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1 Introduction 

We consider the incompressible Navier-Stokes equations in a three-dimensional 
curved thin domain with N avier's slip boundary conditions 

OtU£+ (ue・ ▽) u" -v△ u"十▽PE=!£ m f2c: X (0, oo), 

divue = 0 in f!e X (0, oo), 

・uc: ・ne: = 0 on re X (0, oo), (I.I) 

v[D(uり叫tan+"feUE: = 0 on r,;; X (0, oo), 

凶t=O= Uo in・・ng. 

Here De is a curved thin domain in配 withverY, small width of order c E (0, 1) 
around a given closed two-dimensional surface r and re is the boundary of 0£(for 
precise definitions see Section 2). Also, v > 0 is the viscosity coefficient, 匹 isthe 
unit outward normal vector to r., D(ue) := {▽ ue + (▽uデ}/2is th e stra111 rate 
tensor, [D(uり叫tanis the tangential component of the stress vector D(u加 onrむ

and'Ye is the friction coefficient. 
Fluid flows in a thin domain appear in many problenu,; of natural sciences, e.g. 

flow of water in a large lake and the geophysical dynamics _such as the ocean and 
atmosphere dynamics. In the study of the N avier-Stokes equations in a three-
dimensional thin domain mathematical researchers are mainly interested in the 
global-in-time existence of a strong solution for large data, since a thre砂 ime!isional
thin domain with very small width can be seen as almost two-dimensional. It is also 
important to analyze singular limit problems for degeneration of a thin domain and 
compare the dynamics of bulk flows in a thin domain and limit flows in its degener-
ate set, There is a large number of literature studying such problems in a flat thin 
domain [5, 6, 7, 10, 12] of the form 

, e = {x = (xi, x□ 3) E股31(x1,x2) Ew, cgo(x1,x2) <硲く睾(x□2)}, 

where w is a domain in配 andgo, g1 are functions on w. A thin spherical domain 
Oe = {x E罠3I a<  lxl < a(l +c)}, a> 0 was also investigated in (13]. However, the 
mathematical study of the N avier-Stokes equations in a thin dom.ain has not been 
done in the case where the degenerate set of a thin domain has more complicated 
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the Progra111 for Leading Grnduate Schools, MEXT, Japan. 



53

geometry (see [9] for the study of a readion-diffusion equation in a thin domain 

around a lower dimensional manifold). Recently, the present author established the 

global-in-time existence of a strong solution to (1. 1) for large data of order c:-112 

when the degenerate set is a general closed smooth surface [8]. In this paper we give 
a result of [8] iu a restricted cふ eand :,;how au outline! of its proof. By IP'0 and A, 

we denote the Helmholtz-Leray projection on L2⑫) 3 and the Stokes operator on 

£2⑫) 3 associated with slip boundary conditions (see Section 3.2). Also, we write 

Mr for the tangential component (with respect to the surface r) of the average 
operator in the thin direction (see Section 3.3 for a precise definition). 

Theorem 1.1. Suppose that there exists a constant c > 0 .such that 

c―1e S'Ye: S ce for all e E (0, 1). (1.2) 

Then the詑四；i8/, COT/、8tanf.8co E (0, 1) a.rid co > 0 8'11,c:h tha.t for each c E (O, co) if 

given data u.~E D(A;12) and J€ E£00(0, oo; L2⑫) 3) satisfv 

IIA;12nf,lli2(n,) + IIMrv,f,lli2(r) + IIIPe:f°llf00(0,=; ピ（出））

+ IIMrlP'E「 117,""(0.'.XJ;l、2( り） ~co戸 (1.3)

then there exists a. global-in-time strong solution 

1t0 E C([O, oo); D(A!/2)) n Lfu,,([O, oo); D(Ae)) 

to the Navier-Stokes equations (1.1). 

Note that here we only consider the partial slip boundary conditions by making 

the assumption (1.2). It is required to make the bilinear form corresponding to the 

Stokes problem with slip boundary conditions continuous and corecive uniformly in 

con D(A凸＝硲(nf;)nH頃汀 (seeLemma 3.4). In [8] the perfect slip boundary 
conditions (i.e.'Ye = 0) are also studied with another assumption on the degenerate 
surfacer. 

Main tools of analysis are the average operator and its extension to nと,tangential 

on re (see Section 3.3). We use them and the slip boundary conditions to get a good 

estimate of the trilinnar term ((u・ ▽) u.,A0u)L叫） for u. E D(Aふwhichis crucial 
for our proof of Theorem 1.1 (see Lemma 4.1). A key idea for the estimate is to 

decompose u E D(A0) into the average part, which is almost two-dimensional, and 

the residual part, which satisfies the impermeable boundary condition on r •. Such 
decomposition enables us to use anが(OE)-estimatefor the product of functions 

on rand 00 and an L00(0e)-estimate deduced by combination of the Poincare and 
Agmon inequalities. 

Fiually, we note that throughout our arguments it is important to determi11e the 

dependency of constants on c explicitly in all inequalities. Here we do not discuss 

on this point since it requires a lot of calculations of surface quantities on r and re 

(see [8] for detailed calculations). 

2 Notations on a surface and a thin domain 

In this sect.ion we briefly introduce notations on a surface and a curved thin domain. 
Let r be a two-dimensional closed (i.e. compact and without boundary), connected, 
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oriented, and smooth surface in配 Byn and d we denote the unit outward normal 
vector of r a.nd the signed distance fanction from r increasing in the direction of 

n. Also, we write K1 and K.2 for the principal curvatures of rand define (twice) the 
mean curvature of r as H :=灼+K2. By the compactness and smoothness of r we 
may take a tubular neighborhood N = { x E恥3I dist(x, r) < 8}, 8 > 0 that admits 
the normal coordinate system around r, i.e. for each x E N there exists a unique 

point 1r(x) Er such that 

x = 1r(x) + d(x)n(1r(x)), ▽ d(x) = n(1r(x)). (2.1) 

For a 01 function'fJ on r we define the tangential gradient and derivatives by 

▽ r'fJ(Y) := P(y)▽り(y), 加 (y):= t位ij―叫y)n位）｝研(y)
j=l 

for y Er and i = 1,2,3, whereりisan ext~nsion of'fJ to N satisfyingりIr=rJ and 
P := h -nRn is the orthogonal projection onto the tangent plane of r. Note that 
the valuer; of▽ r・11 and比・11arr, indP-pendent. oft.he choice of an extension of、17(Hee 
e.g. [3, Lemma 2.4)). For'T/,~E C1(r) the integration by parts formula 

j叫＋燭1}呪=j ry~Hn;d'祀， i = 1, 2, :1 
r r 

holds, where炉 isthe two-dimensional Hausdorff me孔sure(see e.g. [3, Theorem 2.10)). 
Based on this identity we say that 17 E L竹r)has the we孔ktangential derivative 

旦i'r/EL可） if there exists rJi (=旦irJ)E L2(r) such that 

fr T/犀 d社2= -fr'f/i~dが+fr ry~Hnidザ

for all~ECぽ） • Then we define the Sobolev spaces on r by 

が (r):= {ry E L2(r) I込17EL噴） for all i = 1, 2, 3}, 

祀 (r):= {rJ E圧（い 1旦晶'T/EL紅） for all i, j = 1, 2, 3}. 

The norms ofが (r)and H吋） arc given by 

3 

ll'TJIIJI1cr) := ll111112cr) + L II加叡r)'

i=l 
3 

llrtllJI2cr> := llr,11払n+ L國如lli2cn・
i,j=l 

Next we give notations on a thin domain. Let 90 and 91 be smooth functions on r 
satisfying l9il < <5 on r, i = 0, 1. Based on the normal coordinate system (2.1) we 
define a curved thin domain in配 by

ne := {y + rn(y) I y Er, Ego(y) < r < E9l (y)}, EE (0, 1). 
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By re: and n0 we denote the boundary of nど andits unit outward normal vector. For 
a function'P on nE we have the change of variables formula (see e.g. [4, Sect.ion 14.6)) 

In, 叫x)dx = j j091(y) cp(y + rn(y)).J(y,r)ぷ dが(y), (2.2) 
r Ego(y) 

where .l(y,r) := {l-rK1(11)}{l-r1>2(?J)} for 11 Er and r E (-li,8). By the formula 
(2.2) we easily see that there exists c > 0 independent of c such that 

c― 1計 12llr1II臼r)~1111111,:叫） :Sc計12llr1IIび (r) (2.3) 

for all ry E L2(r). Here and in what follows we write fj := rJ o 1r for the constant 

extension of a function r, on r in the normal direction of r. 

3 Fundamental tools and inequalities 

In this section we give fundamental facts for the proof of Theorem 1.1, especially for 
the estimate of the trilinear term. In what follows, we denote by c a general positive 
constant independent of c:. 

3.1 Basic inequalities for functions on the curved thin domain 

For a function r.p on nee we define the derivative of r.p in the normal direction of r by 

d 
知 (x):=石(,p(y+ rn(y))) l1J=1T(x),r=d(x) = n(1r(x))・ ▽ r.p(x), X€ 几

Based on the formula (2.2) we can show Poincarざsinequalities on n,, ・

Lemma 3.1. There e:cists a constant c > 0 independent of E: such that 

IIPIIL叫） s C (E:112ll1PIIび(r,)十 ell知 IIL2(n,)),

加II1,: 叩） s c(s-1/21回1び(!!,)+ s112ll8n'PII口(!!,))

for all <.p Eが（叩.Moreover, if u E H⑩)  ::i satisfies u・n0 = 0 on I'0, then 

llu・nllP他） s cellullが (fie)・

(3.1) 

(3.2) 

By the anisotropic Agmons'inequality on (0, 1)3 (see [12, Proposition 2.2]) and 
a localization argnmf'Ilt with a partition of unity of r we have Agmon's inr.qnality 
on ne: with explicit dependence on r::. 

Lemma 3.2. Th、r.rnexist8 a constant c > 0 independr.nt of E .mr:h that 

llcpll r、OOは） S CE―1/211叫1位如II'f11 ;f;(U,) 
X (II叩IIい（ぃ +c:I協叫Iい(fle)+判I心IIだ(n,))i;,i (3.3) 

for all <.p E J-/2(!1.). 
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In Section 3.2 we see that the bilinear form corresponding to the Stokes problem 
with slip boundary conditions is given by the L2⑪) -inner product of the strain 
rate tensors of vector fields instead of that of their gradient matrices. The following 
Korn type inequality shows that the bilinear form is uniformly corecive in E: on an 
appropriate functi011 space. 

Lemma 3.3. For all u Eが (fie:)3satisfying u・nc: = 0 on I'c: we have 

II▽ ulli2(n.)~4IID(u)lli2(n.) + c1lulli2<n,) 

with a constant c > 0 independent of c. 

3.2 Stokes operator associated with slip boundary conditions 

For u EH囁）3 and v EH暉）3 we have 

(3.4) 

L. {△ u+▽ (divu)}• v dx = -2 L. D(u) : D(v) dx + 2 k. [D(u)叫 vdが

by integration by parts. In particular, if u satisfies div u = 0 in De and 

u• n6 = 0, v[D(u)叫tan十16u=O on I',:, (3.5) 

and v satisfies v• ne: = 0 on re: then from the above identity it follows that 

1/ L. △ u・vdx = -2ツii.D(u) : D(v) dx -218 i. u• v dザ

Hence the bilinear form corresponding to the Stokes problem with slip boundary 
conditions (3.5) is given by 

叫 u,v):= 2v kc D(u): D(v) dx + 21"'k,, u・vdザ

for u,v E V"':= L的(f2"')nが (nふ whereL~ ⑫)  is the solenoidal space on n"', 
i.e. 店(no)={u E L2(01';)3 I divu = 0 in no, u. 匹=0 on re}. Moreover, by (1.2), 
(3.1), and (3.4) we observe that a"'is uniformly continuous and coercive on V"'inc. 

Lemma 3.4. Under the assumption (1.2) there exist釘 E(0, 1) and c > 0 such that 

c-11!ull1, 加） $ ae:(u,u)~cl!ulli畑）

for all c E (0, 釘） and u E 11,,;. 

(3.6) 

Hereafter we assume c E (0, 釘）. By Lemma 3.4 and the Lax-Milgram theory we 
see that the bilinear form a0 induces a bounded linear operator A0 from V0 into its 
dual space. As an unbounded operator on L⑩)  3 the Stokes operator AE has its 
domain 

D(Ai) = {u E L;(00) n H2(0c)3 I v[D(u)ncltan +うcu=Oonrc}

and representation A0u = -v恥△u for u E D(Ac), which follows from a regularity 
result for the Stokes problem with slip boundary conditions (see [1]). Note that 

c―1llullH1(ne:) S IIA;12ull1ン2(ne:):$ cilullH1(ne:) (3.7) 
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for all u E D(A戸）= Ve by (3.6) and a1c(u, u) = 11A!12ull7、2は） • ,ve also have 

IIA!l2uflび (fl.)S cl!AEull1、2は） (3.8) 

for all・u, E D(Ae:) by IJA;12・ull;_憚） = (u,Ae:1t)J, 畑） and (3.7). By the slip boundary 

conditions (~t5) and analysis of surface qnantitics on几 weget an integration by 
parts formula for the rotation of・u E D(AE) with an auxiliary vector field bounded 
by u independently of E. 

Lemma 3.5. For u E D(Ae) and <I> E L憚）a with curl <I> E L間）3 we have 

j curl curl u・ 砂
fie 

= -L. curlG(u)・<I>心＋・{,{curlu + G(叫・ curl<I濯x, (3.9) 

叫 ereG(u) is a ver.tor field on He: satisfying 

IG(v,)I s; clv,I, I▽ G(u)I s; c(I▽ ul + lul) on nE. (3.10) 

Ba.<ied on the int.egrntion by parts i<lentity (3.9) we can derive an estimate for 
the difference between the Stokes and Laplace operators. 

Lemma 3.6. There exists a constant c > 0 independent of E: such that 

IIAcv+v△'U,11じ(n.)::; cllull圧 (!l,) (3.11) 

for all u E D(Ae). 

Note that in (3.11) tll(・！び(Oe:)-normof the diffi叩 neeb叫weenAeu and -v△u 
is estimated by theが (ne:)-normof'U,, not by its H2⑫) -norm. 

By a regularity result of the Stokes problem we easily observe that the norm 

IIAe:ullい(n.)is equivalent to the canonical炉 (nふnormon D(Ae:)-However, it is 
difficult to show the uniform equivalence of these norms in e:. 

Lemma 3. 7. There exist constant.s co E (0, 釘） and r: > 0 such that 

c-1llullH憚） s; IIA.ullび(n.)s; cllull H2(年）

for all t: E (0, t:o) and u E D(Ae:)-

(3.12) 

The right-hand inequality of (3.12) is an immediate consequence of (:Ul). To 
prove the left-hand inequality we firnt Hhow that 

llnllH2(ne:)~c (II△ ullL2(n.) + llullH1(n.)) (3.13) 

for all u E D(A0) and then nHe (3.7), (:t8), and (3.11). The proof of (3.13) i8 
technical and requires the notion of the Riemannian connection on the smface re:• 

In what follows, we assume c E (0, co) with co given in Lemma 3. 7. 



58

3.3 Average operators in the thin direction 

In the study of the Na vier-Stokes equations in thin domains it is useful to transform 

a three-dimensional vector, field into a two-dimensional one. To this end we introduce 

the average operator M in the thin direction. For a function cp on 00 we set 

1 甲 (y)

M両）：＝―Jや(y+ rn(y)) dr, y Er. 
sg(y) cgo(y) 

Also, for a vector field u on nc we write 1¥1,,.u := P(Afu) for the tangential component 

(with respect to the surfacer) of the'average of u. The average operator is a bounded 

linear operator from H叫Oc)into H叫r)for each m = 0, 1, 2. Indeed, we have 

IIMcpllHm(r) S CE― 1/211 りollHm(Oe)• IIM,,.ullH"'(r) s Cc-112llul1Hm(n,) (3.14) 

for all cp EH叫n』andu E Hmは）3. Moreover, by the change of variables formula 

(2.2) we can get an estimate for the difference between cp and M cp・

Lemma 3.8. There exi.sfa a constant c > 0 independent of E: .s'nch that 

llr.p-]和IIび (n.):::; cc:llcpllか (fl.) (3.15) 

for all <.p E If1⑫)． 

Since the average of a function on Oi; is defined on the two-dimensional surface 
r, the two-dimen:-;ional Sobolev inequalities am applicable. In pmticul孔r,we can u:-;e 

the product estimate for functions on rand nc. 

Lemma 3.9. For 17 Eが (r)and <.p E H⑩)  we ha如

翫 II亭） s cilrilli贔 1"'711~貼 ll'PII¾如ll'PII協？⑫）. (3.16) 

Here c > 0 is a constant independent of€,'r/, and <.p. 

To analyze the difference between a vector field on Oi; and its average part it is 

convenient to consider an extension of the average to Oi; satisfying the impermeable 

boundary condition on r 1c. By the definition of Oi; we can take a smooth vector・field 

w£on 0£such that 

1飢 Is虚， I▽叱IsC on ne, ¥J! c 
1 

ne: ・元
Pn" on r"・ (3.17) 

For a vector field u on 00 we define the extension of the tangential average 

研 (x):=叩(x)+ {訂(x).叱 (x)}ii(x), XE i1e:- (3.18) 

Then from the last equality of (3.17) it immediately follows that ua• ne: = 0 on r釦

even if u itself does not satisfy the same impermeable boundary condition. Moreover, 
from (3.14), (3.16), and (3.17) we can deduce a product estimate for a function on 

00 and研， whichcan be considered as an almost two-dimensional vector field. 
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Lemma 3.10. For cp E H1は）， ・uEH1は）叫 and研 givenby (:U8) we have 

II lu"l叫Iい(!1,)5 Cc-1/211 ゃ Iii土」作II~{加)lull腐止）llnl¥ ;{; 他） (:t l!l) 

with a constant・independent of c:, cp, and u. ff frt addition u E H2⑫) ¥ th切

Ill▽ 11Ulcplli憚 ） S co:-112[1cpll~ 岱。<)11'PII~{;(!1e) ll・u II~{; 他） llnll~ 伽,)'(:3.20)

When u. satisfies u・n0 = 0 on re, the residual term u.r := 1t -u" also satisfies the 
same impermeable boundary condition on几 bythe definition of研.This property 
enables us to get Poincarc's inequality for ur and its first. order derivatives. 

Lemma 3.11. Let u E H1は）3 .~o.ti8,f.1J 11, ・ 匹=0 on re:. Then、weha:11e 

llu.rllL2c出） ~ct:IID討·11 だ（糾） (3.21) 

.for炉：=・u -・u", where・u" is given by (3.18) and c > 0 is a constant independent of 
E: and u. Moreover, if u E D(Ac:), theri、wehave 

II▽ v.rllu⑫)~c (1:1iull1-T2(Sぃ+ll'u,111れ12.i)' (:t22) 

Combining Agmon's inequality (3.3) and Poincare's inequalities (3.21)-(3.22) we 
can deduce an L00(0c:)-estimaie for the residual term ur, which is usP-ful for dealing 
with the trilinear term ((u・ ▽)・u., Ae・11,)い（叫・

Lemma 3.12. For u E D(A0) let、u0be given by (3.18) and・ur := uー・ll、0.Th切

!111.rll1,00(n,)~C (.::11211ullH2(!!,) + !lull! 賃。.)!lull協，髯） (3.23) 

wilh a constant c > 0 independent of E and・u. 

4 Estimate for the trilinear form 

Based on the results in Section 3 we derive an estimate for the trilinear term, which 
is crucial for our proof of the global-in-time existence of a strong solution. 

Lemma 4.1. For given a> 0 there exist cょ，唸>0 independent of c such that 

l (<11.. ▽) u, Ae;11.) l狐）I :::; (o: + c;,1;1/2llnllが (n.))111111沿咄）

+ c; (11叫Iわ他）llul11が(!!,)+ E-l 1国1わ<n.JII u IIか他）） (4.1) 

for all・u E D(A,). (In fact, c~does not depend on a.) 

Outline of the pr:oof. For u E D(Ae) let w := curl u, 11,°be given by (3.18), and 
ur :=・1.t -ua. Since (u・ ▽) U=WX1l十▽(I叩）/2 and (▽ (l・u,12), Aeu)い(!!,)= 0 by 

ふuEL以0,)and▽ (I叩） E硲(f!e)..L,we have 

((u・'v)-u, A""u)い(f!,)= (w x u,A,,u)r、2(山） = /1 + I2 + (~, 
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where Ii, h, and ]3 are given by 

Ii:= (w X ur,A四）戸(na),

h := (w x研，Asu+v△u)L憚）， h := -(w x u叫u△u)凶叫

Let us estimate Ii, h, and h separately. By (3.12) and (3.23) we have 

!Iii :S: llu,.IIL00(n,JllwllL2(n,)IIAsull£2(ne) 

$ C (€1/21位 II印(n,) + llullt如 llull~;(n,)) lluliH暉）llullH枇）

さ虚1121iullが (n,Jllull沿叫） +cl国闊n0Jllullが (n,JI国1盟（叫

Applying Young's inequality ab S aa413 + c況 tothe second term we get 

II叶$(a+ ci::112llullが (n.J)II鳴畑） + callullf如）llu、lit佃） • (4.2) 

Next we estimate h-By (3.19) we see that 

llw X uallL憚） $ Cfー112llwll}賃n.Jllwll~髯 llulli瓜!lull盟⑫）

$ Cc―i;2llull腐n,)llullか cna)I叫盟⑫）・

Combining this with (3.11) we have 

JI2I $ llw'X uallL2(!1,) IIAsu + 1/△ uliL2(na) 

S Cc―112llulli髯 llullt⑯)llull盟⑫）・

Moreover, the inequalities (3.7) and (3.12) yield that 

II叫且fl(He)S c!IA;12u1l;,2他） = c(u,A6u)L2(出）

S c1iuiiL2(na)IIAc:ullL2(n.) S cilullL2(r 

Using this inequality and Young's inequality ab$ aa2 + c訳 weobtain 

lhl $ cc―1/2llui1L2(n. 

$ a1iulli2(n,) + Ca€ ―11回1た⑫）1回1か仰）・
(4.3) 

It is more difficult to derive an estimate for fJ. Here let us just explain an idea for 

dealing with it. Using△ u = -curlw by divu = 0 and (3.9) we get 

h = v(curlw,w x研）L囁） = J1 + J2 + Jふ

where J1, h, and Ja are given by 

Ji:= -v(curlG(u),w x研）口（叫

J2 := v{G(u),curl(w x研））亭）， J3= v(w, curl(w x研））£2(叫

We apply (3.10), (3.19), (3.20), and Young's inequality to J1 and J2 to obtain 

IJil~a1JullJ/2(n.) + Cac-1llulli2(ne)llullJ/1(n,), i = 1, 2. (4.4) 
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To deal with Ja we observe t.hat 

curl (w x u0) = ('1l'• ▽) w-(w・ ▽) -u,0 + (divu")w -(divw)砂

1 
divw = 0, (w, (研• ▽) w)口(11c)=―う(div研， lwl2)び (!lr.)'

where the last equality follows from integration by parts and 11° 匹=0 on re. From 
these equalities we deduce that 

la=~(div 砂， 1年）び(!!,) -v(w, (w・ ▽) u"')び（山）

and estimate the right-hand side by analyzing w = curlu and the divergence of研

and using the inequalities (3.16), (3.19), and (3.20). Here we omit details and the 
resulting estimate is 

IJ叶:$c (a+ 1o112llull1疇）） II叫1加⑫） + Coc-1 ll11.lli2(nc) !lull; ド(nc). (4.5) 

Finally, we apply (4.2), (4.3), (4.4), and (4.5) to 

((u. ▽) u,A四）L吼） =Ii+ 12 + !J = 11 + h + (Ji十み +h)

to obtain (4.1) (after replacing the constant o:). 

Using (3.7) and (3.12) we can express (4.1) in terms of the Stokes operator. 

Corollary 4.2. There exist d1,d2 > 0 independent of E: sv.ch that 

口

I (<u▽) u,Aeu)L徊）j :=:; (¼+ d1c:1;2IIA!f2,nllビ(!1,))IIA叫恥l,)

＋必 (llulli吼）IIA!f21,lli2cne) + cー 1llull1庫）IIA!12ulli憚）） (4.6) 

for all u E D(A,,). 

5 Outline of the proof of Theorem 1.1 

Now let us give an outline of the proof of the global-in-time existence of a strong 
solution to (1.1) for large data. First we recall the well-known local-in-time existence 
result on a strong solution to the Navicr-St.okes equations (sec e.g. (2, 11]). 

Theorem 5.1. For喝 ED(A戸） and f°Eか (0,oo; £2⑫) 3) there exist To > 0 
depending on n., v, u0, and f" and a strong solution u• to (1.1) on [O, To) with 

ue: E C([O,T]; D(A!l2)) n L2(0, T; D(A,:)) j・cJTall TE (0, To). 

If u• is maximally defined on the time interval [O, T,11ax) and Tmax is finite, then 

lim IIA!I位 (t)IIL鳴） = 00. 
t--,'r.;;,.,. 

To prove 1~11ax = oo in the above theorem we will show that theび(n")-norm

of A!1知 (t)is bounded uniformly in t E [O, Tinax)-We argue by a standard energy 
method and use the uniform Gronwall inequality (see [11, Lemma D.3]). 
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Lemma 5.2 (Uniform Gronwall inequality). Let z, (, (be nonnegative functions in 
Lに([O,T)遺） with TE (0, oo]. Suppose that z E C(O, T退） and 

dz 

dt 
(t) ::; t(t)z(t) + ((t) for almost all t E (0, T). 

Then z EL盆(O,T濯） and 

z(t2) ::S (~lt2 z(s)ds+ 1:2く(s)ds) exp (lt2 {(s) ds) 

for all t1, t、2E (0, T) with ti < t2. 

Outline of the proof of Theorem 1.1. Following the idea of the proofs of [5, Theo-
rem 7.4] and [6, Theorem 3.1] we prove Tmax = oo. For a vector field u on n. we 
write¥妬：= Pu and Un := (u・ 元）fi for the tangential and normal components (with 
respect to r) of u. Also, we denote by c a general positive constant independent of 
c, CO, and Tmax• 

Let ufi E D(A!12) and r E L00(0, oo; L2(n.)3) satisfy (1.3), where co E (0, 1) is 
determined later. Noting that M崎 =M喝，7and喝satisfiesufi・n. = 0 on r c: we 

split 1tfi = (ufi,7 —訂） +~+ufi,n, apply (2.3), (3.2), and (3.15), and then use 
(1.3) and co < 1 to get 

1/2 II喝11£2(!1,)s cc。sc. (5.1) 

Lett什 bea strong solution to (1.1) defined on the maximal time interval (0, Tmax)-
It satisfies the abstract evolutionary equation 

邸＋馴＝一『心・▽厨+Pefe on [O, Tmax), (5.2) 

Taking theび（叫innerproduct of (5.2) and ue we get 

号国111袖） + IIA!f2u鳴隅） =(lP'er, 炉）L囁） on [O, Tmax), (5.3) 

We decompose the right-hand side of the above equality into 

ぼer,ue)L2(年）＝（肛，叫）い(n.J+ (肛，叫ー江）疇） +(IP'ef6, 正）疇）

and. apply (3.2) and (3.15) to the first and second terms on the right-hand side, 
respectively, and calculate the last term with the aid of the change of variables 
formula (2.2). Then we use (3.7) and Young's inequality to get 

⑫ r,ue)P(n.il s~IIA戸uelll枇）十 c (c2IIIP'ef鳴畑）十c:IIM足E「II麟）．
Applying this inequality to (5.3) we find that 

羞llu哨庫） +IIA戸u鳴隅） Sc (c2lllP'ef喝爪）十cllM叩鳴2(r)) (5.4) 

on (0, Tma.x), which further yields by (3.7) that 

羞llu鳴如） +illu鳴畑） 5 C (cり1恥f喝、2⑫)+cllMぷrlll2(r)) (5.s) 
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on [O,T1皿 x),where a.1 is a po::;itivc constant independent of E, 1・0, and T01訟. For 
each t E [O, 1'i11ux) we integrate (5.4) over [t, t*) with t* := rnin{t+ 1. Ti11ax}-Also, we 
multiply both sides of (5.5) at s E [O, t) by e(s-t)/ui and integrate them over [O, t). 

Then we apply (1.3) and (5.1) to the resulting inequalities to obtain 

1111."(t)ll'i吼） + fl. IIA~12·u0(s)II恥年） ds $ cco for all t E [O, Tm叫．
• t 

(5.6) 

1/'2 Now let us prove the uniform boundedness in time of the・ £2は）-norm of Ae: 姐

Let d1 be the positive constant given in Corollary 4.2. Our goal is to show that 

€1/2IIA!I知(t)IIL叫） < d.1 
1 

、:＝ 
4d1 

恥・ 叫I l E (0, Trnax) (5. 7) 

if WC  take co E (0, 1) in (1.:n appropriat.dy. To this c、ndwe ass1m1e to the co11trary 
that there exists T E (0, 咋 ax)such that 

計;21lA;f21ド(t)ll12(糾） < da for all t E [O, T), 

c:1/2IIA!/2面(T)IIL2(H,)= <la. 

We consider (5.2) on (0, T] and take its L噴いinnerproduct with Aeue to get 

1 d 
韮 IIA!l2u鳴畑） +IIAe・ 叫恥1,)

(5.8) 

(5.9) 

S I ((-u.e . ▽),U e, Ae祈）L2(f1e)I + I(見fe,Ae面）だ<n,JI (s.10) 

on [O, T]. To the first term on the right-hand side we apply (4.G) and (5.8)-(5.9). 
Then by d3 = 1/4d1 we have 

I ((ue. ▽）此心）L叫 ）I :s晨IIAeuellJ,叫）

＋必 (llu"lli2⑬)  IIA!12u"II'. 恥H,)+ c-111u哨、2⑫)IIA!12u0II試H,)). 

Also, Young's inequality implies that 

I (汀，心）い(Oe)Is~l!Aeu"lli2(nc) + ll1P'erll1囁）’

Using these inequalities to (5.10) we obtain 

羞!IA!心Iii憚）十 ~IIAeu鳴岡） :S~IIA!i2u噌庫） + ( (5.11) 

on [O, Tl, where 

~(t) := 2d21iue(t)l!J,2(n.)IIA!l2u0(t)ll1汽年）’

((I;):= 2 (d2c:-111,u戸(t)ll1加）IIA!12研(l)lli叫） + l!JP'E「(t)lli憚））

fort E (0, T]. By (1.3), (5.6), and (5.8)-(5.9) we see that 

~S ccos-1, (S rco戸 (IIA!心 lli2(n,)+ 1) 。n [O,T]. 
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From these estimates, (3.7), and (5.11) we deduce that 

羞IIA;/2白恥1,)+~IIA;l2u喝ノ叫） ::; cco戸 (IIA;l2u鳴如）十 1)

on [O, T], where a2 is a positive constant independent of c:, co, and T. When t ::; 
min{l, T}, we multiply both sides of the above inequality at s E [O, t) by e(s-t)/az, 
integrate them over (0, t), and use (1.3), (5.6), and co< 1 to get 

IIA~I叩 (t)lli畑） S cco(l + co)is--1~ccoc—1 for all t E [O, T*], (5.12) 

where T* := min{l, T}. In the case T~I we see by (5.11) that 

羞IIA;12がIii畑） s; ~IIA;f2叫恥l,) +・ く on [O,T] 

and thus we can apply Lemma 5.2 to z(t) == IIA;12研 (t)lli聞） to deduce that 

(ft IIA;1ば (t)lli憚） s t-1 IIA叫 (s)Jli憚） ds+ 1-1く(s)ds) exp (1_1~(s) ds) 

for all t E (1,T]. Applying (1.3), (5.6), and co< 1 to the right-hand side we get 

IIA~1位 (t)ll'i2cn,) :::; CC()c-l for all t E [l,T]. 

Now we combine (5.12) and (5.13) to observe that 

IIA!1知 (t)ll1憚） ::; d4coe-1 for all t E [O,T) 

with some constant d4 > 0 independent of E, co,・and T. Hence if we set 

1 . d2 l 
co:= 4mm{ 1, ぇ}=¼min { 1, l6d?d4} 

and take t = T in the above inequality, then it follows that 

IIA1/2uc(T)ll2 
d5c1 

c f., 如）こー「 ・i.e. d3 €l/2IIA;I知(T)IIL憚） :5 -< dふ
2 

(5.13) 

which contradicts with (5.9). Hence the inequality (5.7) is valid for all t E [O,Tmax) 
and we conclude by Theorem 5.1 that Tmax = oo, i.e. the strong solution祈 to(1.1) 
exists on the whole time interval [O, oo). ロ
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