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Do dissipative weak Euler solutions dream of turbulence? 

Takeshi Matsumoto1 
(Department of physics, Kyoto university) 

This title is a parody of a seminal science fiction novel by P.K. Dick [1]. The novel's subject 
is a challenge to what it is to be a human. Here we would like to consider the following questions: 
What. is the essence of fluid turbulence iu the sense of physics or mathematics? What does it 
mean to be a turbulent flow? 
Obviously, we know that the~avier-Stokes (NS) equations have numerical solutions which 
simulate quite well turbulent flows in real situations. We also know a number of important. laws 
on certain averages of the turbulent velocity obtained in laboratory experiments or nnmericfl.l 
simulations of the NS equations. By laws, we mean that the statistical quantity always behaves 
the same way and does not dt>pend on details of the system setting. In other words, such laws are 
obt,erved in the flows l'(:gardleHH it. iH a part of a jじt.or wake of sonw obst., しdeetc. The faruo11s laws 
include the Kolmogorov's -5/3 energy spectrum and the logarithmic law of the wall. Furthermore 
these universal nature of these laws are believed to originate from the nonlinearity of the fluids 
when it sufficiently dominates over oiher effects. 
One crucial aspect of the two famous Jaws is that the range of spatial scales where they hold 
(known as the inertial range or the logarithmic region) extends as we decrease the kinematic 
viscosity, v. We believe heuristically that the inertial rangc> becomes infinitely long as 11→ 0. 
This ii-; a i-;ingular limit so that d心ska!solutions of t.hc Euler NI皿 tiorn;(i.e., v = 0) behave 
quite differently. For example, numerical solutions of the Euler equations do not produce the 
Kolmogorov's -5/3 law of the energy spectrum, E(k) ex t213k-513, where E is the energy dissi-
pation rate. In ihe inviscid limit v→ O, it is assumed that the energy dissipation rate tends io 
a constant which is independent of v. This is the central hypothesis on turbulent flows in three 
dimensions. Basically, we need dissipation for the law to hold even though we consider the limit 
of vanishing dissipation. 
In the end of 1940's, a visionary physicist L. Onsager stated that the c諏 rgycan disRipatc in the 
inviscid case v = 0, if the velocity is sufficiently rough. More specifically, he conjectured that the 
energy dissipation canuot occur if the velocity is smooth enough: lu(の十r,t) -u(x, t)I ::; Jr竹for
h < l/3 [2] (:see also [7]). Thi:s critical expouc:ut 1/3 is the: same oue if we invoke the: Kolmogorov 
dimensional analysis leading to the -5/3 law. The modern formulation of the conjecture in terms 
of the weak solution of the Euler equations wa.~done in [3]. Then The proof was given in (3, 4]. 
The weak solutions of the Euler equations which dissipate the energy紅 ecalled dissipative weak 
solutions. 

An important development was later made in [5, 6] showing that certain dissipative weak 
solutions, if they exist, follow the Kolmogorov's 4/5 law, as the NS turbulence do. This 4/5 law 
is the most significant statistical law of turbulence since thiH is the only law that can bu cforived 
theoretically from the NS equations. However, between the dissipative weak solutions and the 
(cl邸 sical)NS solutions, there is a huge difference in the condition of the 4/5 law. For the former, 
the 4/5 law holds for each solution, that is, without taking an ensemble average. For the latter, 
an ensemble average is indispensable. What does this imply? Our interpretation is that such a 
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dissipative weak solution is an idealized form of turbulent flow. vre here considPr that something 
satisfies tlw 4/."> law h咄（・mtain(園ell('(ヽofturLnlonc:c!. 

There is a traditiou of constructing weak solution of the Euler equations. Scheffer's [8] and 
Schnirelman's [9] solutions are famous examples. The dissipative weak solutions we talked about 

were constructed by De Lellis and Szekelyhidi [10]. Specifically, they first prescribed the energy 
as a function of time a11d constructed iteratively a weak solution in agree1mぅntwith the prescribed 

energy function. In [10], the Holder exponent of the velocity w邸 h< 1/10. Substantial efforts 
were then made to increase the exponent to the Onsager critical value 1/3. ¥,Ve just mention here 

that Issct [ll] an<l 13nckmaster et a.l. (12] reached the exponent arbitrary dose t.o 1/3 from below. 

If one believes that certain dissipative weak solutions are an idealization of turbulence, their 

constructed solutions are likely to yield a novel insight on the mechaniRm of laws of turbulence. To 

what extent these weak solutions are relevant in understanding ma! turbulent liow is not obvious 

a priori. Of course, even if it turns out that they are of little relevance, their mathematical 

ingenuity is not at all reduced. 

The construct,ion [12] allows to prescribe two things: the energy as a continuous function of 
time and the Holder exponent h of the velocity field, lv(x + 1・, t) -'V(x, t)I::; lrih, ThiA h can be 
紅 bitraryclose to 1/3 from below. The prescription of the energy, which can incre邸 e01・decrease 
in time, avoids a rather pathological weak solution which has a compact support in time. The 

prescription of the Holder exponent is quite intriguing for physicists interested in turbulence. 

The classical picture of turbulence clue to Kolmogorov proposed in l 940's, the exponent of 

the velocity field is uniquely 1/3. On the contrary, experiments and numerical simulations of the 

NS equations indkate that such exponents are multiple and continuously distributed around 1/3, 
see, e.g., [13). 恥rthermore,the multiple exponents of the turbulent velocity field can be related 
to inhomogeneous fluctuation of the energy dissipation rate. This fluctuation means that in some 

points the energy dissipation rate can be enormously larger than the average. The Kolmogorov's 

refined theory of turbukncc、presc,ut.ndin l!J(iO's took thi8 801-t of flnctnatious into consideration 

and it predicted a certain distribution of the exponents of the turbulent velocity. Unfortunately, 

the refined theory is not able to describe well the real turbulent flow quantitatively. However the 

theoretical direction it opened up remains influential. 

How is this multiplicity of the exponents or the peculiar fluctuation of the energy dissipation 

rate produced? This is one of the big questions in the physics of turbulence. In partic11la1・, since 

the energy dissipation rate has something to do with drag in real applications, answeringしhe

question may have Ronw contribution in engineering area. Docs the constrndion (12) provide any 
insight in the question? We believe so. This i8 why we initiated a numerical implement;ition of 

the construction. If the solution has t.he unique exponent (3 as prescribed, then we can learn why 

it remains unique. If the solution has multiple exponents, theu we must learn why they are so 

and, in particular, what element in the construction determines the distribution of the exponents. 

In fact,、vhenwe consider relevance of the weak solutions to the real turbulent flow, what 
physicists and engineers believe to know about it is challenged somehow. Said differently, they 

are asked to formulate their knowledge, which is sometimes quite fuzzy, in a more precise way 

and redefine it. This is perhaps the most interesting thing occurring now in this field. 
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