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Abstract 

The mucept of renormalized dissipafave mriasures-valued (rDMV) sol-u,tion、stoa <:om-
plete E1tler system for a perfect gas was introduced in [8] and further discussed in [9]. 
Moreover it was shown there that rDMV solutions :,;atisfy the weak (measure-valued)-
strong uniqueness principle that makes them a useful tool. In this paper we prove 
the existerrce of rDMV solutions. Namely, we formulate the complete Euler system 
in conservative variables usual for numerical analysis'and recRll the concept of rDMV 
solutions based on the total energy balance and renormalization of entropy inequal-
ity for t.hc physical entropy preser訳 din[8]. We then givf'two differnut ways how t.o 
generate rDMV i-;olutions. First via vanishing viscosity limit using Navier-Stokes equa~ 
tions coupled with entropy transport and second via the vanishing dissipation limit of 
the two-velocity model proposed by H. Breurrer. Finally, we recall the weak-8trong 
uniqueness principle for rDMV solutions proved in [8] and [9]. 

Keywords: Complete Euler system, me邸ure-valuedsolutions, perfect gas, two-velocity 

model 

1 Introduction 

In this paper we show how to generate renormalized dissipative mcnsures-vcilw:d (rDMV) 

solutions to a complete E・uler system for a perfect gas by two different ways. Namely, we are 

interested in the following problem. 

Let !1 C RN  be a physical domain occupied by the fluid. For simplicity we assume that 
N = 3 and n is a bounded domain with a smooth boundary an. The time evolution of 
the ma鼻ssdensity e = e(t, x), the velocity field u = u(t,x), and tlw (absolute) tcmprratnrn 

fJ = fJ(t, x) is governed by the following system of partial differential equations expressing 
the basic physical principles: 
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• Conservation of mass 
如+uiv,;(gu) = O; (1.1) 

• Conservation of linear momentum 

姐eu)+ div:r(gu 0 u) +立(eO)= O; (1.2) 

• Conservation of total energy 

1 1 
8t (うoiul2十C,,/!1))+ divx [ (ぅolnl2+ Cv(}{) +四）吋=0, (1.3) 

where c,, > 0 is the specific heat at constant volume. 

Mon)ovcr, in accordanr(1 with the Second law of thermodynamics, the entropy 

s = s(o, 17) = log(炉）ーlog(o)

::;houlcl :,ati::;fy the equatiou 

8t (Qlog臼））+ div"'(12log巳）u) = 0 (1.4) 

It is easy to check that (1.4) follows from (Ll-1.3) as long邸 allquautities in (1. 1-1.3) are 
contiuuously clifforeutiahle. 
As is well known, smooth solutions of (1.1-1.3) exist only for a finito lap of time after 
which singularit.ics develop fo:r: a fairly generic class of initial data. Therefore global-in-time 
solutions may exist only in a wea.k sense, where the derivatives in (1.1-1.3) are understood in 
the sense of distributions. In that case (1.4) is no longer automatically satisfied and it may 
he added ,i.9 an admis,;ihility condition. 
In view of recent results b邸 cdon the theory of convex integration, see [18], weak solutions 
of (1.1-1.3), even if supplemented by (1.4), are not uniquely determined by the initial data 
邸 longas N > l, As tt matter of fa叫 forany piecewise constant init訊1density l?o and 
tcmpcratur、(.)19。， thereexist.s u0 E T. 戸 (n;炉）， N = 2,3 such ilrn.t the problem (1.1-1.4) 
with (1.7)叫mitsinfinitely many weak (distributional) solutions on a given time interval 
(0, T). This kind of result indicates that we 1,l10uld look for a different appro叙：h to concept 
of solutions to the Euler system. 
In his pioneering work [14], DiPerna proposed a new concept. of solution, known as 
m.fo,sureーnaluedsolution, to nonlinear systems of partial differential c:quationH admitting un-
controllable oscillations. In particular with focus on the compressible Euler system ,md other 
related models of inviscid fluids. Although existence of a measure-valued solution to a given 
)Jroblem iR 11Sually a11と1hnoststraightforward consequence of a priori bounds, its uniqueness 
111 terms of the initial data can he seen rL'> the weakest point of this approaeh. On tlw other 
hand, Brenier et al. [2] proposed a new approach seeing the me邸 ure-valuedsolutions as 
possibly the largest cl,i.ss in which the f皿 ilyof smooth (classical) solutions is stable. In 
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particular, they show the so-called weak (measure-valued)-strong uniqueness principle for 
the incompressible Euler system. Specifically, a classical and a measure-valued solution em-
anating from the same initial data coincide邸 longas the former exists. The;;e results have 
been extended to the isentropic Euler and Na vier-Stokes systems by Gwiazda ct al、[25]and 
[16]. Following the philosophy of Brenier et al. [2], we focus on the concept of measure-
valued solutions in the widest possible sense. Accordingly, using the fundainental laws of 
thermodynamics, we extract the minimal piece of information to be retained to preserve the 
weak-strong uniqueness principle. To do so, we follow tbe approach advocated in [21], where 
equations (1.1), (1.2) and (1.4) are supplemented with the total energy inequality 

蓋L[ふ岡+Qe(Q, iJ)] dx ::; 0. (1.5) 

Moreover, since integrability of the convective term in the entropy equality (1.4) is prob-
lematic, motivated by the work of Chen and Frid [12] we consider a "regularized" version of 
(1.4) relaxed to inequality, in particular, we consider 

8t (12x (10g (~))) + divx (IJX (10g (~))り 2 0, (1.6) 

for any increasing concave function x satisfying x(s) :S Xoo for all s E R. 
The problem is closed by prescribing the initial data and slip boundary conditions 

e(O, ・) = f2o, 19(0, ・)={Jo, u(O, ・) = uo, 

U・Il向=0. 
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The measure-valued solutions are natural candidates for describing the zero dissipation 
limits of more complex systems of Navier-Stokes type. At this point it is rather disappointing 
that we do not know how to construct rDMV ,;olutions via some vanishing dissipation limit 
of Navie← Stokes-Fourier system even though we have such result for other types of fluids 
(see [9]). The issue is, as expected, to get good enough estimates to pass in the limit. 
To overcome this difficulty we consider instead two other models to generate rDMV 
solutions. Namely, Navier-Stokes with entropy transport and a two-velocity model proposed 
by H.Brenner [3], [4]り [5].In particular it is interesting to see that Brenner's model behaves 
actually better in the vanishing dissipation limit and does not suffer the drawbacks of N avier-
Stokes-Fourier system. 
The paper is organized as follows. In Section 2, we reformulate the problem in conservative 
variables and define rDMV solutions with respect to the new formulation as in [8] and [9]. 
In Section 3, we prove the existence of rDMV solutions via vanishing viscosity limit using 
Navier-Stokes equations with variable entropy. Actually the solutions will satisfy (1.6) as an 
equality even for any continuous function X・In Section 4, we show that rDMV solutions can 
be also generated via v皿 ishingdissipation limit using Brenner's two velocity model. Finally, 
in Section 5, we state the weak (measure-valued)-strong uniqueness principle and the ideas 
behind its proof published in [8] and [9]. 
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Measure-valued solutions 

Conservative variables 

To introduce the concept of measnn~valued solution for complete Euler system, it is more 
convenient to formulate the problem in the conservative variables: 

e,m (JU, F) 
1 lm!2 

.... 

2 (} 
I Cv[!19, Cv >〇．

There邸 onfor changing the pha.9c space is the fact that the temperature{) as well as the veloc-

ity u may not be correctly defined 011 the (hypothct.i叫） vacuum set. As the mm図sure-vaiu叫
solutions are typically (scr DiPcrna [14]) generated邸 weaklimitH of suitable approxirna-
tion schemes, the presence of vacuum zones cannot be a priori excluded. Moreover, such 
formulation is common in numerical analysis, where we・aim to utilize our results. 

The system (1.1), (1.2), (1.5), (1.6) wit.h (1.8) rewrites as 

如+div,,m = 0, 

畑 +<livx(~) +巳 (E-~門） = o, 
fit j E dx S:: 0, 
!! 

together with the &'lsociated ;'renormalized" entropy inequality 

(2.1) 

Ot ({!X (c,, log ( E~v;: 乎））） + div x [ X (c,, log (E~vえ］翌ビ） m)] ミ:0, (2.2) 
for any incrcむsingcon('avn fnud,ion x HatiHfying X(H)さXoofor all s E R mid 1.lw Hlip bonrnhtry 
condition 

m•nlmi = 0. (2.3) 

Although the thermodynamic functions are well defined for regular values f1 > 0, ,0 > 0 
of the i;tan<lar<l variables, where t.hc latter condition corresponds i11 the couservativc setting 
I lml2 to E--—> 0, we need them to be defined even for the limit values f1 = 0, ,0 = 0、Tothat 
2 g 

end, we first <;lefine 
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Like that we get a lower scmi-cont,inuous convex function defined on the set {12 2: 0, m E Rサ
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Second, we introduce the renormalized total entropy 

12X (Cv log (~)) if 12 > 0, E >½ 字，
Sx(Q,m, E) = 

0 if e = o, m = 0, E~0, 

-oo otherwise. 

The total entropy Sx defined this way is a concave upper semi-continuous function defined 
on the s吋 {122 0, m E R3, E 2 O} for every non-decreasing concave function x satisfying 
x(s) :<; Xoo for alls ER (see [10]). 

2.2 Renormalized dissipative measure-valued solutions 

The following definition of the renormalized dissipative measure-valued (rDMV) solutions 
was introduced in [8]. 
The initial state of the system is given through a parameterized family of probability 
measures {恥}xEn defined on the phase space 

Q三{(r!, m, E) I (! ~0, m E R叫E2:: o}, 
andit is assumed that the mapping x i-+恥 belongsto L:,ak-(•i(戸(Q)).
Similarly, an rDMV solution is represented by a family of probability measures 

｛如}(t,x)E(O,T)xn,U E L孟a.k-(•)((O,T) X r.!;P(Q)), 

and the non-linearities in (2.1), (2.2) are replaced by their expected values whereas the 
derivatives are understood in the sense of distributions. 
Hereafter〈Ut,x,g(Q, m, E)) denotes the expected value of a (Borel) function g defined on 
Q. 

Definition 2.1. A p叩 ameterizedfamily of probability measures U E L':, 叫ー(•l((O,T) x 

r.!; P(Q)) is called a renormalized dis.5ipative measure-valu.ed (rDMV) solution to the Euler 
system (2.1-2.3) with the initial data /Ji。ELはak-(,i(r.!;P(Q)) if the following holds: ． 

． 

1Tl[〈Ut,x;(! 〉知＋〈Ut,x;Ill>•▽叫 dxdt= -l (U0, ぷQ〉ip(O,・) d山 (2.4)

for any <p E C'("([O, T) xり）；

「/[〈Ut.x;m〉知＋〈加巴竺り v'x'P+ __!_〈エ，E-!日〉巾v,,r.p] dx: dt 
on  12 Cv 212 

=-! 〈U。x;m〉・ r.p(O,・) dx + Jrいx'P:dμc 
fl O fl 

(2.5) 
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． 
． 

． 

for any cp E C;:"°([O, T) x TI; だ）， cp・nliJn== 0 andμc is a (vectorial) signed measure 011 
[O,T]直；

.l (U,-,x; E > dx~ii <Uo,,,;E> dx for a.a. T E (0, T); (2.6) 

1T L [(広，Sx(e,m, E))如＋〈Ut,ぶ (e,rn, E)翌〉立ゃ]dxdt 
三— J 〈U。'ぶ({!,rn,E)),p(O,·) dx 
N 

(2.7) 

for any r.p E C,:'((O, T) x TI), r.p :::: 0, and any incr⑱ >iing concave function x Hatii,fying 
x(s) S Xoo for all s E R; 

Jr J dlµcl~c(cv) JT J [<Uo,:i•;E>-<Ut,xi E〉]d:c dt for any O~7 < T. (2.8) 
0 !1 0 !l 

Any "st.and紅d"w蜘 ksolution (o, m, E) to (2.1-2.3) may be identified with a rne邸 ure-
valued solution U via 

Ut,,r = <5e(t,x),m(t,x),E(t,:r) for a.a. (t, x) E (0, T) x n, 

where Jz denotes the Dirac rnea.sure supported by Z. 
The Definition 2.1 wa.<; motivated by previous works of others as well as by a result frorn 
[8]. In particular, we showed in [8] that any cluster point of a family of''standard" admissible 
weak solutions to (1.1), (1.2), (1.4), (1.6) with uniformly bounded initial data is an rDMV 
solution in the sense of Definition 2.1. We point out that our class of measure-valued solutions 
includes all admissible weak solutions to the Euler system. Moreover, we showed that the 
rDMV solutions enjoy certain minimum principle out of the vacuum set, that is 

u。,:r.{ s(rJ, m, E) 2 s0} = 1 implies Ut,x { s(rJ, m, E) 2 s0 I (] > O} = 1 for a.a. (t, x). 
To conclude, we remark that the family of rDMV solutions for a given initial d叫 is
closed with ro:;pect to convex cornbirmtious. Iu particular, in view of the rc:;ult:; ohtaiued in 
[18], there is a v邸 tclass of initial data for which the Euler system admits infinitely many 
nontrivial rDMV solutions. Here nontrivial means that they do not consist of a single Dirac 
mass. 
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3 Existence of rDMV solutions via Navier-Stokes 

In this section we show the existence of rDMV solutions via the vanishing viscosity limit for 
a Navier-Stokes system with variable entropy 

如+divx(gu) = 0, 
叩 u)+ div" (gu@ u) +立p= divx§(▽ u), 

Ot (gs)+ divx (gsu) = 0. 

Here, p denotes the pressure; §is the viscous stress tensor 

§(立u)=µ(立u+叫— ~div,rull) +袖VxUll

with constantsμ> 0 and rJ > O; and s denotes the (specific) entropy. 

(3.1) 

The existence of finite energy weak solutions to (3.1) for appropriately regular initial 
data h,1.-; been established in [27] under the assumption th:1.t the equations are coupled by 
the pressure in the form ， 

p(Q, s) =がT(s), 7ミ5'

where T(・) is a given smooth and strictly monotone function from R+ to R+-In our case, we 
aim to take T(s) = cxp(("/-l)s) with 7 = 1 + -to recover the state equat10ns of a perfect 

Cv 

gas 

p(Q, ,{)) = {!{) and s(e, {)) = log (~) . 

As we would like to have finite energy weak solutions to (3.1) satisfying the renormalized 
equation for entropy for any仰>0 we actually consider a pret1sure regularized "version" of 
(3.1) instead and based on the result;; and know-how of [27] we infer the existence of entropy 
renormalized weak solutions to 

如 +divな(Qu)= 0, 

叩 u)+ divぶ(Qu@u)+立（砂） +s立(Q叫=sdivの§(立u),

ゾ [~Q[u[2 + c喜＋土(Q州］山+sin§(立u):立udx :::; o, (3.2) 

Bi (Qlog巳）） + divx (Qlog巳）u) = 0, 
for some (3 >> 1 (depending on Cu> 0) and any f > 0. We then take the limit f→ 0 based 
on uniform a priori bounds on a sequence of solutions to (3.2) and recover an rDMV solution 
to (2.1-2.3) in the sense of Definition 2.1. Actually, we get an rDMV solution that satisfies 
(2.7)邸 anequality for any continuous function X, see・Theorem 3.3. 
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3.1 E ・x1stence of weak solutions to (3.2) 

To show the existence of entropy renormalized solutions to (3.2) we follow the idea borrowed 
from [27] and first c:on:,;idcr a prc:.;:.;ure regularized iHentropic :'.¥'avier-Stokc:,; sy:-;tcm coupkcl 
with transport equation for entropy that describes the evolution of the mass density {l = 
o(t,,x), the velocity field u = u(/,,:c) and the pressure argument Z = Z(t,:r), in particular, 

如+divx位u) = 
似匹） +div,,.(匹@u)十▽；／．勿+8▽ :cZf! 

0, 

div,,,§(▽ ,,u), 

8iZ +cliv, じ(Zu) = 0, 

with the complete slip boundary conditions 

u・nlan = 0 and (§(立u)• n) x n加=0. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

The system (3.3-:3.5) without the pressure "regularizing" term f, ▽ _,,zP naturally appears 
in meteorology and邸trophysics(see [26]). For detailed discussion on existence of solutions 
see [27]皿 dfor singular limits see [ 17]. In general, the idea is that勿=JJ is the pressure and 
under "enough" regularity we can rela.t.e it to the entropy s all(] entropy tr皿 sportequation 

瓜r2s)+ divェ(r2su)= 0 

through p =炉T(s).
The following re1-1ult on existence of finite energy weak solutions to (3.3-3.5) can be found 
in [27, Proposition 1]. 

p ropos1tion 3.1. Lei'Y > 1, f3 2:'. max("/, 4) and J > 0. Then, gi11cn initial data (f2o, Z。,uo) 
satisfying 

(oo(・), Zn(・), uo(・)) EC可豆配），

O<c辺(Is;:z。s;:c* (!o in TI for some O < c* S c* < oo, 
there exists a finite energy weak solution (rJ, Z, u) to problem {3.3)-(3. 7) such that 

(u, z, u) E [L00(0, T; 1ン1¥H))]2x L2(0, T; Wc~'2(i 

〇＄らesZs c*e a.e in (O,T) x n, 

and for any TE (0, T) we have: 

(3.7) 

(3.8) 

(i) e E Cw([O, T]; J)3(n)) and th" roniinuity eqwdion (3.3) is satisfied in tlw weak sense 

,Lo(r,・)ゃ(T,・）山―.L(!oゃ(0,・) <lx = .lr .L (o知 +eu•知） ch <lt (3.9) 

for any <p E C1([0, T] xり）；
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(ii) (2U E Cw([O, T]; L碁但酎）） and the momentum equation (3.4) is satisfied in the weak 
sense 

f。 ~u(r, ・)・r.p(r, ・) dx -i {!oUo・cp(O, ・) dx 
= I I ((!U・ 知 +ouRu:▽平＋勿div平 +5Z闊ivxcpー§(立u):疇）心dt
0 !1 

(3.10) 

for any <p E C~([O, T] x TI, 配）， <p・nlan= O; 

(iii) Z E Cw([O, T]; [戸(!1))and equation (3.5) is satisfied in the初eaksense 

11 Z(r, •)r.p(r, ・) dx -1 Z。r.p(O,・)dx=11(z知 +Zu・知） dxdt (3.11) f 
for any炉EC1([0, T] X頁）；

仰） the eneryy inequality 

/ (1 1 5 11 2eiuド+;-=-I勿＋戸z/3)(r) dx + 11§(立u) 立udxdl 
~ii (½eoluol2 十二勾＋三盆） dx (3.12) 

holds for a.a TE (0, T). 

(v) Moreover, equations (3.3), (3.5) hold in the sense of renormalized solutions. That is, 
(fl, u, Z), extended by zero outside of !J, satisfy 

cJtb(e) + divx(b(o)u) + (b'(e)e -b((!))divxu = 0 (3.13) 

and 
Otb(Z) + divx(b(Z)u) + (b'(Z)Z -b(Z))divxu = 0 (3.14) 

inか((0,T) x !J) and V'((O, T) x配）， where

bE C順）， b'(z)= 0, Vz E股largeenough. 

We note that [27, Proposition 1] gives the existence result under the no-slip boundary 
condition ul(o,T)xan = 0, however, the result stays valid even for the complete slip conditions 
(3.6) aft er obvious modification. 
Now we show that a finite energy weak solution to (3.3-3.6) obtained through Proposition 
3.1 is actually an entropy renormalized weak solution of (3.2). 
Let Cv > 0皿 <lset "/ = 1 + .l.. with .B 2:: max{"!, 4 }. Then for ar1y 5 > 0 and initial data 

Cv 

(flo,Z。,Uo) satisfying (3.7) we get from Proposition 3.1 the existence of functions 

(e,Z,u) E L00(0,T;L13(!J)) x L00(0,T;lン13(0))x L2(0, T; WJ•2(!1. 『3))
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that. sati:,fy (3.8--3.14). Now thanks to (3.8) and t;he regularity of (ll, Z) we c:an define a.e. 

no11negative function 1? E L'.X,(O T・L," 
_j}__ 

l l (f2)) 3,,', 
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and 

X (r-1 ((予）"I))= X (三了log((予）"I))= X い(~))
satisfies the equation 

1TLい(10g(~))如+ (2,¥ (10g (~)) u ▽ xi.{!] dxdt 

= -/4 (!oX (10gげ））や(0,・) dx 
(3.15) 

for any I.(! E C;?"([O, T) x TI), <p 2 0叫1dany XEび(R)とm.dhence by density argument for 
any x E C(R). Finally we note that s = log (庁） E L00((0, T) x fl). 
We have just showed the following existence result for (3.2). 

p ropos1tion 3.2. Let Cv > 0 and'Y = 1 + c,, -. For any /3ミmax{'Y,4},E > 0 and initial data 
位O,{)。,uo) satisfying 

(uo(-), ・190(・), no(・)) E C00(豆酎），

0<叫 Jos; 玲 sc*eo切1.TI for some 0くらこがく oo,
(3.16) 

there e.1:ists an entropy renormalized weak solution (g, 1'J, u) to (3.2) with (3.6) and (3.16) 
such that 

（い9,u) E [戸(0,T; £f3(n)) x£00(0, T; L凸Q))Xザ(O,T;Wc門(n,配））

and we have: 

．
 
1T 1 (U如+(!U・ ▽ x'P) clr,dl = -1 UuY::(0, ・) (3.17) 

for any <p E C':'([O, T) x TI); 
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．
 
「/((!U・ 知+gu@u: ▽平+QfJdiv平 +s(Q叫divxcp —這（立u): ▽ x'P dxdt 
o n 

~--1, """"・,p(O. ・) rlx) (3.18) 
for any c.p E C'{°([O, T) x 0配）， 'P・nl0n= 0, ― 

• log (庁） E L00((0,T) x切 and

11'1い(10g(7))知+ox (10g (竺)）u・v'x'-P] dxdt 
=―L'"x (,:, 信））e(O, ・) dx 

(3.19) 

for any cp E c;:o([O, T) X TI), ゃ?:0 and any XE  C(R); 

．
 
[il(凸厨+Cv砂十三(Q州）日t=r+c: fr J豆 u)立 udxdtさ0

l=O O !1 

(3.20) 

holds for a.a TE [O,T]. 

3.2 Existence of rDMV solutions 

The goal of this section is to take a family of entropy renormalized weak solutions (Qe叫 Ue)c>O
to (3.17-3.20) with the initial data (Qo,c, tJ。,e,llo凸 generatinga Young mea.sure U,。inan ap-
propriate sense and show that as€ → 0 we recover an rDMV solution to the Euler system 
(2.1-2.3) in the sense of Definition 2.1 with the initi叫dataU,. A similar procedure has been 
done in [8, Section 2.1] or [9, Section 3.5]. 
To this end, we have to discuss the following issues: 

• Uniform bounds based on the energy estimates that will guarantee boundedness of the 
state variables (Qe, m0, Ee), where m" =島Ueand Ee=如Ucド+Cv(! ふ．

• Showing that the viscosity term vanishes in the asymptotic limit. 

• Identifying the Young measure { U1, ェ｝邸sociatedto the f叫nilyof (entropy renormalized) 
weak solutions. 
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Let the initial data (f2o,,, v0.,, u0.,), i,atisfy 

属(・),1Jo,c(・), Uo,c(・)) EC噸釣，
0 < C*(!o.e :;:; ・{)娼::;C冨 inTT for some O < c, ::; c*く 00,

j eo,, d:r; 2:: M,。>0, (3.21) 

l Deo,elu。『+C辺o,iOo,,+~礼；:J,,190,,) % ]心:;:;Co, 
叫 generatea Young meai,ure [},。 inthe following sens<う

leo砂 d冗→ l〈L如；e〉</id:r for any efJ E C'; ⑰； 

l {!o,ell。ぷ.</J d:r: → I([!。，,;m〉・</Jd:r 
. !! 

for m1y </J EC疇 l抄），</J・11lmご O;

! 『n 2 喝，,luご＋暉，E丸，E 十二伽.,,9o,e)~]¢d:i;→ f (llo,x; E〉¢d:i:fur auy q; E C~ 噸）；

J瞑 X(10g戸））¢dx→l〈Uo,ぷ (e,m,E)〉¢dx
!l {lo,e . !! 

for auy¢E C~(TI), ¢2:: 0, and miy XE C(R). 
(3.22) 

Then for any E: > 0 there exists an entropy renormalized・weak solution (鉦心u,)to (3.17-
3.20) with the initial data (eo,e, fJ。,e,uo,c) thanks to Proposition 3.2. For these solutions we 
deduce the following uniform bounds. 

3.2.1 Uniform bounds 

The total energy balance (~3.20) and (3.21) yield immedi叫 ly

T 

essは！らlJE,+i=-i(砂）互］心+c1 l§(v'迅）：立U0dx dt S eo. (3.23) 
珈 "ther,if we take an appropriate i.p =ゆ(t,),心 ~0 in (:3.19) Wt、getthat 

,l g.(r, ・)x (10g (~ 鸞＇））））曲=ii {}o,,X (log (巳）） dx for a.a. r E (0, T), 
which together with the continuous function 

x(,) { 0 o foclog,.,; ., 510,c, 

< 0 otherwise, 
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gives us the bounds 

＜ 
的(7,・）

c. < 
―{20(T, ・)一

c* whenever O < [20 (3.24) 

and thus 

min[logc,,logc•]XOe: ::; OsX (logげ））::; max[Jogc,,logc•]XOs a,e. in (0, T) x n (3.25) 
＆ 

for any XE C(R). 
Moreover, using (3.23)., (3.24) and (}U =汲.Jguwe conclude that 

and 

> 1. 

ess sup /112e(t,・)l!L叩） S c(eo, ら）
tE(0,'1') 

ess sup llms(t, ・)II 2, ::=:; c(eo, c.), 
tE(O,T) Lア (!1)

(3.26) 

(3.27) 

where 21-
"l+l 
Note that the estimates are uniform with respect to c > 0 and strong enough to pass to, 
the limit in the system (3.17-3.20) to generate an rDM:V solution of the limit Euler system 
as soon a.':l we show that the dissipative term in (3.18) vanishes in the asymptotic, regime. 
However, that follows easily from (3.23). 
In view of the unifom1 bounds (3.23), (3.26) and (3.27) and the fundamental theorem of 
the theory of Young measures (see e.g. Ball [1]), there is a subsequence of (Oe, mむ凪）e>O 
(not relabeled here) that generates a Young measure {如}(t,x)E(O,T)xn• Moreover, passing to 
the limit in the total energy balance (3.20), we obtain 

[lo〈Ur,x;E〉dxJ:ニ+V(r) = O; 
for a.a. TE (0, T), where 

E→。 (ll[~ 加） 2 liminf -12,lu平＋ら砂＋戸了（砂）~J (T, ・) dx + E i L§(▽迅）：立u,dxdt) 
-! 〈U,.,x;E) dx for a.a r E (0, T). 
n 

To pass to the limit in (3.17) is straightforward and we obtain (2.4). 

(3.28) 

As already mentioned the dissipative term on the right-hand side of the momentum 
balance (3.18) vanishes and hence we can pass to the limit to recover (2.5). Note that the 
measureμc contains the concentration defect of the terms 

且
/2ellc@ lle, l2ef), and c(I}ふ）~,

and, by virtue of (3.28), it is controlled by V exactly as required in (2.8). 
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Finally, thauks t.o (:3.25) it is <iasy to perform the limit in the entropy balance (3.19) to 
obtain (2.7) even邸 anequality that holds for any x E C(R). 
We have ::;hown the following re,;ult. 

Theorem 3.3. Let the tmri、sportcoefficients satisfy JJ, > 0 nnd rJ > 0. A.ssume that (Qn1九，Ue)e>O
is a family of finite energy weak solutions lo the Navier-Stokes syslcm wil.h entropy tmn.sporl 
(8.2) in the sense of Proposition 8.2 and the initial data (Qo,0, ・0o,c, Uo,e)e>O satisfying (3.21) 
genemte a Young measure U,。,；c in the sense of (3.22). 
Then (at least for a suitable subsequence) 

（仏，fleUe,i叫虹+Cv訊）
こ>0

generates a Young, measure {U1.m}(t.T)E(O,T)xl! that represents an rDMV solution of the E-uler 
system (2.1), (2.2) in the sen、seof Dcfinit'i.on 2.1. Moreover, Ui,x satisfies the entropy balanee 
(2. 7) as an eq-u.ali切thathold::; Jin-any入EC(R). 

4 Generating rDMV solutions via Brenner's model 

In this section we show that rDMV solutions can be obtained via the vanishing dissipation 
limit for a two-velocity model introduced by H. Brenner in [3]ー[5].In p紅 ticular,we consider 
the system 

如+div,,(四） = 0, 

叩 u)+ div,,, (guRum)+▽ ,,p(o, 19) = di疇（▽xll), 

Bt (~{!lul2 + ge(g, 19)) + div,,,((~oiu『 +oe({!,v))um) 
叫 ivx(P(l!,iJ)u) + div:,;q = div,,(§(▽ xU)・U). 

The main idea of (4.1-4.3) is to introduce two velocity fields -u and Um -interrelated 
through 

(4.1) 

(4.2) 

(4.3) 

u-u』,,,=K▽:rlogg, 

where K ? 0 is a purely phenomenological coefficient. Here, it is assumed that 

q= -K, 叩，

2 
§= tt (▽ :rU+可u-3divxurr) + 17divxuil 

(4.4) 

｀
ー

'

,

1

,

5

6

 

．

．

 

4

4

 

（

（

 

are the Fourier heat flux and the viscous sLress tensor, respcct.ivcly. 
As a matter of fact, Brenner's model has been thoroughly criticized and its relevance to 
fluid mechanics questioued in Oettinger et al. [28]. On the other hand, it is mathematically 



15

tractable an<l yields essentially better theory than the standard Na.vier-Stokes-Fourier sys-
tern, see e.g. [23], Cai, Cao, Sun [11]. Recently, the interest in "two velocity models" has 
been revived in Bresch et al. [6], [7]. 
Leaving apart the conceptual difficulties of the model, we show that it generates in the 
vanishing dissipation limit an rDMV solution to the Euler system (2.1), (2.2) in the sense 
of Definition 2.1. The crucial aspect of the analysis is a specific form of the coefficient I< 
in (4.4). Note that K is taken constant in [23] as well as in Cai et al. [11], while Brenner 
proposed K = --15c_ see [4], where er, denotes the Hpecific heat at constant p冗ssure.On the c,,e' 
other hand, Guermond and Popov [24] argue that the choice 

K, 
K=-
c,,g' 

(4.7) 

where c,,, > 0 denotes the specific heat at constant volume, should lead to an "ideal" numerical 
scheme for approximating the complete Euler system. During our analysis it turns out that 
(4. 7) works well and hence we邸 sume(4.7) together with the Boyle-Mariotte law 

p((!, {}) = {!{}, e = cv{}・ (4.8) 

Under theKc. circumstancefi, it is not difficult to show (sec [9]) that the renormalized 
entropy inequality associated with (4.1-4. 7) reads 

叫 (s))+ divx (Qx(s)um) -divx [ !::_▽ x(s) 

：：：：：亨S(立u) 立u+ 双'(,)l\7~log.ii'1x'(,)戸 logel'-x"(,)~ 団,1'
(4.9) 

for any non-decrea.-;ing function x E C2(R), where s = s((l』)is the physical entropy of the 
system. In accordance with (4.8) wc assume that the entropy sis given by 

s(g, fJ) = Cv log fJ -log(!. (4.10) 

We further assume that the heat conductivity coefficient r;, and the viscosity coefficients 
μand 7/ satisfy 

K,(12, {})~12, μ(12, {})~12, rJ三 0. (4.11) 

The problem is closed by prescribing the complete slip and no-flux boundary conditions 

u・nlan = 0, (§(▽四） ・n)x nlan = 0, ▽ xQ・nlan = 0 and q・nlan = 0. (4.12) 

As the existence of weak or strong solutions to (4.1-4.12) is not known at the moment 
we simply assume the existence of strong solutions here. 
The main goal of this section is to show that a fam.ily of cl邸sicalsolutions (Q., u已,.ie)e>O 
to 

K, 
U-Um = E-—• x log(g), 

Cv{} 
(4.13) 
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如+div,r(f2Urn) = 0, (4.14) 

叩 u)+ div,, (四Ru』＋▽,p(e, ・O) = Ediv,§(V"u), (1.15) 

/J1 Golu『+(le(e, ・())) + div,,, ((¾oiul勺 (le({!,・19)) um) 
+div,,(p((!, tJ)u) + sdiv,,q = sdivx(S(立u)•u), 

(1.16) 

叩 x(s))+ divx (gx(s)um) -sdiv.r [こい(s)
＝亨S(▽,u) ▽沈u+ 紐x'(,)l;log.il'~ex'(,)戸logeドー ,x''(s)~I立,1',

(4.17) 

for XEび(R),where s(Q,1J) = cvlogiJ -log(!, generates an rDMV solution to the Euler 
system (2.1) a.nd (2.2). To this end, we first rewrite the system (4.14-・4.17) using (4.5), (4.8), 
(4.12) and (4.13)邸

如+divx(gu) 

6 
姐gu)+ divx (gu 181 u) --div,, (u@が乙logg) +▽ x(g・,J) 

Cv 

ゾGgluド+cv四）曲=0,

e: 
-div,、.(K立 loge)[4.18) 
Cv 

= c:div条（立u), (4.19) 

(4.20) 

糾ox(s))+ div,T, (ox(s)u) --divx ((]x(s)K; 立logo)--divぶ休▽xx(s)) 
Cv Cv 

x'(s) 氏氏
=E:-一§(▽;,u): ▽ xll + rnx'(s)j¥互log1Jド+q'(s)ーバ互logol2-cx"(s)-1¥7砂sl汽
1) c,, 

Cv (4.21) 

for x E C2(R), where s(o, iJ) = c,, log 1Jーlog(]and K, μand'T/ are given by (4.11). Second, 
we discuss the following issues: 

• Uniform bounds based on the energy estimates that will guarantee boundedness of the 
state variables (Oe:, m0, E』,where m, = (]0U, and E, =½(]e;luビ 12+嘔ぶ

• Showing that the dissipation terms vanish in the asymptotic limit. 

• Identifying the Young measure { U1,x} a.5sociated to the family of (rnnormalized) weak 
solutions. 
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Let the initial data ((}o,s, {)。,s,Uo, ふ satisfy

{!o,e > 0, J {!o,e dx 2: ]¥If,。>0, 加>0, log戸）こ80> -oo, 
n 

J., [½,,,,In。.1'+<;,: 泣o,]dx $ ,0, (4.22) 

and generate a Young me邸 ureU,。inthe following sense 

！約，ゆ dx→〈U。,xi{! 〉<pdx for any ef> E <; 疇）；
!1 ii 
釦 Uo,e・</>dx→ J〈U。,xi ill〉.</> dぉ！ !1 !1 

for any </> E <; 疇；炉），<I>.n加 =0;

1 [~ 如，,[uご＋嘔0,泣o,c1 ef> dx→ J〈Uo,xiE) <p dx for any ef> E <; 疇）；
！い(10g戸））¢,dx→ J〈U。9ぷ (p,m,E)〉1>dx n {!o,e !l 

for any ef> E C~(O)¢ ~0 , and any x mere邸 ingconcave satisfying x(s) :S: Xoo for all s E R. 
(4.23) 

Assume that forど>0 the trio (p,,,・00,u,,) represents a classical solution to (4.18-4.21) 
with (4.11), (4.12) and the initial data (Po,0,iJ。,ど,u0,,) satisfying (4.22) and (4.23). For these 
solutions we can deduce the following uniform bounds. 

4.1 Uniform bounds 

We get from the total energy balance (4.20) and (4.22) the bound 

ess sup j且(t,・) dx~ea. 
tE(O,T) fl 

(4.24) 

For any x such that x'2'. 0 (non-decreasing) and x"::; 0 (concave) we get by integrating 
(4.21) over n and using (4.12) that 

Ot I (!ex(s』dx:2'. 0. 
.n 

In particular, taking x in (4.25) such that 

:2'. 0 for s0 :::; s, 

x(.,) { < o'°" < ,,, 

(4.25) 
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gives us together with (4.22) the minimmn principle 

s0 s; s0(T,.r) whenever O < {le for a.a. (T,x) E (O,T) x n. 

In other words, we have 

gE :s; exp(-s0)·0~" for a..a. (T, ;r.) E (0, T) x n 

and hence from (4.24) it follows that 

ess sup llgs(t, ・)l/1,1+社(!!):s; c(eo,so)-
IE(O,T) 

Moreover, using (Ill= ,/(},/(}u, (4.24)孔nd(4.2G) we conclude ti叫

侭ssup llmc(l, ・)111釦甘(!!)s; r:(r~o, so), 
/E(O,'I') 

(4.26) 

(4.27) 

where幽ヰ2
2c,,+1 > 1 for Cv > 0. 
Finally, as 

創log叫11'.:'.{ c(so)切Ilog叫1''.:'.c(p, so) 
如 9,,

we get from (4.24) and (4.26) that 

ess sup / o,(t, ・)x(.,,(t, ・)) dx :S: c(p, e0, s0) 
tE(U,T), !l 

if 1J£$ 1, 

if仇ミ 1,

(4.28) 

for any x(s)~sP, p 2 1 (independently of the x d邸 sused elsewhere). Namely, we have it 
for x(s) = s here. 
On the other hand, if we take x such that x'(s) 2: c > 0 for all s 2 s0, x" :S O (for 
example x(s) = s) we get (using (4.28)) by integrating (4.21) over (0, T) x n that 

「/(心心叫：▽心 +E叫▽・" log 1J氾十 E上叫立log鱈 chdt:S c(e0,s0). 
• () • !1 rJ ら ）

(4.29) 

4.2 Estimates of dissipative terms 

We must show that the following terms 

邸ぶlogo,, r:: 凡(uど凶豆log叫這（立u』, C心ex(sぷ互log{ie, EKぶ応）

from (4.18), (4.19) and (4.21) vanish aK ::・ → 0. Since we have no control over them from 
energy inequality, we have to engage (4.29)、Tothat end we use the following estimates: 

．
 
「fEK平 logee恥 lis; 嘉(II叫Iい(O,T)x!l)十c:I虞▽，,,log疇 2((0,7'向）） (4.30) 
0 fl 



19

．
 
「J的 (u虔立logf2e) dx dt~ 嘉(IIぷ叫恥。，T)xfl)+c:11 ✓ 立 logf2e!II2((0,T)xfl)) 
o n 

(4.31) 

． 
1T i E:§0('¥7迅） dxdt~ 嘉 (11弘 ((2芯）IIい((D,T)xn)+1T i E:i§e:(V山）立u.dxdt) 

(4.32) 

． 
「J年ぶlo砂 dxdt ::; 嘉(II叫1が((O,T)xO)+ Ellv'i<:; 叩 og疇打(O,T)xn)) (4.33) 
o n 

4.3 Vanishing dissipation limit 

In view of the uniform bounds (4.24), (4.26), (4.27) and the fundamental theorem of the 
theory of Young measures (see e.g. Ball [1]), there is a subsequence of (Qe, me, E土 o(not 
relabeled here) that generates a Young mea.'lurr. {如ht,x)E(O,T)x!l・Moreover,passing to the 
limit in the total energy balance (4. 20), we obtain 

[J〈Ur,xiE〉dx + V(r) = 0 (4.34) 

for a.a. T E (0, T), where 
~]• 

加）＝！四ii[i(}elu『+Cv(}土](r, 嶋)dx -lo〈UT,,,;E〉dxfor a.a r E (0, T). (4.35) 
To pass to the limit in the weak formulation of (4.18) to obtain (2.4)'it is enough to 
observe that the term on the right-hand side tends to O &'l f→ 0 thanks to (4.30), (4.29) and 
(4.26). 
We can pass to the limit in the weak formulation of the momentum balance (4.19) to 
recover (2.5) since the extra terms vanish thanks to (4.31), (4.32), (4.29) and (4.24). Note 
that the measureμc contains the concentration defect of the terms 

(}e Ue Q9 Ue and (}泣c

and, by virtue of (4.35), it is controlled by V exactly as required in (2.8). 
Finally, it remains to perform the limit in the entropy balance (4.21) to obtain (2.7). For 
x such that x'(s)ミ0and x"(s) ::; 0 we see that (4.21) simplifies to 

E E 
釈四(s))+ divx (Qx.(s)u) --divx (Qx.(s)r;,'v x log(!) --divxに▽xx(s)) 2:'. 0. (4.36) 

Cv Cv 

Hence for x.(s)::; Xoo for alls E R we can use the fact that x'is bounded and (4.30), (4.33), 
(4.29), (4.26) to show that the dissipation terms vanish as E→ 0. 
We have shown the following result: 
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Theorem 4.1. Let the transport coefficients satisfy /l~g,'TJ 三 0 and K. ~g. Ass1ime that 
({le, iJc, llc)oo 1:s a, family of clas8iml solution8 to the Brenner's 8Y8tem (4-13-,1.17) with the 
initial data (oo,c, iJ。,c,110,£),>o satisfying (4.22) generate a Young measure Ui。ぶ inthe sense 
of (4.23). 
Then (nt least for a suitable subseq1tence) 

({!e, {!ell£,~。」虹＋彗ci)c)
£>0 

generates a Young measure {如}ct,x)E(O,T)xflthat represents an rDMV solution of the Euler 
system {2.1), {2.2) in the sense of Definition 2.1. 

Remark 4.2. In om a.r1aly8is we could also take 11( ぃ， iJ)~ ¼orµ(o, iJ)~g +か

5 Weak-strong uniqueness 

The most notable property of rDMV solutions from Definition 2.1 i::1 that, they sa,tisfy the weak 
(me部 ll応 valucrl)-strong;uniqnenesH principle, i.e., ftn rDMV solution mid a Htrong Holntion 
starting from the same initial data coincide ,IB long as the latter exists. In particnlar, in that 
叫 seany sequence generating the rDMV solution must converge to the strong solution and 
we can see rDMV solutions as a "tool" to prove it. This ha.-; already been applied to show 
the convergence of certain numerical schemes (soc, o.g., [l!J], [20]) and we hope to progTes:; 
in that direction further. 
To show the weak-strong uniqueness property for rDMV solutions we use the standard 
method of relative energy and relative energy inequality (see [22]). Namely, we use tha,t 
the difference between a strong solution and an rDMV solution emanating from the same 
initial data can he <:ontrolled by a co<:rcivc relatれ1eenergy functiom1I (5 .1) and this functional 
satisfies a relatfoe enerpy ineq:uality (5.2). Finally, using the fact that we work with a strong 
solution and an rDMV solution we can show via the standard Gronwall argument that the 
relative energy functional is identically zero. 

5.1 Relative energy 

Let 

jj E C1([0, T] x !1). jj > 0, 19 E C1([0, T] x !1), .J > 0, fl E C1([0, T] x !1; Rり，

be given. Following [22], we introduce the ballistic free ener; 肌l

凡({},rJ) = Cv{}1)ー的log巳），
and the relative ene1yy 

e({},19,u lo, 紐） = !{JIU-研＋恥({},19) -/:)[{証，り）
2 a{} ({}-ij) -H謳，79).
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We showed in [10] that & can be written in the conservative v紅 iablesas 

叫 m,E位，戸）
＝一{)[s((},m,E)-S(§,m.,E) (5.1) 

ーむS(ij,m.,方)((} -ij)ー立S(ij,m, E) . (m -m)玉 S(i!,m, E)(E -叫，

where S is the total entropy without any normalization while m = i}u and E =祠町+cve-0.
It is interesting to see that the relative energy£is related to the relative entropy a la 
Dafermos [13] via a multiplicative factor proportional to the absolute temperature. 
We showed in [8] that rDMV solution:,; 8,tt,iBfy the following叫（加）e energy inequality 

t=T 

如；£g,m,E[!,m,E dx + [j 
N 
〈 (I)〉L=。ft〈U。,ぉ;E〉-〈Ur,x;E〉]dx 
こー1T1 [〈Uにふ(y,m,E)〉紅＋〈切：ふ(y,m,E)竺〉叫 d:rdt
+ 1T L [〈Ut,.x;⑱ -m〉紐＋〈Ut,xi(gii-m)@m :'v,,ii d:1:dl 。〉］

?― 

-('Y-l) 1 L l〈広，,.;E-_ド]〉clivxu] dxdt (5.2) 

1T L [炉+ "〈u,,,;,)8没 log い）＋〈如 m) ▽泣log(~)] 山 dt
1 

+ JT J [〈U1,x;e -12〉［似節）ー〈Ui,x;m〉・-:▽x(砂 dxdt 
＋［八iLd1,c, il g l 

with some suitably chosen fixed x <l0termined by (ふふfi)(see [8] for more c½otails) 、 \yepoint 
out that the relation (5.2) holds for any trio of differentiable functions ({!, 0, ii), (!, iJ > 0. 

5.2 rDMV-t s rang uniqueness 

As a corollary of the relative energy inequality, we showed the weak-strong uniqueness prin-
ciplc in the class of rDMV Holutious in [8]. 
The idea is to show that the terms on the right-hand side of (5.2) can be absorbed by the 
time average of the left-hand side and hence by the means of standard Gronwall argument, 
the left-hand side must be identically zero on (0, T). To this end, we use the coercivity 
properties of£following from (5.1) and the fact that Sis a concave function on its effective 
domain (see [10]). We have obtained the following result in [8]. 
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Theorem 5.1. Let Cu > 0. Suppose that the Euler system (JJ 1.3) admits a continuo1tsly 
呵 erentiablewlntion (か19,ii) in [O, T] x n emanating from the initial dat、a、

珈>0, 1う。＞（）切、n.

Assume tl叫 {U口}(t,xJE(O,T)xnis an rDMV solution of the system (2.1), (2,2) in lhe sense 
specifi叫 inDefinition 2.1, sud, that 

U0,,,. = 8 iio(x),iioiio(x)』帥(x)lii.o (x) 12 +cv [/o-/)o (x) for a.a. :c E 0. 

Then 
U ::-..: 8 I,:,・ii(l.,x),iiii(t,x), 合 ii(x)lii.(:t)l2+cv四(t,x)•for 0,.0,. (t., 叫E(0, T) x 0. 

Theorem 5.1 w邸 givenfor periodic boundary conditions. that is on n = [O, 1]3l{o,JJ, 
however it is ea.9y to see that it stays valid even for thE、slipcondition u・nlmi = 0. 
In view of Theorems 3.3 (or 4.1) a.nd 5.1, we immediately obtain the following coroll紅 y
that, ean be r:iccn邸 aversion of t.hc result in [15]. 

Corollary 5.2. In addit'ion to lhe hypotheses of Theorem 3.3 (or 4.1) snppose that the limit 
枷 ler.~ystcm (い），（忍.2)admits a smooth (CリsobJ.tion(I?, m, R) in [O, T] x n. 
Then 

1 
凸→ {!, {! 心→m, 2oalu平-I仇,{!ぶ→ R irt 1、1((0,T) x !2). 

Indeed the fact that the limit DlVIV solution iB represented by the Dirac masses implies 
(up to a subsequence) strong ,ut. pointwise convergence. In addition, the limit defect 1) 
vanishes which implies strong convergence in the L1-norm. 
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