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1 Introduction and Results. 

Let us consider the Cauchy problem of the Navier-Stokes equations in 町， n~2;

(N-8) 
｛悶—△u+u•Vu 十▽a~0 in JR" x (0, T), 
div u = 0 in股nX (0, T), 

ult=O = a in町，

where u = u(x, t) = (u1 (x, t), ・ ・ ・, un(x, t)) and 1r = 1r(x, t) denote the unknown velocity vec-

tor and the unknown pressure at the point x = (x1, ・ ・ ・,xn) E恥nand the time t E (0, T), 

respectively, while a= a(x) = (a1(x), • • • ,an(x)) is the given initial velocity vector. It is well-
known that (N-S) is invariant under such a change of scaling as uA(x, t) =入u(入x,炉t)and 

叫 x,t) =応（入x,炉t)for all入＞〇.The Banach space Y of functions with the space and time 
variables with the norm II・IIY is called scaling invariant to (N-S) if it holds that llu入IIY= llullY 

for all入>0. Since the corresponding scaling law to the initial data a is a入(x)=入a(入x),it 

is suitable to solve (N-S) in the Banach space X for a with such a property as Ila入llx= llallx 
for all入>0. Since the pioneer work of Fujita-Kato [8], there have been a number of results to 
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MEXT. 
tThe research of S.S. was partially supported by JSPS Grant-in-Aid for Scientific Research (B) -16H03945, 
MEXT. 
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・-Hn/p 
enlarge the space X such as Hバ町），び（町）， Bp,= (即） with n < p < oo and BMo-1 
which are monotonically increasing. See e.g., Kato [11], Giga-Miyakawa [10], Kozono-Yamazaki 

[16], Cannone [4], Cannone-Planchon [5] and Koch-Tataru [12]. Amann [1] has established a sys-
tematic treatment of strong solutions in various function spaces such as Lebesgue space LP(O), 

Bessel potential space H□ 0), Besov sapce B;,q(O) and Nikol'skii space Ns,P(O) in general 
domains 0. On the other hand, in the critical case p = oo, ill-posedness in the sense of break-

down of continuous dependence of the solution mapping for a E Bふ of(N-S) was proved by 
Bourgain-Pavlovic [3] for q = oo, Yoneda [19] for 2 < qく ooand Wang [18] for 1 ;;:; q ;;:; 2. 

The purpose of this article is to characterize the optimal space of the initial data a for 

existence of mild solution u of (N-S) in the generalized Serrin class La,q (0, oo; 『（初）） for¾+序＝
1 with n < r ;;:; oo. In a bounded domain 0, a similar investigation has been observed by Farwig-
Sohr-Varnhorn [7] and Farwig-Sohr [6]. Indeed, they proved that for a E店(0),with島(0)for 
1 < rく oodenoting the closure of compactly supported solenoidal vector fields in U(O), the 
mild solution u of (N-S) with the homogeneous boundary condition belongs to La(o, T; U(O)) 

with some O < T ;;:; oo for such a and r as above if and only if it holds that 

j0 lie―tA2allf叩）dt < oo 
゜

(1.1) 

for some O < o~T, where A2 denotes the Stokes operator in L;(O). By the real interpolation, 

such an initial data a E L罰） satisfying the condition (1.1) is characterized as a EB訊(0)= 
Bら(O)*,where B; 弓，a,(O)= (ば(0),D(Aり）如，a'for~+ 占= 1 and¾+¼, = 1 with D(Aり

denoting the domain of the Stokes operator Ar, in L~(0). Since the Stokes semigroup { e-tA2}t>o 
in a bounded domain O exhibits an exponential decay in U(O) as t→ oo, we see easily that 
the condition (1.1) is equivalent to 

f00 lie―tA2all1叩）dt < oo. 
゜

(1.2) 

On the other hand, in the whole space町， wecannot expect any exponential decay of { et△ }t::,o 
inじ（町） • To get around such difficulty, we shall establish a sharp estimate 

llet△ alli1?,1 (即） ;£Cllall -1十丑
L",q(O,oo) 応，q P(JRn) 

(1.3) 

. -1+" 
for all a E Bp,q P (町） with n < p < oo and 1 ;:;; q ;:;; oo provided a +弓=1 with p ;:;; 
r ;:;; oo. Hereい (0,oo) denotes the Lorentz space on (0, oo). Since we are also successful 

to derive the continuous bilinear estimate of the Duhamel term /t P▽ , e(t-T)△ uRv(T)ふ for

゜u, v E L",q (0, oo; 凰（町））， itfollows from (1.3) that there exists a unique global mild solution 
. -1十竺

u E L",q(O, oo; 閑（町）） provided a is sufficiently small in Bp,q P (即） • It should be emphasized 
that such a global existence result for small initial data can be obtained because such an estimate 

as (1.3) holds on the whole interval (0, oo). Notice that our class is stronger than the Serrin 
class because it holds a continuous embedding B~,l (町） Cじ（即） • Now, a natural question 
arises whether the estimate (1.3) is optimal or not. It will be clarified that if a E S'satisfies 
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et△ a E£°',q(O, ooエ（即）） for¾+~= 1 with n < r ;;:; oo and for 1 < q ;;:; oo (S'denotes the 
1十n

class of temperated distribution), then it holds that a E .i3;,q下（町） with the estimate 

llallB;,~ 嘩面） ;; C 11 llet△ allじ（即）IIL虹 (O,oo) (1.4) 

Since the continuous bilinear estimate of the Duhamel term holds for u, v E£°',q(O, oo; 『国）），
we conclude from (1.4) that the mild solution u of (N-8) belongs to the Serrin class 
£°',q(O, oo; Lr(即）） for¾+ 乃= 1 with n < r~oo and for 1 < q~oo, then the initial data a 

-1十丑
necessarily satisfies that a E Br,q r (町）．

To state our results we first recall definition of the homogeneous Besov spaceか Letp,q・ 

｛凸}JEZbe the Littlewood-Paley decomposition. We take a function¢E Co'国） with supp¢= 
{~E 町； 1/2 :::'. l~I :::'. 2} such that~JEZ¢(2花） = 1 for all~=J 0. The functions <f!J is defined 
by 

F<pJ(~) =¢(2—j~), 

where F denotes the Fourier transform. For s E恥 and1 ;£p, q ;£oo, the homogeneous Besov 

space Bんisdefined by 
的，q= {f ES'; IIJII均，q< 00 }, 

where 

llflln;,, = { Iこ二塁：:1:1;;: :i'i'::t) ,1,, : : :< =, 
Let us denote by P the Helmholtz projection fromび， 1< p < oo onto the subspace of solenoidal 
vector fields P LP as a bounded operator. It is well-known that P is expressed as 

p = (Pjkh~j,k~n, ~ 沐＝伽+Rj凡， j,k = 1, ... ,n, (1.5) 

a where { r5 is the Kronecker s mbol and R・=―--叫l'ej,k'en Y 釦・
（△） 2 , j = 1, • • • , n are the Riesz 

transforms. One of the advantage of homogeneous Besov spacesか stemsfrom the fact that p,q 

the Helmholtz projection P is bounded even for p = 1 and p = oo. Indeed, we have the following 
proposition. 

_ q::;; oo ands E股. The Helmholtz projection Proposition 1.1 (cf. [15]) Let 1::;; p::;; oo, 1 < 
P defined by (1.5) is bounded from均，qonto itself. 

By using the Stokes operator -P△ on P閤，q,the original equations (N-S) can be rewritten to 
the abstract evolution equation: 

｛翌—△u+ P(u・ ▽ u)~0 on (0, T), 

u(O) = a, 
(1.6) 

where we use the fact that -P△ u=―△ Pu=―△ u for u satisfying div u = 0 in the whole 
space町．

Our definition of the mild solution now reads 



233

Definition 1 Let a E S'with div a = 0 in the sense of distribution. A measurable function u 

on恥nx (0, T) for O < T~oo is called a mild solution of (N-8) on (0, T) if 
(1) u E£<>,q (0, T; P Lr) for some n < r~oo and 2~a < oo satisfying¾+ 号= 1 and for 
some 1~q~oo; 
(2) u satisfies 

t 

u(t) = et~a -J P▽ . e(t-r)△ (uRu)(T)dT, O<t<T. 
゜

(1.7) 

It should be noted by the similar estimate to Lemma 2.2 below that the Duhamel term on the 

R.H.S. in (1. 7) belongs to£<>,q (0, T; P LT) provided u satisfies the condition (1) of Definition 1. 

Concerning uniqueness of mild solutions, we have the following proposition. 

Proposition 1.2 Let a E S'with div a = 0 in the sense of distribution. The mild solution u 

of (N-8) on (0, T) in the class L°',q(O, T; LT) for some n < r ;::; oo and 2 ;::; a < oo satisfying 
2 —+ -= 1 and for some 1 ;::; qく oois unique. a r 

This uniqueness assertion is an immediate consequence of Lemma 2.2. It should be noted that, 

in the case q = oo, uniqueness holds provided u is small in L屯00(0,oo; Lr). 

We first state well-posedness of global solutions to (N-8) for small initial data a. 

Theorem 1 Let n < p < oo. 
(1) In case 1 ;::; qく 00.

. -1十竺
There exists a constant fl = fl (n, p, q) > 0 such that if a E P Bp,q P satisfies 

llall8―1嘩;::;fl, (1.8) 
p,q 

then there exists a unique mild solution u of (N-8) on (0, oo) with the following properties: 

. -1+庄
uEBC([O,oo);Bp,q P), (1.9) 

u E L"',q(O, oo; B応） for all p ;::; r ;::; oo and 2 ;::; a < oo satisfリing え+~= 1, (1.10) 

叫叶）u(・) E BC([O,oo); 靡）， (1.11) 

lim llu(t) -all . -1十旦=o, (1.12) 
t→ +o B P p,q 

lim t 号(¼ 一 ½lllu(t)llso = o, (1.13) 
t→ +o p,1 

lim llu(t) II . -1十丑=0. (1.14) 
t→ oo B P p,q 

(2) In case q = oo. 

Under the condition (1.8), there exists a mild solution of (N-8) on (0, oo) with the following 
properties: 

. -1十丑
U E BCw([O,oo);Bp,oo P), (1.15) 

u E L°'•00(0, oo; B応） for all p ;::; r ;::; oo and 2 ;::; a < oo satisfying¾+~= 1, (1.16) 
11(.!.-l) 
t2 n Pu(・) E BC((O,oo)競，1), (1.17) 

. 1-11 
(u(t), 1.p)→ (a,1.p) for all 1.p EB礼1P as t→ +o. (1.18) 
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Here BCw denotes the class of bounded weakly-star continuous functions. 

C oncerning the uniqueness, for every n < r < 2 n = oo and 2 ;;::; a < oo satisfying -+ -= a r 1, there 

is a constant 7J = rJ(n, r) such that if u and u'are mild solutions of (N-S) on (0, oo) in the class 
£"',00 (0, oo; PLりsatisfying

llullL<>,00(0,oo;L')~'T/, llu'IIL屯00(0,oo;U)~'T/, (1.19) 

then it holds that u三 u'.

Remark 1 (1) Since B~,l CL八ourclass (1.10) shows that the solution u given by Theorem 1 
belongs to the Serrin class£°',q(O, oo; Lr), and so by Proposition 1.2, uniqueness holds provided 

1 ;':; q < 00. 
. -1十2

(2) The decay property (1.14) of u in the same space Bp,q P as the initial data a is the corre-

sponding result to what is stated at the end of Kato [11, Note] in the sense that the solution 

of (N-S) behaves like lim llu(t)IILn = 0 for the initial data a EL匹 Onthe other hand, in case 
t→00 

q = oo as in Theorem 1 (2), we do not have any corresponding decay to (1.14) since C!f is not 
. . -1十Q

dense m Bp,oo P • 

The next theorem shows that the class of initial data is necessarily characterized in scaling 

invariant homogeneous Besov space when the mild solution u belongs to the Serrin class. 

Theorem 2 Let a E S'and div a = 0 in the sense of distribution. Suppose that u is a mild 

solution of (N-S) on (O,oo) in£°',q(O,oo; じ） for some n < r ;':; oo and some 2 ;':; a < oo 

satisfying - ・  
2 -l+!!c 

°' 
+~= 1, and for some 1 < q ;':; oo. Then it holds necessa叫ythat a E P Br,q r . 

We obtained the result on analyticity of mild solutions. 

. -1十丑
Theorem 3 Let n < pく ooand 1 ;':; q ;':; oo. Suppose that a E P Bp,q P satisfies (1.8). 

The mild solution u of (N-S) on (0, oo) given by Theorem 1 is smooth in the space variable as 

D"u(・, t) E£00, 0 < tく oofor all multi-indices a= (a1, ・ ・ ・, an) E NH with the estimate 

sup t½+号 IID°'u(t)IIL=~CKl°'llall°'I,
O<t<oo 

(1.20) 

with an absolute constant K, where C = C(n,p,q). In particular, such a mild solution u(x,t) 

is uniformly analytic in x E良叫 namely

00 

u(x,t) =LL  
D"'u(xo, t) 

k! 
(x -xo)色

k=O lal=k 

O<t<oo (1.21) 

for all xo, x E町 withIx -xol <紐

The next theorem shows local well-posedness of mild solutions to (N-8) for arbitrary large 

initial data and its analyticity. 
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Theorem 4 Let n < p < oo. 

(1) In case 1 ;;:; qく 00.
-1+" 

For every a E P Bp,q P there exist T = T(n, p, q) > 0 and a unique mild solution u of (N-S) 
on (0, T) with the properties: 

,-1+竺
u E C([O, T); Bp,q p), 

u E L"',q(O, T競，1) for all p~r~oo and 2~a< oo satisfying¾+ 序= 1, 

tll(¼-~lu(•) E BC([O,T)競，1), 犀。 t号 (¼-~)llu(t)IIBg,, = 0, 

lim llu(t) -al . n = 0. 
t→ +o I 

B 
-1+ァ
p,q 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

Such a mild solution u satisfies D"u(・, t) E£00, 0 < t~T for all a E Na with the estimate 

1 回
sup t2+ 2 IIDau(t)lloo~CKlal lallal (1.26) 
O<t<T 

with an absolute constant K, where C = C(n,p, q) is independent of T. In particular, u(x, t) is 

uniformly analytic in x E町．
(2) In case q = oo. 

-1十丑
There is a constantが＝が(n,p) > 0 such that if a E P Bp,oo P satisfies 

sup 2(-l十 ~)jll'Pj* allLP~o' 
N~j 

(1.27) 

for some NEZ, then there exist T = T(a,p) > 0 and a mild solution u of (N-S) on (0, T) with 
the properties: 

. -1+!! 
u E BCw([O, T); Bp,oo p), (1.28) 

u E La,00(0, T遣幻） for all p ;:::; r ;:::; oo and 2 ;:::; a < oo satisfying え+~= 1, (1.29) 
町1_1)
t2 れ Pu(・) E BC((O, T); 摩）， (1.30)

・1-旦
(u(t),r.p)→ (a, r.p) for all r.p E BP,,{ as t→ +o. (1.31) 

The uniqueness of mild solution in the class (1.22) holds under the hypothesis (1.19) as in 

Theorem 1. The analyticity of u remains true in the same way as in (1.26). 

The final result shows that if the solution belongs to the Serrin class globally, then the 
solution is analytic in ]Rn and belongs to more better class. 

Corollary 1 Let a E S'and div a = 0 in the sense of distribution. Suppose that u is a mild 

solution of (N-S) on (0, oo) in La,q (0, oo; Lりforsome n < r ;:::; oo and 2 ;:::; a < oo satisfying 
1 +!!: • 一1十旦

a r = 1 and 1 < q < oo. Then it holds that a E PBr,q r and 

uEL呵 O,oo;Lりn£0,q(O,oo; .i3出） (1.32) 

for all r~(3 < oo and 2~0~a satisfying j +~= 1. Moreover, u(t) is analytic in町 for
t > 0 as in (1.21). 
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2 Outline of the Proof 

In this article, we state outline of the proof of the results in Section 1. The full proof is stated 
in the paper [14]. 

2.1 Key lemmata 

The following lemma plays a key role for the proof of Theorem 2 and Corollary 1. 

. -1十旦
Lemma 2.1 (1) Let n < pく ooand l ;;=; q ;;=; oo. For a E Bp,q P it holds that et△ a E 
L°',q(O, oo; Bら） for all p ;;=; r ;;=; oo and 2 ;;=; a < oo satisfying¾+~= 1 with the estimate 

I llet△ alli3゚ ;;Cllall -1+号9r,1 L",q(O,oo) 的，q
(2.1) 

. -1十旦
where C = C (n, p, q, r). In particular, if a E Bp,s P for~+ 悶= 1 with n < p < oo, then it 
holds that et△ a E£8(0,oo; 摩）．
(2) Assume that a E S'satisfies 

et△ a E La,q(O,oo;r). 

for n < r ;;:; oo and 2 ;;:; aく oowith¾+~= 1 and for I < q ;;:; oo. Then it holds that 
. -1十丑

a E Br,q r with the estimate 

llalli3ぷ阜;;Cllet△ allL叫 (O,oo;じ）， (2.2) 

where C = C(n, r, q). 

In case of a.= q, the result is in [2, Theorem 2.34]. 

We define the nonlinear term 

N(u,v) = l凶—T)△P(u・ ▽ v)(T) dT = lo五.e(t-T)△ (u@v)(T) dT 
for solenoidal vector fields u皿 dv. The next lemma shows bilinear estimates which will be used 

to control the nonlinear term N (u, v). 

Lemma 2.2 (1) Let n < n = l. Let I ;;:; q ;;:; oo. Assume ;;:; oo and 2;;:; a. く oosatisfy -+ -a r 
that u E La,q(O, T遣侶） • Then for every v E£0,ii(O, T; 靡） with r';;:; 〇;;:;oo, a.1 ;;:; 0 < oo and 
1;;:; ij;;:; oo, it holds that N(u, v) E£0,ii(O T; iJO (3,1) with the estimate 

IIN(u,v)ll1、e,ii(O,T;Bi,,)~Cllulb,q(O,T;B~)lvll1、e,ii(O,T;Bi,,) (2.3) 

for all O < T;:; oo, where C = C(n, r, q, 0, /3, ij) is independent of T. In particular, we may take 
/3 = r and 0 = a, and hence for u, v E L"',q(O, T遣尉）， itholds that 

IIN(u, V) lb,oco,T;B~,1) ;;; Cllulb,oco,T;B~,1) llvllL",O(O,T;B~,1) (2.4) 
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(2) Let n < pく ooand 1~q~oo. We assume that sup t 
!, (.! ―.!.) 
2 n P llu(t) lliJo く ooand 

O<t<oo P,1 
!!c(.!_.!.) 

sup t2 n P llv(t)lliJ。<oo. Then it holds that 
O<t<oo P,1 

t ?(¾-;;l IIN(u, v)(t) lls似 ;£C(supr?(¾-;;lllu(r)lls2,)(sup r?(¾-;;lllv(r)llsり), (2.5) 
O<T<t O<T<t 

IIN(u, v)(t)lls;,! 骨 ;£C(。翌庁号(¾咄） llu(r)II虎,)(。口 T?(¾合）llv(r) lls~) (2.6) 

for all O < t ;£oo, where C = C(n,p) in (2.5) and C = C(n,p,q) in (2.6) are independent oft. 

2.2 Proof of Theorem 1 (1); in case 1~q く (X)

For the proof of Theorem 1 (1), we make use of the implicit function theorem for Banach spaces. 
2 Let n < p < oo皿 d2 < s < oo satisfy s +~= 1. Let 1 ;£q < oo. We define the class X of 

mild solutions by 

X = { u E BC([O, oo); 厖~+l;)n£8,q(O,oo;犀） n£2,q(O, oo; 砥，1);

叫叶）u(・) E BC([O,oo); 靡）；犀。 t?(¾-;;lllu(t)lls2,1 = o} (2.7) 

with the norm 

llullx三 sup llu(t) II -1十号+llull + llull 
町l__り

O<t<oo B 
£s,q(O,oo叩） £2,q(O,oo;Bo)+ sup t2 n P llu(t) ll3o , 

p,q oo,l O<t<oo p,l 

We define a map G(a,u) by 

G(a, u)(t) = u(t) -etil.a + N(u, u)(t) 0 < t < oo, 

. -1十旦
for a E PBp,q P and u EX. Then we have 

Lemma 2.3 Let n < pく ooand 2 < s < oo satisfy 
(1) 

2 n —+­s p 
= 1, and let 1~q く 00.

G: PB;,:+号xX 3 (a,u)→ G(a,u) EX  

is a continuous mapping. 

(2.8) 

-1十竺
(2) For each a E PBp,q P, the map G(a, ・) is of class C1 frnm X into itself and the叩 chet
derivative Gu(a, u) E B(X) is given by 

t 

Gu(a, u)v(t) = v(t) + J eCt-r)△ P(u・v'v+v・ ▽ u)(T)dT 
゜= v(t) + N(u, v)(t) + N(v, u)(t), 0 < t < oo 

for v EX. Here B(X) denotes the set of bounded linear operators on X. 
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Now we prove Theorem 1 (1). Let n < p~r~oo and 2~a く oo satisfy¾+ 予= 1. Let 
-1十2

1~q く oo. Assume that a E P Bp,q P. 
Step 1. First we prove existence of the solution in the class (1.9). Our aim is to solve the 

-1十2
equation G (a, u) = 0 by representing u E X in terms of a E P Bp,q P • Since 

G(O, 0) = 0, Gu(O, 0) = Ix (the identity map on X), 

it follows from the implicit function theorem on Banach spaces that there exist positive constants 

8, E and a continuous map u: U0→ Ve with 
-1十2

Uo = {a E PBp,q P; llall .-1十1! :::; o}, V,: = {u EX; llullx~c}. 
B p-
p,q 

such that the equation G(a, u) = 0 can be uniquely expressed as u = u[a] for a E U0. Obviously 
such a constant o coincides with that of (1.8), and the continuous map u is the desired mild 
solution of (N-8) on (0, oo) for the initial data a satisfying (1.8). Apparently, we see that u = u[a] 
belongs to X. By interpolation, it holds that 

llullL匹(O,oo;Bむ） ~Cllullf位(O,oo;Bふ） llull~~.!(O,oo;B如）
for all p~r~oo and 2~a < oo satisfying¾+ 予= 1 with C = C(n,p, q, r), from which we 
obtain (1.10). The fact that u satisfies (1.9), (1.11) and (1.13) is due to definition (2.7) of the 
space X. Since u[a](t) = et~a- N(u,u)(t), we see that the property (1.12) is a consequence of 

lim lie 
t△ a-all .-1十丑=0, lim N u, u t 

t→ +o Bp,q P t→ +o 
II ( ) () II . -1十丑=0. 

Bp,q P 

Step 2. For the proof of (1.14) T , we consider the followmg aux1 1ary evolut10n equation. 

｛慶—△v + P(u・ ▽ v)~0 oo t> 0, 

v(O) = b. 
(2.9) 

Concerning the unique existence of mild solution v for (2.9), we have the following lemma. 

Lemma 2.4 Let n < p::;; r ::;; oo and 2 < = a < oo satisfy -+ !!: = 1, and let二
a 2p-n く (3< n. 

There exists a constant 1) = 1J(n, p, r, q, (3) such that if u E X satisfies 

llullx;:;; T/ (2.10) 

-1十2
then for every b E P Bp,q P n L13, there exists a unique mild solution v of (2.9) in the class 

XnBC([O,oo);Lり， i.e.,

v(t) = et△ b-N(u,v)(t), O<t<oo. (2.11) 

Moreover, such a mild solution v satisfies 

lim llv(t) II . -1十,,_= 0. 
t→ oo B P p,q 

(2.12) 
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An immediate consequence of Lemma 2.4 with the aid of uniqueness of solution to (2.9) is a 
. -1十竺

decay of the mild solution of (N-S) with a E Bp,q P n£13. More precisely, we have the following 

lemma. 

Lemma 2.5 Let n < p~r~oo and 2~a く oo satisfy姜＋弓=1, and let 1~q < oo. Assume 
-1+!! 

that 2;!!_n < /3 < n. There exists a constantが＝が(n,p,r,q,/3)such that if a E PBp,q P nLfi 
satisfies llall . -1+ 晨 ~o', then the mild solution u given by Step 1 has the additional property 

B p,q 

that u EX  n BC([O, oo); ぴ） with 

lim llu(t)II. n = 0. 
t→ oo B 

-1十万
p,q 

Now, we are in position to prove (1.14). We take /3 so that 

np 
< /3 < n 

2p-n 

and fix such a /3. Leto'= o'(n,p,r,q,/3) be as in Lemma 2.5. Define入＝入(n,p,r, q, /3)ニ
. -1十旦

such a situation, assuming a E PBp,q P with llall i+n < 
i3 p 
- -=入， wemay prove that 
p,q 

lim llu[a](t)ll .-1十11= o, 
t→ oo Bp,q P 

(2.13) 

が
2・In 

(2.14) 

where U0 3 a→ u[a] E Ve is the solution map defined in Step 1. By continuity of the map 
[] 

-1十旦
u•, for every a E PBp,q P with llall .-1十,,. ~ 入andfor every c: > 0, there is a constant 

B P p,q 
-1十旦

1,, = 1,,(c:,a,p,n,q,r) such that if a0 E PBp,q P satisfies Ila -asll .-1+ 号 ~1,,, then it holds 
B p,q 

II [ l [ 
-1+"" (3 --1+丑

that u a -u a』 llx~c:. Since P恥，q P n L is dense in P Bp,q P , we may assume that 
• 一1十竺

a0 E PBp,q P n L13 with Ila』1--1+号こが.Hence it follows from Lemma 2.5 that 
B p,q 

Since 

lim llu[a』(t)ll.-1+"'= o. 
t→ oo Bp,q P 

llu[a](t)ll .-i+½}~llu[a](t) -u[a』(t)ll--i+½} + llu[a,:](t)ll .-1十り
Bp,q 均，q 柘，q

~llu[a] -u[ac]llx + llu[a,:](t)II . -1+号
B 

含 +llu[叫(t)ll.-1十り
B p,q 

p,q 

holds for all t E (0, oo), we obtain from (2.15) that 

lim llu[a](t)II. < c:. 
t→ oo B 

-1+号＝
p,q 

(2.15) 

Since E > 0 is arbitrary, we conclude (2.14). This completes the proof of Theorem 1 (1). The 
proof of Theorem 1 (2) in case q = oo is omitted (cf. [14]). 
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2.3 Proof of Theorem 2 

Let n < r ;; oo and 2 ;;:; a < oo satisfy¾+ 圧= 1. Let 1 < q ;; oo. We assume that 
u(t) = et△ a-N(u,u)(t) is the mild solution of (N-S) on (O,oo) in£<>,q(O,oo;LT). A slight 

modification of Lemma 2.2 (1) from B侶toLT yields that N(u,u) E La,q(O, oo; 『） • Therefore it 
1十 n

holds that et△ a E La.q(O, oo; LT), and hence from Lemma 2.1 (2), we conclude that a E PB;,q ,: . 

This proves Theorem 2. 

2.4 Proof of Theorem 3 

The proof of Theorem 3 is rather long and complicated, so we omit it. For details, see [14]. 

2.5 Proof of Theorem 4 

For construction of the mild solution locally on some interval (0, T) for an arbitrary initial data 
-1十2

a E P和，qP , we make use of the successive approximation {叫芦oas 

Uj+i(t) = u0(t) -N(uゎ巧）(t), j = o, 1, 2 ... , 

uo(t) = et△ a, N(u凸）(t) = J e(t-T)△ Pv'・(uj巳）(T)dT. 
゜Let us define Mi= Mj(t) by 

島 (T)=。翌~lluj(t)ll3;,~+fl'+ llu』|い(O,T;Bふ） +llu』1£紐 (O,T;B恥） + O~~JT t 号 C¼-½llluj(t) IIB昇

2 
. -1十丑

for j = 0, 1, 2 ... , where s is chosen as —＋庄= 1. Since a E PB P s p p,q , by the heat sem1group 

estimates in the homogeneous Besov spaces (cf. [13, Lemma 2.2]) and (2.1) it holds that Mi。<00. 
Assume that Mjく oo.Then by Lemma 2.2 we have 

Mj・+1;;;Mo+CMJ, (2.16) 

where C = C(n,p, q) is independent of j. Hence by induction we have Mjく oofor all j = 

0, 1, 2 .... Now, we take Mi。insuch a way that 
1 

M。=Mo(T) <―.  
4C 

(2.17) 

-1十2
This is fulfilled by choosing T small enough since a E P Bp,q P for 1~q < oo. In case q = oo 

-I+!! 
under the hypothesis (1.27) on a E PBp,oo P, we may also take a small T > 0 so that (2.17) 
is fulfilled. For more details, see [15, Theorem 1.3 (2)]. Then under the condition (2.17), we 

obtain from (2.16) that 

Mj~ 
1-yl -4CM;。

nr, 
: = M for j = 0, 1, 2 .... 
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By the standard method as in Fujita-Kato [8] and Kato [11], we see that such a bound M of 

{M心こ。 yieldsthe mild solution u of (N-S) in the class 

u E { BC([O,T); 氏戸） nU•'(O,T; 靡） n L'・'(O,T認，,), l~q<=, 

BCw([O, T); iJ;, し;i)n£S,oo(o, T競，i)n£2,00(0, T; 殷，1), q = oo, 

provided the condition (2.17) is fulfilled. The properties (1.22)-(1.25) for 1~q く oo and those 

(1.28)-(1.31) for q = oo are proved as similar manner to the proof of (1.9)-(1.13) and (1.15)-
(1.18) in Theorem 1, respectively. Analyticity is proved in the same way as the proof of Theorem 

3, where the time interval is restricted to O < t < T. 

2.6 Proof of Corollary 1 

PB 
-1十丑

By Theorem 2, it follows that a E r,q'. Applying Theorem 4, there exists T > 0 and 
. -1十互

a unique mild solution u(t) of (N-S) on (0, T) in the class C([O, T); Br,q') n£8,q(O, T; B加）

with t百す；； u(t) E BC([O, T); B~,1) for all r ;; /3 ;; oo and 2 ;;。;;a sa虚酎碑 j+!!=l.
f3 

Then it follows that uniqueness of mild solutions in the class L"',q(O, T: LT) that u(t) = u(t) for 
。;;t < T. 
We next show that there is some T < Ti。<oo such that u E£8,q(Ti。,oo直加） for all /3 and 
0邸 above.Indeed, since u E L"',q(O, oo; Lr), for every E > 0 there exists T0 > 0 such that 

llullL虹 (T,,oo;U)~E:.

Since u is a mild solution of (N-S) on (0, oo), we have an expression as 

u(t) = e(t-T,)△ u(T0)-j P▽ . e(t-r)△ (uRu)(T) dT. 
T, 

Hence by (2.18) and a similar argument to Lemma 2.2 (1) it holds that 

lle(t-T,)△ u(T,:)IIL叫(T,,oo;U)~llullL虹 (T,か,oo;U)+ Cllulli虹 (T,釘,oo;じ）
~Cc, 

where C = C(n, r, q) is independent of T0. Then it follow from Lemma 2.1(2) that 

llu(T,:)1113心噸 ~Clle(t-T,心(T,:)IIL虹(T,,oo;U)~Cc

(2.18) 

with he same constant C as above. Taking c: > 0 so small that Cc: ~<5 with the same <5 as 
in Theorem 1 with p replaced by r, we obtain a unique mild solution v of (N-8) on (T0, oo) in 

1+; 
the class BC([T0, oo); B;,q―) n L0,q(T0, oo; .B~,1) with v(T0) = u(T,』forall r~f3~oo and 

2~0~a satisfying j +~= 1. Hence again by uniqueness, it holds that 

u(t) = v(t) for T0~t < oo, 

which yields that 
u E L8,q(T0, oo; B伽） (2.19) 
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for all /3 and 0 as above. 
Now, our remaining task is to show that the local existence times Tis able to be prolonged 

up to Te in (2.19). We prove it by contradiction. Assume that there is O < T* < Te such that 
u cannot be extended beyond T •. Then it follows from Giga [9, Theorem 4] that there exists 
'T/ > 0 such that 

llu(t)IIじ::,.C(T*―t)―Sf, T. ―'T/ < t < T. 

with some positive constant C = C(n,r). It is easy to verify that 

(T* ― t)—写'E L°'•00(0, T.) 

tf-L°',q(O,Tリ

for 1 < qく oo,which implies that llu(t)llu tf_ L°',q(O, 冗）. This causes a contradiction and hence 
we obtain that 

u E£0,q(O, T遣加） (2.20) 

for all O < T < oo. Now it follows from (2.19) and (2.20) that 

uEL゚，q(O,oo; 閣，1)

for all r~fJ~oo and 2~0~oo satisfying j +~= 1. Thus the solution u(t) coincides 
with the mild solution of (N-S) given by Theorem 1 so that it has the properties (1.9)-(1.14). 

Furthermore, it follows from Theorem 3 that u(t) is analytic in町 forall O < t < oo. This 
completes the proof of Corollary 1. 
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