L"(Q2) as t — oo, we see easily that

the condition (1.1) is equivalent to

/0 ||e_tA2aH‘L’T(Q>dt < o0. (1.2)

On the other hand, in the whole space R"™, we cannot expect any exponential decay of {em}tzo
in L"(R™). To get around such difficulty, we shall establish a sharp estimate

le2all g0, gny Z Clall g (1.3)

L*4(0,00 g L (R™)

. —142
for all @ € Bpg "(R") with n < p < oo and 1 £ ¢ < ooprovided%+% =1 with p £
r < oco. Here L®9(0,00) denotes the Lorentz space on (0,00). Since we are also successful

t

to derive the continuous bilinear estimate of the Duhamel term / PV -T2 @ v(r)dr for
. 0

u,v € L*9(0, 00; Bﬂl(R")), it follows from (1.3) that there exists a unique global mild solution

u € L*9(0, 00; B?l(]R")) provided a is sufficiently small in B;;Jr; (R™). It should be emphasized
that such a global existence result for small initial data can be obtained because such an estimate
as (1.3) holds on the whole interval (0,00). Notice that our class is stronger than the Serrin
class because it holds a continuous embedding BS_I(R") C L"(R™). Now, a natural question
arises whether the estimate (1.3) is optimal or not. It will be clarified that if a € S’ satisfies
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e'®a € L*9(0,00; L"(R™)) for 2 + 2 = 1 with n < r < oo and for 1 < ¢ < oo (S’ denotes the

class of temperated distribution), then it holds that a € B, ql N (R™) with the estimate

(R”)HLmq(o,oo) (1.4)

tA
lall o102 gy < el

Since the continuous bilinear estimate of the Duhamel term holds for u, v € L*9(0, co; L™ (R™)),
we conclude from (1.4) that the mild solution u of (N-S) belongs to the Serrin class
L*%(0, 00; L™ (R™)) for % + 2 =1 with n <7 < oo and for 1 < ¢ < oo, then the initial data a
necessarily satisfies that a € B:qHT (R™).

To state our results we first recall definition of the homogeneous Besov space B;q' Let
{¢;}jez be the Littlewood-Paley decomposition. We take a function ¢ € C§°(R") with supp ¢ =
{€ e R 1/2 < [¢| < 2} such that 3, #(279¢) = 1 for all £ # 0. The functions ¢; is defined
by

Fi(€) = o(277¢),
where ]-' denotes the Fourier transform. For s € R and 1 < p,q < oo, the homogeneous Besov
space B, , is defined by

By =1 €5 Ifll5;, < o)
where
sj q 1/q <
e = d (Eiea@lore o)™ 159 < 0,
M sup;ez (2% ; * fllLv), q = oo.

Let us denote by P the Helmholtz projection from LP, 1 < p < oo onto the subspace of solenoidal
vector fields PLP as a bounded operator. It is well-known that P is expressed as

P= (P]k)lgj,kg'rw ij‘ = 6jk + R]Rk7 jv k= 17 sy T (15)

where {01 }1<; k< is the Kronecker symbol and R; = %(—A) %, j =1,--- n are the Riesz
<jk< -

transforms. One of the advantage of homogeneous Besov spaces B;q stems from the fact that
the Helmholtz projection P is bounded even for p = 1 and p = co. Indeed, we have the following
proposition.

Proposition 1.1 (cf. [15]) Let 1 = p = o0, 1 = ¢ = oo and s € R. The Helmholtz projection
P defined by (1.5) is bounded from By, onto itself.

By using the Stokes operator —PA on PB;,q, the original equations (N-S) can be rewritten to
the abstract evolution equation:

du
— —Au+ P(u-Vu) =0 0,7
o u+ P(u-Vu) on (0,7), (1.6)
u(0) = a,
where we use the fact that —PAu = —APu = —Au for u satisfying div « = 0 in the whole

space R".

Our definition of the mild solution now reads



Definition 1 Let a € 8" with diva = 0 in the sense of distribution. A measurable function u
on R"™ x (0,T) for 0 <T £ oo is called a mild solution of (N-S) on (0,T) if

(1) w € L™9(0,T; PL") for somen <r < oo and 2 £ a < oo satisfying % + 2 =1 and for
some 1 < q < oo;

(2) u satisfies

¢
u(t) = eta — / PV - "M@ u)(r)dr, 0<t<T. (1.7)
0

It should be noted by the similar estimate to Lemma 2.2 below that the Duhamel term on the
R.H.S. in (1.7) belongs to L*9(0,T; PL") provided u satisfies the condition (1) of Definition 1.

Concerning uniqueness of mild solutions, we have the following proposition.

Proposition 1.2 Let a € 8" with diva = 0 in the sense of distribution. The mild solution u
of (N-S) on (0,T') in the class L*9(0,T; L") for somen < r < oo and 2 < o < oo salisfying
% + % =1 and for some 1 < q < 00 is unique.

This uniqueness assertion is an immediate consequence of Lemma 2.2. It should be noted that,
in the case ¢ = 0o, uniqueness holds provided u is small in L*°(0, oo; L").

We first state well-posedness of global solutions to (N-S) for small initial data a.

Theorem 1 Let n < p < oo.
(1) In case 1 < q < cc.

n

.14
There exists a constant § = d(n,p,q) > 0 such that if a € PB4 ¥ satisfies
al| —i4n 9, 1.8
Jall 15 < (18)

then there exists a unique mild solution u of (N-S) on (0, 00) with the following properties:

n

u € BO([0,00); By ' ), (1.9)
u € Lo"q(07oo;BE,1) forallp <r < oo and 2 < a < oo satisfying 2 + 2 =1, (1.10)
£ Pu() € BO(0,00); BY,), (1.11)
Jim, ut) =l oy =0, (1.12)

Jim 567D ()| g0, =0, (1.13)
Jim o)l o =0 (1.14)

(2) In case ¢ = .
Under the condition (1.8), there exists a mild solution of (N-S) on (0,00) with the following
properties:

14
uw € BC,(0,0); Bpoo ), (1.15)
u € LQ’OO(O,OO;BBJ) for allp < r <00 and 2 £ a < 0o satisfying 2+ 2 =1, (1.16)
£GP u() € BO((0,00); BYY), (1.17)
1
(u(t),p) = (a,) forallp€ B, " as t— 0. (1.18)
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Here BC,, denotes the class of bounded weakly-star continuous functions.

Concerning the uniqueness, for everyn <r < oo and 2 < « < 0o satisfying %Jr% =1, there
is a constant n = n(n,r) such that if w and v’ are mild solutions of (N-S) on (0,00) in the class
L**(0,00; PL") satisfying

Hu”L“vm(O,oo;Lr) é 7, Hu/“Lavoo(O,oo;LT) g m, (119)

then it holds that u = u'.

Remark 1 (1) Since 39,1 C L7, our class (1.10) shows that the solution u given by Theorem 1
belongs to the Serrin class L*9(0, co; L"), and so by Proposition 1.2, uniqueness holds provided
1<g< .

n

L1t

(2) The decay property (1.14) of w in the same space B4 * as the initial data a is the corre-

sponding result to what is stated at the end of Kato [11, Note] in the sense that the solution

of (N-S) behaves like tlim [lu(t)||z» = O for the initial data a € L™. On the other hand, in case
—00

¢ = o0 as in Theorem 1 (2), we do not have any corresponding decay to (1.14) since C§° is not

n

-1
dense in Bp oo ”.

The next theorem shows that the class of initial data is necessarily characterized in scaling
invariant homogeneous Besov space when the mild solution u belongs to the Serrin class.

Theorem 2 Let a € §' and diva = 0 in the sense of distribution. Suppose that w is a mild
solution of (N-S) on (0,00) in L*%(0,00; L") for some n < r < oo and some 2 < a < 00

S 14n
satisfying % + % =1, and for some 1 < q = co. Then it holds necessarily that a € PBr,qu*

We obtained the result on analyticity of mild solutions.

.14z
Theorem 3 Letn < p < 0o and 1 £ g £ oo. Suppose that a € PBy, * satisfies (1.8).
The mild solution u of (N-S) on (0,00) given by Theorem 1 is smooth in the space variable as

Du(-,t) € L™, 0 <t < oo for all multi-indices o = (o1, -+ , ) € N with the estimate
Lo
sup 272 | Du(t)|| e < CK1oallel, (1.20)
0<t<oo

with an absolute constant K, where C = C(n,p,q). In particular, such a mild solution wu(x,t)
is uniformly analytic in x € R™, namely

u(zyt)zz Z %‘To’t)(z—xo)% 0<t<oo (1.21)

k=0 || =k

for all xg,x € R™ with |x — x| < %

The next theorem shows local well-posedness of mild solutions to (N-S) for arbitrary large
initial data and its analyticity.



Theorem 4 Let n < p < co.
(1) In case 1 < ¢ < cc.

-1+
For everya € PBpg " there exist T =T (n,p,q) > 0 and a unique mild solution u of (N-S)
on (0,T) with the properties:

14
we C(0,T): Bpy ), (1.22)
uwe LY0,T; BSJ) forallp<r<ooand2 < a < oo satisfying 2 +2 =1, (1.23)
3G Du() € BO(O, 1) BY,), Jim 13670 u(t)| g0, =0, (1.24)
P
lim ||u(t) —all . G =0. (1.25)

t—+0 Bpq

Such a mild solution u satisfies D®u(-,t) € L*, 0 <t = T for all « € N with the estimate

lo]
sup 272 | DOu(t)]| oo < CKI |l (1.26)
0<t<T
with an absolute constant K, where C' = C(n,p,q) is independent of T. In particular, u(z,t) is
uniformly analytic in x € R™.
(2) In case ¢ =

n

14z
There is a constant &' = §'(n,p) > 0 such that if a € PBp oo 7 salisfies

sup 25 |l x al| p < & (1.27)
N=j
for some N € Z, then there exist T = T(a,p) > 0 and a mild solution u of (N-S) on (0,T) with
the properties:

1+

u € BCW([0,T); Bpoo "), (1.28)
u € L0, T, Br,l) forallp <r < oo and 2 < o < o satisfying % +2=1, (1.29)
#2G D) € BO((0,7); BY,), (1.30)
(u(t),p) = (a,) forall p € B;,Tl% as t — +0. (1.31)

The uniqueness of mild solution in the class (1.22) holds under the hypothesis (1.19) as in
Theorem 1. The analyticity of u remains true in the same way as in (1.26).

The final result shows that if the solution belongs to the Serrin class globally, then the
solution is analytic in R™ and belongs to more better class.

Corollary 1 Let a € §' and diva = 0 in the sense of distribution. Suppose that u is a mild
solutwn of (N-S) on (0,00) in L*7(0,00; L") for some n < < o0 and 2 £ a < oo satisfying

+”—1(md1<q<oo Then it holds thataEPqu and
w e L%(0,00; L") N L0, 003 B ;) (1.32)

forallr £ B < o0 and 2 £ 6 < « satisfying % + % = 1. Moreover, u(t) is analytic in R™ for
t >0 asin (1.21).
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2 Outline of the Proof

In this article, we state outline of the proof of the results in Section 1. The full proof is stated
in the paper [14].

2.1 Key lemmata
The following lemma plays a key role for the proof of Theorem 2 and Corollary 1.

14
00. For a € Bpy * it holds that e®a €

Lemma 2.1 (1) Let n < p < o0 and 1 £
«@ satisfying % + 2 =1 with the estimate

<
L*9(0, o0; 391) forallp<r<ooand?2 < 00

q
<

SC a 14+, 2.1
pentomy S Clollrvs (2.1)

LA |
[le2allzo,

L1+
where C = C(n,p,q,r). In particular, if a € Bps * for % + 2 =1 withn <p < oo, then it
holds that e*®a € L*(0, oo; 32,1)~
(2) Assume that a € S satisfies

n
p

e®a e LYY0,00; L.

forn<r§ooand2§a<oowith%+%:1andf0r1<q§oo. Then it holds that

n

a € BT_qH_T with the estimate
A
lall ,-1e2 < Clle"allpo,o0iLrs (2.2)
4

where C = C(n,r,q).
In case of & = ¢, the result is in [2, Theorem 2.34].
We define the nonlinear term
t t
N(u,v) = / (TBP(u . Vo) (r) dr = / PV - elt=D3 (5 v) (1) dr
0 0

for solenoidal vector fields v and v. The next lemma shows bilinear estimates which will be used
to control the nonlinear term N (u,v).

Lemma 2.2 (1) Let n < r < 0o and 2 £ o < oo satisfy % +2 =1 Let1 < q = oo Assume
that u € L*9(0,T; 391) Then for every v € L¥9(0, T Bgl) with " < B <00, o <0< oo and
1 <G £ oo, it holds that N(u,v) € L%9(0,T; Bg’l) with the estimate

HN(U:U)”L&é(o,T;BgJ) < CHUHLC‘"](O,T;BEJ)H’UHLG’(;(O,T;BSJ) (2.3)

for all0 <T = oo, where C = C(n,r,q,0, 3,q) is independent of T'. In particular, we may take
B =r and 8 = «, and hence for u,v € L*4(0, T} Bg,l), it holds that

[N (u, ’U)HL“*q(O,T;BS,l) = CHUHLWYQ(O,T;BEJ)HUHLH,Q(O,T;BQ,I) (2.4)



n1l 1
(2) Let n < p < o0 and 1 £ ¢ < o00. We assume that sup t5(775)|\u(t)||30 < oo and
0<t<oco p.l

sup t%(%7%)|‘v(t)“BgJ < oo. Then it holds that

0<t<oo
nel 1 nel 1 nel 1
t2(n p)HN(U,U)(t)”Bgl éc(oiuthQ(n p>Hu(T)HBgl)(OS<uEtT2(n p)”U(T)HBgl), (25)
nel_1 nel 1
IV (u, 0) (O -1+ < C(()iugtrz(n p)Hu(T)HBgl)(()iugtTi(n o)) (26)
P,q T > T ’

for all 0 < t < oo, where C = C(n,p) in (2.5) and C = C(n,p,q) in (2.6) are independent of t.

2.2 Proof of Theorem 1 (1); in case 1 < ¢ < o0

For the proof of Theorem 1 (1), we make use of the implicit function theorem for Banach spaces.
Let n < p < oo and 2 < s < oo satisfy % + % =1. Let 1 £ g < co. We define the class X of
mild solutions by

i . .
X = {u € BC([O7 00)7 Bp-,q+p) N L&CI(O’ 003 Bg,l) N L27q(07 003 Bgo,l);

n(l_1 >0 . n(l_1y
£ u() € BO(0,00): B)): lim 13670 u(t) gy =0} (2.7)

with the norm
— . . . < 2(:- .
[ullx = S ||U(t)||B;;+% Fllull oo 00 ) + Il p20 (0,000 ) +021<POO“ mr u®ll g -

We define a map G(a,u) by

Gla,u)(t) = u(t) — e®a+ N(u,u)(t) 0<t< oo, (2.8)

n

14
fora € PByy " and u € X. Then we have

Lemma 2.3 Letn<p<ooand2<s<oosati5fy%+%:1, and let 1 £ q < oo.

(1)
L1+
G: PBpy " x X 3 (a,u) = G(a,u) € X
18 a continuous mapping.

14
(2) For each a € PB,,,,q+p, the map G(a,-) is of class C from X into itself and the Fréchet
deriative Gy (a,u) € B(X) is given by

Gula,u)v(t) = v(t) + /t APy - Vo + v - Vu)(r)dr
0
=ou(t) + N(u,v)(t) + N(v,u)(t), 0<t<o0

forve X. Here B(X) denotes the set of bounded linear operators on X .
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Now we prove Theorem 1 (1). Let n < p S r < oo and 2 £ «a < oo satisfy %—i—% =1. Let
— +ﬁ
P

-1
1 = ¢ < 0o. Assume that a € PB4
Step 1. First we prove existence of the solution in the class (1.9). Our aim is to solve the

n

R A
equation G(a,u) = 0 by representing « € X in terms of a« € PB,4 ”. Since
G(0,0) =0, Gu(0,0) =1Ix (the identity map on X),
it follows from the implicit function theorem on Banach spaces that there exist positive constants
0, € and a continuous map u : Uy — V, with
4n

7 lall ;-1 S 0}, Ve={u€X; [lulx S e}

p.q

-1
Us={a € PB4

such that the equation G(a,u) = 0 can be uniquely expressed as u = u[a] for a € Us. Obviously
such a constant § coincides with that of (1.8), and the continuous map u is the desired mild
solution of (N-S) on (0, co) for the initial data a satisfying (1.8). Apparently, we see that u = u[a]
belongs to X. By interpolation, it holds that

2 1-2
a0 i) S Ol sy ¥l i

for all p £ r < oo and 2 £ a < oo satisfying % + 2 =1 with C = C(n,p, q,r), from which we

obtain (1.10). The fact that u satisfies (1.9), (1.11) and (1.13) is due to definition (2.7) of the

space X. Since ula](t) = e"®a — N(u,u)(t), we see that the property (1.12) is a consequence of

. tA _ . _
Jim fle®a—al iy =0, lim [IN(u)O 1y =0.

P,q P,q

Step 2. For the proof of (1.14), we consider the following auxiliary evolution equation.

dv
EfAerP(u-Vv)—O ont>0, (2.9)
v(0) = b.

Concerning the unique existence of mild solution v for (2.9), we have the following lemma.

Lemma 2.4 Letn <p <r < o0 and2§a<oosatisfy%+%:1, and let Qg‘fn < B < n.
There exists a constant n =n(n,p,r,q, B) such that if u € X satisfies
lullx =n (2.10)

-1 - I6 . . . . .
then for every b € PBp,qup N L, there exists a unique mild solution v of (2.9) in the class
X N BC([0,00); L), i.c.,

o(t) = e®b — N(u,v)(t), 0<t< o0. (2.11)
Moreover, such a mild solution v satisfies

Jim o)1y = 0. (2.12)

p,q



An immediate consequence of Lemma 2.4 with the aid of uniqueness of solution to (2.9) is a

.
decay of the mild solution of (N-S) with a € Bp,q+p N LP. More precisely, we have the following
lemma.

Lemma 2.5 Letn <p<r<ooand2 < a < satisfyz+E =1, andlet1 < q < co. Assume
14
=& (n,p,r,q,B) such that ifa € PBp, * NLP
5atzsﬁes HaHBﬂy_g § o', then the mild solution u given by Step 1 has the additional property
i3

sd
that u € X N BC([0, 00); L) with

Jim f(e)] g =0 (2.13)

Now, we are in position to prove (1.14). We take 3 so that

np
2p—mn

<fB<n

and fix such a 8. Let &' = ¢'(n,p,r,q, 3) be as in Lemma 2.5. Define A = A(n,p,7,q,3) = %/. In

L-142
such a situation, assuming a € PB),, * with ||aH 1+ﬂ < ), we may prove that
li _ipn = 2.14
Jim Jalel()] g =0 (2.14)

where Us 3 a — ula] € V 15 the solution map defined in Step 1. By continuity of the map
i with HaH ~1+2 = X and for every € > 0, there is a constant
T)q

ul-], for every a € Pqu

k = k(e,a,p,n,q,r) such that if a. € Pprq i satisfies ||a — ac|| . < k, then it holds
B

P9
n

. 71+ﬂ L1+
that |ula] — u[as]Hx < e Since PB,y " N LP is dense in PB,, ", we may assume that
+
a. € PB,, " NLP with |la.|| . —1+” < ¥'. Hence it follows from Lemma 2.5 that

Cm fulac) O] - = 0. (2.15)

Since

lulal @)l -1z lulal(t) — ulac]DI -rea + llulad @] -1z

p.q P‘I P‘Z

Sllulal = ulad]llx + llulac] (Ol -143

Se + [Jufac](t )H -1+2

P‘I

holds for all t € (0,00), we obtain from (2.15) that

1 n <
A lelal O -1+ = e

Since £ > 0 is arbitrary, we conclude (2.14). This completes the proof of Theorem 1 (1). The
proof of Theorem 1 (2) in case ¢ = oo is omitted (cf. [14]).
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2.3 Proof of Theorem 2

Let n <r £ oc0and 2 £ a < oosatisfy%—k% = 1. Let 1 < ¢ £ oco. We assume that
u(t) = e®a — N(u,u)(t) is the mild solution of (N-S) on (0,00) in L%%(0,00;L"). A slight
modification of Lemma 2.2 (1) from Bg,l to L" yields that N(u,u) € L*7(0,00; L"). Therefore it

holds that e**a € L™9(0, co; L"), and hence from Lemma 2.1 (2), we conclude that a € PB,:qH?.

This proves Theorem 2.
2.4 Proof of Theorem 3

The proof of Theorem 3 is rather long and complicated, so we omit it. For details, see [14].

2.5 Proof of Theorem 4

For construction of the mild solution locally on some interval (0,7) for an arbitrary initial data

n

.
a € PBpg ", we make use of the successive approximation {u;}3%, as
u7+1(t) :U()(f)*N(U]7’U,])(f)7 ]:071727

¢
up(t) = e®a,  N(uj,u;)(t) = / APy (uj ® uy)(T)dr.
0

Let us define M; = M;(t) by

nel_1
M;(T) = sup_||u;(t)]| 12+ ”“’jHLs,q(oyT;Bol) + Huj”[,?,q((),T;Bo o+ sup 1% p)Huj(t)“BOl7
0<t<T Bpq P et 0<t<T P,
A
for j =0,1,2..., where s is chosen as % +2 =1. Since a € PBy, ", by the heat semigroup

estimates in the homogeneous Besov spaces (cf. [13, Lemma 2.2]) and (2.1) it holds that My < oc.
Assume that M; < co. Then by Lemma 2.2 we have

M1 £ Mo+ CM;, (2.16)

where C' = C(n,p,q) is independent of j. Hence by induction we have M; < oo for all j =
0,1,2.... Now, we take My in such a way that

1

My = M()(T) < E

(2.17)

n

L 14
This is fulfilled by choosing 7" small enough since a € PB,, " for 1 < ¢ < oo. In case ¢ = 00

n

L1+
under the hypothesis (1.27) on a € PBp ¥, we may also take a small T > 0 so that (2.17)
is fulfilled. For more details, sce [15, Theorem 1.3 (2)]. Then under the condition (2.17), we
obtain from (2.16) that

1—+/1—-4CM,

M; 2C

IIA

=M for j=0,1,2....



By the standard method as in Fujita-Kato [8] and Kato [11], we see that such a bound M of
{M;}32 yields the mild solution u of (N-S) in the class

.14 . .
c BC([07T);Bp’q+p)mLS,q(07T; BBI)QLZQ((LT; Bgo 1)7 1 g q < o0,
u .14 . .
BCy([0,T); Bp,o;rp) N L>>*(0,T; 32,1) N L»(0,T; 320,1)7 q = 00,

provided the condition (2.17) is fulfilled. The properties (1.22)—(1.25) for 1 < ¢ < oo and those
(1.28)—(1.31) for ¢ = oo are proved as similar manner to the proof of (1.9)—(1.13) and (1.15)—
(1.18) in Theorem 1, respectively. Analyticity is proved in the same way as the proof of Theorem
3, where the time interval is restricted to 0 <t < T.

2.6 Proof of Corollary 1

By Theorem 2, it follows that a € PB;,qH%. Applying Theorem 4, there exists 7' > 0 and
a unique mild solution 7(t) of (N-S) on (0,7) in the class C([O,T);B;(11+7) N L%4(0,T; By ;)
with t%(%’%>u(t) € BC([O,T);BEVI) forall 7 £ < o0 and 2 £ 0 £ « satisfying % =1
Then it follows that uniqueness of mild solutions in the class L*9(0,7 : L") that u(t) = u(t) for
0St<T. .

We next show that there is some 1" < Ty < oo such that u € Le’q(TO, oo;Bg 1) for all g and
0 as above. Indeed, since u € L*9(0, 00; L"), for every € > 0 there exists 7. > 0 such that

HUHL‘)‘JI(TE,QQ;L"') g g. (218)
Since u is a mild solution of (N-S) on (0, 00), we have an expression as

t
u(t) = e T2 (TL) — / PV - DA (u @ u)(r) dr.

€

Hence by (2.18) and a similar argument to Lemma 2.2 (1) it holds that

“TOA
[eTI2UT) | pea(rs oosrry S el poa(re,oonr) + CllullZea(r,, ooLr
< Ce,

where C' = C(n,r,q) is independent of T;. Then it follow from Lemma 2.1(2) that

[Tl y-142 = Clle®TI2U(TL) || Lo (1, oz S Ce
Tq

with he same constant C' as above. Taking € > 0 so small that Ce < § with the same § as

in Theorem 1 with p replaced by 7, we obtain a unique mild solution v of (N-S) on (7, c0) in
the class BC([Tg,oo);B;qHT') N Le”’(TE,oo;Bgﬁl) with v(7.) = w(T:) for all r £ B < oo and
2 < 0 < «a satisfying % + % = 1. Hence again by uniqueness, it holds that

u(t) =wv(t) for T, =t < o0,

which yields that )
ue L™(T., 00, B ;) (2.19)
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for all g and 0 as above.

Now, our remaining task is to show that the local existence times T is able to be prolonged
up to T; in (2.19). We prove it by contradiction. Assume that there is 0 < T, < 7. such that
u cannot be extended beyond T. Then it follows from Giga [9, Theorem 4] that there exists
n > 0 such that

lu(®)zr > C(T —t)~ %, Ti—n<t<T,

with some positive constant C' = C(n,r). It is easy to verify that

(T, — )~ 2 € L0, T.)
¢ L0, T:)

for 1 < ¢ < oo, which implies that ||u(t)||zr ¢ L%%(0,T%). This causes a contradiction and hence
we obtain that )
we L%90,T;BY ) (2.20)

for all 0 < T' < oo. Now it follows from (2.19) and (2.20) that
TS L"’q(()7 0; Bg‘l)

for all r £ 8 < co and 2 £ 0 < oo satisfying % + % = 1. Thus the solution u(t) coincides
with the mild solution of (N-S) given by Theorem 1 so that it has the properties (1.9)-(1.14).
Furthermore, it follows from Theorem 3 that w(t) is analytic in R” for all 0 < ¢ < oco. This
completes the proof of Corollary 1.
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