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Asymptotic Stability of Small Oseen Type Navier-Stokes Flow 

under 3-D Large Perturbation 

Ken Furukawa 

Graduate School of Mathematical Sciences, 

The University of Tokyo 

1 Introduction 

Let fl be配 or配 x1l.'1, where 1l.'1 =恥/Zis one dimensional flat torus. We consider the 

incompressible Navier-Stokes equations 
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(1.1) 

where u = (u1(x, t), 匹 (x,t), u3(x, t)) and p(x, t) respectively stand for an unknown veloc-

ity field and a pressure. The functions u。denotea given initial velocity. Ot, A denotes 

partial derivative in time and Laplace operator on the Euclidean space respectively. The 

differential operator u• ▽ denotes区幽3→・
Let us recall a special self-similar solution called the three dimensional Oseen vortex 

or Larnb-Oseen vortex: 

r (一叩，X1,O) ービOs(x1ぃ叫，t)= - (1 -e 4,), 咋=(xi, 砂），叫＝硲， (1.2) 
21r lxhl2 

where r is the total circulations. The two-dimensional Oseen vortex is the Navier-Stokes 
flow whose initial vorticity is a Dir.ac measure supported at the origin, and it stands 

for one of the simplest vortex. The three-dimensional Oseen vortex is an extension of 

two-dimensional one. In this paper, we discuss£2 asymptotic stability to somewhat 

generalized Oseen vortex (Oseen type Navier-Stoke flow) under large three-dimensional 

perturbation in畷 X畔
We will introduce some results on solvability of the Navier-Stokes equations. There 

are many results on the existence of the solution to (1.1). It is well known that Leray 

[18] showed the existence of a global-in-time weak solution u in町 to(1.1) satisfying the 

following energy estimate: 

llu(r)IIわ+jtllVu(r)IIわdr::; lluollt2 

゜
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for initial data u0 E f丸 Unfortunately,the Oseen vortex is not a Lerny's weak solution 

since the energy of the Oscen vortex is infinite. 

For non-£2-initial data, Kato [12] proved I.hat (1.1) is globally well-posed for small 

Lm-initial data in瞑mwith rn ? 2 by using iteration to the integral formulation of (1.1): 

u(t) = e1L'l.u。-ff f'(t-T)△ P(u(r), ▽ u(r))dr, 

゜
(1.3) 

where etA~md P are the heat kernel皿 clthe Helmholtz projection respectively. The 

choice of function Hpace is related to the scaling transformation: 

砥:r,t)→知（入x,店）， p(x,t)→ 均（入x,炉l),

which dose not change the equation. Scale-invariant function spaces arc criticai ones 

that iteration method workH. Tn this case I/"(欧m)and I『I平（訳mx (0,'.Xl)) are 8cale-

invariant function spa.cc under the above scaling tra.nsformation. Independently, Giga and 

Miyakawa (7] proved the existence of the solutions in L'" (野） in hounded domains with 

tlw Dirichlet boundary condition. The rrnmlt of this papm-was obtained evci11 bcforn [12] 

but it took long time to be published after the paper was accepted. 

In three-dimensional case, I} (配） is the critical Lebesgue space, but it does not include 

homogeneous functions. like青 Thi8means that I} (配） i8 too restrictive to construct a 

self-similar solution. In this direction, Giga and Miyakawa [6] proved that the vorti~ity 

equations is well-posed for small initial data and there is a unique self-similar solution by 

taking initial vorticity in the Morrey space 111咽）• The Morrey space is scale-inv紅 iant

under natural the above natural scaling and include homogeneous functions. Moreover, 

Hince rot.Os(•, 0) E M~, the :reHult of [6] provides generalized Navier-Stokes flows that 

contain the three dimensional Oseen vortc~x provided that r is sufficiently small. However, 
in (6], sm<:iothness for initial data is needed to define rot-u。.For instance, for a bounded 

function 0(:1:) ou thn two dimensional unit Hplwre whoHc: 如 ivativeis not a Radon ntcaHure, 

rot(8(~)0s(x,O)) is not in Mt  On the other hand, Kozono and Yamazaki [15] proved 

well-poseduess for small initial data in weak心 spacein two-dimensional exterior domains. 

Since the two-dimensional Oseeu vortex is in we幽び 8pace,the re8ults of {15] provide its 

generalization. There is no restriction on smoothness of initial data in [15]. In Cannone [2] 

and Koch and Tataru [13], it was showed that (1.1) is globally well-posed for small initial 
ー1+!!

data in the Besov spaces Bp,oo " (罠")(1 < p < oo) and BM0-1(瞑n)space respect.ively. 

The result of_[13) is the most general on the well~posedness to (1.1). 

Our aim is to show asymptotic stability to the solution that is constructed in the first 

aim under large three-dimensional perturbation. Asymptotic stability for the Navier-

Stokes equations has been widely studied. However, there are few the results on the 

asymptotic Ht.ability nnckr large pm-turhation. In tlm:cーdinwnsionalc,1.-;e, Srhonbnk [21] 

proved that O is邸 ymptotically:,;tahle for L2 n£!-perturbation on配. Subsequently, 
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Miyakawa and Schonbek [20) study optimal decay rate. On the other hand, Kozono (14] 
proved asymptotic stability for the Leray's we咄 solutionu E Lf L~satisfying Serrin's 
condiしion[22) (~+ 1 

p q 
= 1 for 2 $ p < oo and 3 < q $ oo) on uniformly C3 domains. This 

result allows unbounded domains such as a exterior domain or a domain with non-compact 

boundbary. Karch, Pilarczyk and Schonbek (11] proved L五 ymptotkstability for small 

mild solution V E心 whereXa is a function space of solenoidal vector fields satisfying 

I (v• ▽ V,w〉I$C(supや ollV(t)ll,l'.』II▽vii』l▽叫1£2for all v, w E L'f'L~n Iィif~. This result 

allows many function sp孔ces.For instance, weak£3 space叫 isfipsabove nHtimate, and 

then it is a. subspace ofぶ Thedecay rate to L3•00-mild solutions w邸 alsostudied by 

(8). Alt.hough [11) is the most comprehensive result for the邸ymptoticstability of small 

mild solutions io (1.1), the three dimeusioual Osccn vortex is not. included in this result. 

In the two-dimen:-;ional case, Iftimic, Karch and Lacave [10] show that, for initial 

perturbation v0 E L汽thereexists a positive constant 5 = 5(1Jv0 II 1,2), if the total circulation 

is smaller that 5, the Oseen vortex is asymptotically stable in exterior domain. In this 

result, size of the total circulation need to be smaller as initial perturbation beocome to be 

larger. Gallay and Maekawa [5] inproved this point. They show the asymptotic stability 

of the small Oseen vortex forU n£2-initial perturbation (1 < qく 2).In this result, 

smallness of initial perturbation is independent of size of the total circulation. Maekawa —L2,oo [rn] proved邸 ymptoticstability for the Holutions obtained by [lG] under Cif -large 

perturbation in the whole space and the exterior domain. This result give us asymptotic 

stability to the small two-dimensional Oseen vortex. 

Let us consider our problem in more detail. We will first generalize three dimensional 

Oseen vortex. For the this point, since the two-dimensional Oseen vortex is in£2•00 
and three dimensional Oscen vortex is independent of Xv variable, it is good idea to 

construct mild solution in an anisotropic function space Y2 :=£00 L 2,oo 
11 h with the norm 

l!JIIY2 = l!llf(xh, 叩）11£2,=IIL寄. Note the three dimensional Oseen vortex is in Y2 at 

fixed time. Moreover, Y2 is scale-invariant under the natural scaling. Therefore we can 

constrnct a mild solution to (1.1) by Fujita-Kato principle. 

Our aim is to show asymptotic stability of Oseen type Navier-Stokes fl.ow under arbi-

trarily large perturbation v0 E L: 竺冠（畷 x1ft). We call the mild solution constructed 

in the above procedure the basic flow with initial data b。.To prove asymptotic stability, 

there are several step. For simplicity, we assume v0 E L図C揺
We first have to show the existence of a weak solution to the perturbed Navier-Stokes 

equations: 
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(1.4) 
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For the vertor field 11 satisfying above eqations, we find that v + b ;;atisfics (1. 1) with 

initial data v0 + b。.Since the fifth term of thf! left-hand side of the above equation v• ▽b 
has singularity at t = 0, it is difficult to get the energy inequality hy integrating on 

呪x1f~, x (0, t) and show the existece of a weak solution to (1.4) directly. To avoid this, 

we constrnct a unique local-in-time mild solution v to (1.4) on (0, T] for some T >()with 

initial data v0 in a subspace of I刈闘X1I't), after that, we show the existence of global-in-

time weak solution with initial <la.ta v(T). The local-in-time mild solution is constructed 

邸 in[19] for two-<lirnensimial c~1,.<,c. we follow his approach. To show tlw existc1rice of a』

weak solution with initial data v(T), we first coustruct a unique solution to approximated 

equations to (1.4) with energy inequality that is independent of approximation parameter. 

Next, taking limit to the approximated solution, we obtain a. weak :,olution to (1.4). 

Finally, we prove the decay of llv(t)IIL2(1R炉Tblas t→ oo. To this end, since the domain 
is vertically periodic, we can apply the Fourier expansion to v with respect to xv variable: 

v(: 加叩， t)=訊（叫，t)+I: 叫 h,t) e2trij 

洋 0

=: V ゜十・Uo.s•

Using orthogonality of the Fourier series, we can derive the equation that v0 satisfies. 

Since the averaged term 1,0 is independent of Xv, we can apply two-dimensional argument 

邸 in[19] to get the decay of llva(t)IIL嘔炉叫）邸 t→oo. Unfortunately, because of the 

non-lineat・ity of (1.4) and dependence of v0., on叩 variable,it is difficult to show the decay 

t.o tlu、oscillatingterm by using; Hanw way沿sthe averaged term. However, we can avoid 

this difficulty the Poinca.re inequality and get the decay of llv。.IIビ(!Rf,xnJ. It is WOヰhto 

mention that there was no result on asymptotic stability to the three-dimensional Oseen 

vortex nudm・t.ltrecHlimc11sional perturbation, even if h~1..,ic fiows or iuitial pnrturlmtiou 

are small, and domain has no boundary. Our result is somewhat restrictive in terms of 

domain. 

2 Main results 

In this section, we firstly define some notations and notions to state our two main 

tlwnrmn. Seconclly, we nwnti6n them. 

We define vertically anisotropic function spaces to define the mild solutions to (1.4) 

that include the three dimensional Oseen vortex. 

Definition 2.1. L0.t D =配 O'/' 蔚 x冗. We define vertically anisotropic ::,;paces 

XP(O)(l::; p~oo) and Y<i((D)) (1 < q <'.X)) by 

XP := {f = (fi,h,h) EL)。c(O):div f = 0, llfllxPく： oo}, (2.1) 

Y'I := {J = (!1, h, .fa) E Lf。c(O):div f = o, IIIlh,qく oo}, (2.2) 
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where 

J' llf llxp := sup (lf(xゎXv)『dxh);;< oo, 
XvE訊 JR2

h 

llflln := sup sup入(l{xhE囮召： If (xh, Xv)! >入}I)½ < 00 

出ッER入>0

respectively, where [S[ denotes the Lebesgue measure of S. 

We note our main theorem. First one is a existence of the Oseen type solutions; 

Theorem 2.2. Let D =配 or配 x1f'1. Let u0 E Y叩） • Then there exists a positive 

number 8 such that, if l!nol! 戸(fl)~o, there exists a unique mild solutions u E C心(0X 

(0, oo)) of (1.1}: 

u(t) = et△ Uo -J e<t-r)△ Pdivu(T)Ru(T))dT in Y叩）， (2.3)

゜for all t E (0, T), where et△ and P are the heat kernel and the Helmholtz projection 

respectively, such that 

sup jju(t)jjy2(11) + sup t4jju(t)llx4(!1)::; CIIHoll戸 (!l}'
O<t<T O<t<T 

(2.4) 

u(t)→ u。weakly* in Y2(0) +炉(fi) as t→ 0 (2.5) 

where ! =~+¼for all½<~<¾-

Proof of this theorem ba.sed on即 jita-Katoiteration Rcheme. We omit details here. 

Second our theorem is a asymptotic stability result of the Oseen type solution in vertically 

periodic domain; 

Theorem 2.3. Let O =既 x'll'v,8 > 0 be sufficiently small and b(x, t) (basic flow) be 

a solution to (NS)・in Theorem 2.2 with initial data b0 E Y2(H) with llbollY2 < 8. Then, ——£2,oo 
for Vo EL匹C品,, (0) (initial perturbation), there exists a weak solution w (x, t) to (1.1) 

with initial data w0 = v0 + b0, which satisfies such that (1.1) in the sense of distribution, 

such that 

犀 llw(t)-b(t) -et△ Vollび(!!)=0 

In this paper, we give a outline of the proof this Theorem 2.3 when v0 E L':'°'品

3 Out line of the proof of Theorem 2.3 

There are two step to show Theorem 2.3 : 
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Stcpl Proof of the existenceぅofa weak solution to the pcrtnrbc<l equation (1.4) with 

logarithmic energy estimate. 

Step2 Proof of energy decay of the solution to the perturbed equation. 

On stepl, we first construct a unique solution to a ap~roximatc equation of perturbed 

equation, a11d taking its limit, we can get a weak solution to the perturbed equation with 

logarithmic energy estimate邸 inMackawa [19]. Summing up this pr、ocedure,・weget the 

following proposition. 

Proposition 3.1. Let T > 0, v0 E L四噂(n)with lliV'V。=0 and b be a sol-ution to 

(1.1) in Theorem 2.3. Then there exists a weak solution v E L戸店(flx (0, T)) to {1.4) 

such that 

伽(t)I応+(11▽ u(s)[l;,2 ds ::S Ci +らllbollむlog(l+ t) (3.1) 

for all t E (1, T), where C1 = C此v0)a.nd C2 is independent of T. 

Applying the Fourier expansion to v with respect to x,,, we can decompose v into 

averaged part Va and oscillating part v, ぶ

叫叩，n= I: 叫咋，l)e21ri.i:vl,:= vo(:1:1i, l) +区叫xh,l)e2"四 K

kEZ kヂ0

―. Va(Xh, t) + V0s(Xh, Xv, t). 

Beca.use of orthogonality of the Fourier series, it follows from (3.1) that 

llva(t) Iii知） + /tll▽砂alli叩） ::;c+c炉log(l+ t) (3.2) 

llvos(t)II、i,2(IR~ 遺） +III▽ Vos Iii叩） ::;c+c炉log(l+ t), (3.3) 

where 6 > 0 is a constant in Theorem 2.3. Since we can apply the Poincare inequality 

to the oscillating part, we can derive the decay of v。8 directly from (3.3). Therefore, it is 

essential to show the decay of Va. We first show the following propoHition to show thiH. 

p ropos1t10n 3.2. Let T > 0 Put Wa := -1 (―△, ,) 4Va, where (—ふ）sf2J =戸(Iふド町）

for s E股.Then there exist constants C > 0 and M > 0 such that 

II叫 (t)11; 知） + t11応 (t)lli和）dT 

<; C(! + t)M''(1 +log(!'+ t) + sup ll"oo(T) IIび(R(国） log(!+ t)) (3.4) 
1$r$1. 

for all l < t::; T. 
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Proof. Integrate (1.4) with respect to xv, then we get 

髯—△心 +div/ (v切+b切＋轟）d叩＋知 =0
1fl 

珈：ー△心 +div/(v2v+b2v+炉b)d叩＋如 =0
T' 

髯—ふ砂 +div/ (v3、v+ b3v +, 屈b)d叩 =0,
fl 

、1
,

、1
i

、1
,
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6
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(3.5) (3.6) are the two dimensional perturbed Navier-Stokes system and (3.7) is two 

dimensional heat equation respectively. It follows from integration by parts that 

1 
囀 WaJJi知） +II▽ Walli如）

2さI// (vRv+bRv+vRb)仁： 17,(-ふ）一髯d叫
配 1fl

= J J f ((va +Vos)R(va + V。s)+b@(va十 ・u。.,)
JR2 1fl 

+ (va + V08) 0 b)dxv : ▽（一ふ）―4Wadxhl

= I J f (va釘 a+VosRV。8+ bRVa + bRV08 + V,, @ b 
政2 1fl 

+v。80 b)dxv : ▽（ー△砂―4Wadx叶

=: Ii + 12 + /3 + /4 + h + h- (3.8) 

Estimate for 11 The Sobolev embedding 

1 

llvall い（即） ~GIi(一ふ）可叫1口（配）

and the interpolation inequality 

II (—ふ） i叫IL2<記） $GIi叫1人記）II▽砂alll知）

yield 

IIil::::; CII叫Ii如）II (一ふ）i□IL和）

さ： CII(―△h廿v』|わ(JR2)11 (一ふ）i□1口（配）

$GIi叫I口(JR2)II (—△h戸叫IL和）II (一ふ） •wall£和）

::; CII▽砂all£和）II(一 叫 疇和）

:s: CII▽砂aII L2(1R2) Jlwa 11£ 和）II▽砂all£2t配）・

Applying the Young inequality to the last inequality, we find 

IIil :s;CII立叫1伝叫疇如 ） ＋ 嘉II▽砂alll如）

(3.9) 

(3.10) 
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Estimate for I~Using the Schwarz inequality, (3.9), (3.10) and the Young ine4uality, 
we find 

I l2Iくellf寸 'l'os⑳ 11as<h:,, II(—ふ）1.w』|い(JRり
だ(!!)

I ~C ll·vasll~ 点（記）ch,,l!wallデ汽記）ll▽，,wallえ2(記）＇

j :5 C II(一ふ）ivosllb即）d叫 1叫ll和）II▽ hW。III如）
1r 

:5 Cllvo.sllび(11ill▽v』IL叩）l!w.,11乞2(即）II▽, ,.walll2(配）

:5 Cillvasllわ(OJII▽1'asll£2(!1) 

+C2II▽ llosll7,,(!!)llwall7-叩）＋ 嘉II▽h Wa Iii刊l炉）

~C1 llvo.sll1, 叩）II▽鳴叩）

＋（らII▽噌，'(!l)llwallhlR2)+嘉II▽匹alliパ砂

In the last inequality, we used the Poincare inequality. 

Estimate for 13 and h-Using the Holder inequality,(3.9), (3.10) and the Young in-

equality, we find 

J I J3I + lhl :5 c llbll1ぷ(IR2)dx』lval!Li(.:2)II (今）1Wall£2(即）
']J'l 

:5 Cllbllx叩）II (―△ふ叫Iv(即）llwnllli(JR2JII▽, ,w、1、Ill如）

:s; Cllblli4(iiillw.,II知配）＋嘉II▽,,.w』Ii知）・

Estimate for 14 and /r;. U8ing the Holder inequality, (3.9), (3.10) and the Pincare 

inequality, we find 

jJ4j + !hi $ CI llbllL炉）llv。.11吐(JR2)dxvII (ーふ） ¼wallび（即）

$ Cllbllx叩）f O llvosll{回）II▽砂o』II;,(記）dx11II(一ふ）且II戸（配）
• 1fl 

$ Cllbllx・'(!l)llvoslli2(-;f,xTU1I▽ Vos Ill叩）II□1乏唸）II▽砂allbぇ叩）

i C1 llbll~ 位）llvos IIL2(JR;, x叩

+C2II▽v。.,117,2(JR~x1f/,) llwa llt,(JR2) +嘉II▽砂all、t2c記）

::; C1llblli4(n)II▽ t.'』I,,噂心）

＋信▽I}。.,117刈呪x1f;,illll'alli如）＋嘉II▽ぃ叫1払記）．
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Thus, from (3.8), above estimates and the Gronw!'-ll inequality, we get 

II叫 (t)11互+1t1応(r)ll;,~dr $ exp(<I>(t))llwa(l)II;,~+ ft ¥Jt(r)dr (3.11) 

where 

砂=C1 j (II▽ v(r)¥li2 + ¥¥b(r)氏）dr 

罰＝ら,:p(/<1> (s)d.,) (llv~(t) II』IVv~(t)I応+ llb(t)II知II▽v,,itJII"'). 

Using (3.3) and (2.4), we find 

叫

罰 S:C1(l十炉log(l+ t)). 

lt w(t)dr 

三ら(1+ t門(~u~l\vo.(r)\luft ¥¥v'v。..(r) 11知+ t ¥¥b(r)¥¥知II▽v。.(r)11凸）

三ら(l+t臼(:雰;:llv。,(r)IIL• },'IIVv,,(r)ll'dr I, 
ft + (1 l\b(r)lli•d州cl11▽v。.(r)I¥証）り

S:C2(l+t)°162(l+log(l+t)+ sup l¥vos(T)¥¥1ン2log(l + t)). 
1:Sr:St 

Thus, we obtain 

II叫 (t)11払IR~)+ ft応 (t)Iii叩）ふ

5 C(l + t)MP (: + log(l + t) + 1霊tllvos(T)IIび（呪燭） log(l + t)) . (3.12) 

口

Let t > l. Using Proposition 3.2 and (3.3), we find 

II叫 (t)lli2+ llvos(t)I応＋［玉(7)I応dT+ft II叫 (7)I出dT
1 

さC(l+ t)M炉 lo砂(1+ t) + (lower order). (3.13) 

We see from (3.13) that there exists t。E[t/2, t] such that 

llwa(to)lli2 + llv。..(to) I応+t。II▽Wa(to)lli2 + toflv'vos(to)lli2 
M82 3 

::; C(l + t0) logう(1+ t0) + (lower order). (3.14) 
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Therefore, we find from the Poinca.re inequality and the above incqua.lity that 

llv(lo) ll;,2 

:::; 2(J111a(to)J佑+llv。.(to) I比）
:::; C(Jlwa(lo)JJr,211▽ Wa(to)Jlr,2 + Jjv。.,(to)llr,211▽V。..(to) 11 ,,2) 

:::; Cノ!(1+ to)―!+Mli2 Jog訂1+ t0) + (lower order) 

:::; Cノ~(l + t)廿+AtJ'logi(1 + t) + (lower order). 

Now we know that v satisfies 

OtV —• v + div(v 0 v + b 0 v + v 0 b) +▽ q=OinDx (O,oo), 

div v = 0 in D x (O,oo), 

(3.15) 

then, applying iutcgrntiou Ly part. aucl the Grouwall iuequa!ii,y to the pcrturbecl eq叫 ion,

we find 

llv(t)IIわ+jll▽v(r)IIわdr~e砧 llb(r)ll~4dr llv(to) IIわ， (3.16)
to 

fort。E[ふt].Since .l: llb(r)lli:4dr~Clog~< oo and (3.15) , we obtain 

RHS (3.16)~Cllv(to)IIら

~C(l + t)サ+M炉log訂1+ t) + (lower order) 

If we take 8 > 0 so small that -½+ M炉<0 , we get the desired decay of v. 
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