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1 Introduction 

We are interested in the mathematical analysis of the interaction of two vortex rings shar-

ing a common axis of symmetry (coaxial vortex rings) in an incompressible and inviscid 
fluid. A vortex ring is a thin torus-shaped region in the fluid in which the vorticity of 
the fluid is concentrated. The study of such interaction dates back to 1858, where in 

his seminal paper Helmholtz [1] observed that a pair of vortex rings may exhibit what is 
now known as "leapfrogging" . Leapfrogging is a motion pattern where two vortex rings 

pass through each other repeatedly due to the induced flow of the rings acting on each 

other. Under the classical definition of leapfrogging motion, the pair as a whole also 

moves in one direction along the common axis of symmetry. This is the case we focus 

on in this paper. Dyson [2, 3] also considered the motion of coaxial vortex rings and 
proposed a system of ordinary differential equations describing such motion. Based on 

this model system, Dyson also observed that leapfrogging may occur. The complex, yet 

tangible nature of the leapfrogging phenomenon fascinated many researchers and since 

the observation by Helmholtz, leapfrogging of a pair of coaxial vortex rings as well as the 

interaction of coaxial vortex rings in general are well studied theoretically, numerically, 
and experimentally. Notably, although the leapfrogging phenomenon was theoretically 

observed for a long time, the first experiment which successfully provided photographic 

proof of the leapfrogging phenomenon in a laboratory setting was the one conducted by 

Yamada and Matsui [16] in 1978. They used vortex rings made of air and used smoke for 

visualization and successfully created a leapfrogging pair of rings. 

In more recent years, Borisov, Kilin, and Mamaev [20] gave a thorough description of 
the possible motion patterns of two interacting vortex rings moving under Dyson's model. 

Hence, much is already known for Dyson's model, but the model has one drawback in 

that it is derived邸 asystem of ordinary differential equations for the radius and the 



22

displacement along the common axis of the rings. It is observed by Maxworthy [31], 
Widnall and Tsai [32], Widnall and Sullivan [33], and Fukumoto and Hattori [34], that 

even a small perturbation which destroys the axisymmetry of a vortex ring can grow and 
eventually cause instability (this kind of instability is called the curvature instability by 

Fukumoto and Hattori). This suggests that when considering the motion of vortex rings, 

it is important to model the motion within a framework which can incorporate the effects 

of these kind of perturbations in order to further understand the behavior of a pair of 
coaxial vortex rings, but this is not possible under Dyson's model. 

Given these situations, the author proposed a new model describing the interaction 

of coaxial vortex rings. In particular, the new model is a system of partial differential 
equations which can incorporate the effects of non-symmetric perturbations. 

The rest of the paper is organized as follows. In Section 2, we introduce the model 

system of equations which will be considered in this paper. The system describes the 

interaction of two vortex filaments with general shape. In Section 3, we consider the case 
when the two filaments are circular with a common axis of symmetry and the vorticity 
strengths have the same sign. We show that the problem can be reduced to a two-

dimensional Hamiltonian system. From here, we give a condition for leapfrogging to 

occur, and prove that the condition is necessary and sufficient. The precise statement will 

be given in the beginning of Section 3. In Section 4, we focus on another type of motion 
pattern that is observed in the real world. Namely, we prove that the model system is 

also capable of describing the head-on collision of vortex rings. 

2 Interaction of Two Vortex Filaments 

We consider the interaction of two vortex filaments. The author proposed the following 

system of partial differential equations. 

(2.1) { :::::: 言::<:a:,:;t; ~~: 
where X((, t) = t(X心，t),ふ（ふt)ふ((,t)) and Y((, t) = t(Y1 ((, t), Y2((, t), ½((, t)) are 
the position of the two filaments, parametrized by (at time t, x is the exterior product 

in the three-dimensional Euclidean space, r 1, r 2 E R ¥ { 0} are the vorticity strengthes 
of the filaments X and Y respectively, and a > 0 is a real parameter introduced in the 
derivation of the model. 

The purpose of this paper is to prove that system (2.1) is capable of describing the 

leapfrogging phenomenon. More precisely, we give a necessary and sufficient condition for 

a pair of coaxial vortex ring to exhibit leapfrogging. 
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3 Leapfrogging for a Pair of Filaments with Vorticity 

Strengths of the Same Sign 

We consider the case when the two filaments are arranged as coaxial circles and r 1, 几>0. 
Rescaling the time variable by a factor of f2 in (2.1) yields 

{ x,~#x「;,; 俎-n y'i-~(X ;;t)• 
y yぃYEE Xぴ (Y-X)
t = -a/3 
IYEl3 IX -Yl3' 

(3.1) 

where (3 = rifr2. We assume without loss of generality that (3~l, since the case (3 < 1 
is reduced to the case (3 > 1 by renaming the filaments. 
Suppose that for some R1,0, R2,o > 0 and z1,0, z2,o E R, the initial filaments X。and
y。areparametrized by t E [O, 21r) as follows. 
X。(t)= t(R1,o cos(t), R1,o sin(t), z1,o), Yo(t) = ¥R2,o cos(t), R2,o sin(t), z2,o), 

where we assume that (R1,o -R2,o戸+(z1,o -z2,o戸>0, which means that the two circles 
are not overlapping. Now, we make the ansatz 

X(~, t) = t(R1(t) cos(~), R1(t) sin(~), z1(t)), Y(~, t) = t(Jら(t)cos(~), lも(t)sin(~), z2(t)), 

and substitute it into (3.1). From the equation for X we have 

凡 cos(~) = 
aR2に―⇔)cos(() 

((R1-R2戸+(z1 -Z2戸）3/2' 

凡sin(l)= 
叫も(z1-z砂sin(()

((R1-R2戸+(z1 —疇）3/2' 

(3 a凡(R1-R2) 
i1= -+ 
R1 ((R1 -R2)2 + (z1 -z2戸）3/2. 

The dependence of the system on~is eliminated by multiplying the first two equations 
by cos(~) and sin(~), respectively, and adding. The equations for Y are calculated in the 
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same way and we arnve at 

凡＝一
“も(z1一砂）

((R1 -R2戸+(z1 -z州）3/2' 

Z1 = -
R1 
＋ 
/3 a凡(R1-R2) 

((R1 -R2戸+(z1 -z州）3/2' 

R2 = a/3凡(z1一砂）
((R1 -R2)2 + (釘—醒）3/2' 

1 a/3凡(R1-Rり
Z2=--

R2 ((R1-R州+(z1 —紐）3/2' 

(R1(0), z1(0), R2(0), 硲(0))= (R1,o, z1,o, R2,o, z2,o), 

(3.2) 

We note here that a system similar to (3.2) was derived independently by Munakata [40] 
by directly approximating the induced velocities of vortex rings. First, we observe that 

z1 and砂 canbe reduced to one variable, namely W = z1 -z2. Furthermore, we see by 
direct calculation that f3屠+R~is a conserved quantity. Hence, setting d2 = f3屑。＋魔o
with d > 0, we make the change of variables 

d 
凡(t)= cos(0(t)), R2(t) = dsin(0(t)) 
13112 

to further reduce the system. We then arrive at 

0= 
a/3噂 w

（予((31/2sin 0 -cos 0)2 + Wり
:-ii? =: Fi(0, W), 

W= 
f3312sin0-cos0 _ ad2(sin0+f3112cos0)(f3112sin0-cos0) 

3/2 =: F2(0, W), d sin 0 cos 0 /3ロ（誓((31/2sin 0 -cos 0戸＋炉）
(3.3) 

with initial data (0。,W。). Here, Wi。=z1,o -z2,o and 0。isdetermined uniquely from the 
relation 

d 
R1,o = cos0。, R2,o = dsin0。・(31/2 

Note that from our problem setting, (0。,W。)is contained in the open set幻 CR2 given 
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by 

印={ (0, W) E R2 I O < 0 < i, WE  R, (0, W)ヂ(0砂）｝，
where 0f! is the unique solution of 

(31!2 sin ef! -cos釦=o, 

which is given explicitly by 0f! = arctan(l/ (3112). The excluded point in the above defini-
tion corresponds to the two filaments overlapping. Since we can reconstruct the solution 

of (3.2) from the solution (0(t), W(t)) of (3.3) by 

d 
凡(t)= cos(0(t)), 凡(t)= dsin(0(t)), 
匹

叫t)= fl (3 十鳴(T)(R1(T)-R2(T)) 出，
。R由） ((R1(T) -R土）戸+W(T戸）3/2 

叫t)= ft 1 尋 (T)(R1(T)-R2(T); dT, 
。凡(T)―((R1(T)-R印）2 + W(T))3/2 

we focus on the solvability and behavior of the solution to system (3.3). It can be checked 
by direct calculation that the system (3.3) is a Hamiltonian system and the Hamiltonian 
1i is given by 

1 (1 -sin 0) (1 -cos 0) a(3112 {!3/2 

即，W)=一
2dlog cl+,in0)即1'(1+m,0)) -(誓(fi'I'sin0 -cos 0)'+炉）,1, 

(3.4) 

In other words, 凡＝ 邸aw and凡＝
81{ 

80・ Of course, the Harn1ltoman 1s a conserved 
quantity of motion. In this formulation, closed orbits revolving around the point (0(3, 0) 

correspond to leapfrogging. From here, we treat (3.3) as a two-dimensional dynamical 

system in幻 withparameters d,(3, and a, and make use of many tools known for two-
dimensional dynamical systems and Hamiltonian systems, for example in Hirsch and 

Smale [叫 todetermine the dynamics of the filaments. 

We state our main theorems. 

Theorem 3.1 For any a, d > 0, (3~1, and (0。,W。)E 0(3, there exists a unique time-
global solution (0, W) E C1 (R) xび(R)of (3.3). 

Theorem 3.2 In addition to the assumptions of Theorem 3.1, if we assume O < a < 1/3, 
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then system (3.3) has two equilibrium points (0*, 0) and (0**'0) with 0* E (0, 0{3) and 
。**E (0{3,1r/2), and the following two statements are equivalent. 

(i) The solution with initial data (0。,W。)is a leapfrogging solution. In other words, 
the solution curve is a closed orbit revolving around the point (0 f3, 0). 

(ii) 0。E(0*, 0*.) and 11,(0。,W。)< min{H,(0*, 0), 11,(0**'叫

Remark 3.3 (Note on the assumption for a: in Theorem 3.2) Recall that a > 0 was 
given by a = 2<5 /log(~), where o, c > 0 were small parameters with L > 0 fixed. These 
parameters were introduced in the course of the de畑 ationof the model system (2.1). 
Hence, it is natural to assume that a is small and also important that the smallness 

assumption for a in Theorem 3.2 is independent of the parameters d and (3. 

The rest of the section is devoted to the proof of the above two theorems. 

Proof of Theorem 3.1. Since Fi and F2 are smooth in n/3, the time-local unique solvability 
is known. Suppose the maximum existence time T > 0 is finite. From the standard theory 
of dynamical systems, for any compact set K C 叫 thereexists t'E [O, T) such that 
(0(t'), W(t')) (/_ K. On the other hand, since the Hamiltonian is conserved, there exists 

T/ > 0 and r > 0 such that for all t E [O, T), 

(0(t), W(t)) E ([疇— TJ] x R) ¥ Br(0/3, 0), 

where Br(0/3, 0) is the open ball in R2 with center (0/3, 0) and radius r. This follows from 
the fact that the Hamiltonian diverges to -oo at 0 = 0, 1r /2 uniformly with respect to 
Wand at the point (0/3, 0). In particular, since the solution curve is uniformly separated 
from the point (0/3, 0), there exists c0 > 0 such that 

d2 
-((3112sin0(t) -cos0(t))2 + W(t)2 2:: c。
(3 

for all t E [O, T). Hence from the second equation in (3.3), we have 

IWI< 
四+1 0:d2((31;2 + l)2 

（／）  
＋ 

d sin T/ cos 1r 2 -T/ (31/2c3/2 
=:M, 

゜which yields 

IW(t)I::; IW(O)I +Mt::; 叫 +MT
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for all t E [O, T). Finally, this shows that for all t E [O, T), (0(t), W(t)) is contained in the 
compact set K'given by 

K'= (旦-rJ] X [―IWi。1-MT,IWi。I+MT])¥凡(0{J,0), 
which is a contradiction. The same argument holds for t < 0 and hence, the solution 
exists globally in time and is defined for all t E R. ロ

Proof of Theorem 3.2. We divide the proof of Theorem 3.2 into subsections. First we 
prove that system (3.3) has exactly two equilibriums as stated in Theorem 3.2. 

3.1 Equilibriums of System (3.3) 

From the form of F1, we see that an equilibrium can only exist on the line segment 

(0, 1r/2) x {O}, and thus, we set J(0) :=杓(0,0) and investigate the zeroes of f. First we 
consider the zeroes in the interval (0, 013). Keeping in mind that (3112 sin 0 -cos 0 < 0 in 
(0, 013), by a change of variable 0 = arctanx we have 

f(arctanx) = 
(1 +丑）1/2ga(x) 
_1__(n, /') __ 1、')'

where 9a is given by 

9a(x) = /3513紗— /3(2/3 十 1)炉+(3112((3 + 2)x -1 + a/3(丑+/31;2x)

for x E (0, 1/ (3112). We further make the change of variable y = f3112x for simplification 

and investigate the zeroes of the function ha given by 

加(y)= f3y3 -(2/3十 1)炉+(/3 + 2)y -1 + a(炉+f3y) 

in the interval Ii= (0, 1). We treat ha as a perturbation of ho given by 

ho(Y) = /3炉ー (2/3+ 1)炉+(/3 + 2)y -1, 

which is ha with a = 0 and prove that加 hasexactly one zero in l1. We see from direct 
calculation that h。hasone local maximum and one local minimum at 

/3 + 2 
狛＝，仰=1, 
3/3 

respectively, and 

ho(Y1) = 27~2 (/3 -1)3 > 0, h。伽） =0. 
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Since the zero at y2 is singular, we cannot directly apply the method of perturbation to 
ha. Instead, we analyze the positions of the local extrema for O < a < 1/3 to determine 
the number of zeroes of加.First, we observe that the discriminant△ of the quadratic 
equation h~(y) = 0 is given by 

△ = 4[(1 -30:)/32 -2(1 + 20:)/3 + (a -1)] =: 4¢((3). 

¢((3) = 0 has two rootsふ givenby 

(3_ = 
1 + 2a - ✓3a(3 -a -aり 1+2a+ ✓3a(3 -a -aり

'/3+ = 

and under the assumption O < a < 1/3, we see that 

ゆ((3)< 0 for 1 :S (3 < (3十, ¢((3)~0 for (3十さ (3,

where we also used the fact that¢(1) = -a(9-a) < 0. This shows that when 1 :S (3 < (3ぃ
△ < 0 which implies h~> 0 for y E (0, 1). Since, ha(O) = -1 and ha(l) = a(l + (3) > 0, 
there is exactly one zero in Ii. 
When (3十さ (3,the roots y土 ofh~(y) = 0 are given by 

2(3 + 1-a士v信▽汀
如＝

3(3 

where Y-is the local maximum and Y+ is the local minimum. Since加 isa third order 
polynomial, it is sufficient to prove that ha(Y+) > 0 to prove that ha has exactly one root. 
We have 

1 
Y+~ 面(2(3+ 1 _ a)~b(/3 + 2 + (/3+ー 1)-a) 

1 1/2 
=-{/3+2+ 

a 

3(3 1 -3a 
[((3(3-a-ぶ））1/2 + 5a1;2 -(1 -3a)a1/2l} 

＞ 
(3 + 2 
- 3(3' 

which implies h。 (Y+)~0. Finally, we have 

加(Y+)= ho(Y+) + a(y! + f3Y+) > 0 

which shows that ha also has exactly one root when /3+~(3. Hence we have proven 
that for any /3 2". 1 and O < a < 1/3, ha has exactly one zero y, in Ii and hし（仏）＞〇．
Hence, 仇=arctan(y,/(3112) is the desired zero of f(0) in the interval (0,0fJ) and we see 
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that f'(仇） > 0. By a similar argument, we see that there exists a unique似 E(013,1r/2) 
such that f(0 ..) = 0 and『（似） > 0. We note here that because仇ande •• are the only 
zeroes in the interval (0, 013) and (013, 1r/2) respectively, and f'(0.), f'(0 ..) > 0, we have 
the following property for f (0). 

f(0) < 0, for 0 E (0,0,) U (0,,,1r/2), 

f(0) > 0, for 0 E (0,, 0f!) U (0fJ, 0,,). 
(3.5) 

3.2 Analysis for Solutions with Initial Data of the Form (0。,0) 

Since a leapfrogging solution corresponds to a closed orbit revolving around the point 
(0f!, 0) in nfJ, a leapfrogging solution always crosses the lines (0, 0f!) x {O} and (0f!, 1r/2) x 
{O} in nfJ・To this end, we first characterize the solutions with initial data of the forrn 
(0。,0), and prove that the condition given in Theorem 3.2 is necessary and sufficient for 
leapfrogging to occur. 
First we prove that (ii) implies (i). Set H. := rnin{1i(0., 0), 1i(0 •• , O)}. Let 0。E
(0., 0 ..) satisfy 1i(0。,0) < H •. To rnake the situation rnore concrete, we further assume 
that 1i(0., 0) > 1i(0 •• , 0) and rnake a remark on the case 1i(0., 0)さ1i(0•• , 0) at the end. 
Frorn (3.5) and the fact that警(0,0) = -f(0), we have 

81i 

80 

8社

80 

(0,0) > 0, for 0 E (0,0,) U (0 •• ,1r/2), 
(3.6) 

(0, 0) < 0, for 0 E (0*, 013) U (013, 0*.). 

Moreover, since 1i(0., 0) > 1i(0.,, 0), and 1i(0, 0)→ -oo monotonically as 0→ 013-, there 
exists a unique 0 E (0., 恥） such that 1i(0, 0) = H •. This implies that 0。E(0, 似）＼｛恥｝．
We assume that 0。E(0, 013) since the arguments for the case 0。E(似似） is the same. 
We prove that the unique time-global solution (0(t), W(t)) starting from (0。,0) obtained 
in Theorem 3.1, which is defined for t E R, is a closed orbit revolving around (013, 0). 
First, we show that the solution is bounded. We observe that as a function of W, the 
Hamiltonian achieves a minimum at W = 0 for each fixed 0. Hence for all W E R, we 
have 

1i(0, W)~1i(0, 0) = H. > 1i(0。,0), 

1i(0 •• , W)~1i(0 •• ,0) = H. > 1i(0。,0). 

The above and from the conservation and continuity of the Hamiltonian, there exists 
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7/ > 0 and r > 0 such that 

(0(t), W(t)) E ([0 + 7/, 0,. ―TJ] x R) ¥ Br(0f3, 0), 

for all t ER. Furthermore, if we set 

殴）：＝上log((1 -sin 0)13312 (1 -cos 0) 
2d (1 + sin 0)/3312 (1 + cos 0))' 

we see that as a function of 0, 11,(0, W) converges to¢uniformly as W→ oo. Since we 
have 

¢'(0) = -
((3312 sin 0 -cos 0) 

dcos0sin0' 

we see that¢achieves a maximum at 0 = arctan(l/ (3312) =: 仇with0く仇<013 and¢is 

monotone in the intervals (0, 0』and(0c, 1r/2). If O < 0cさ0,for釘>0 given by 

a(31/2 
釘＝
疇 (f3112sin 0,, -cos 0,,) 2} 112' 

there exists W1 > 0 such that for all 0 E (0, 0,.), and W > W1 we have 

1l(0, W) >¢(0)一釘＞り(0..)-2釘=11,(0 •• , 0) =几>11,(0。,0). 

If 1J <仇く 013,choose 0'E {0, 0,.} so that¢(0') = min{の(0),¢(0 ..)}. Then for s2 > 0 
given by 

a(31/2 
c2 = 
囀 (f31/2sin 0'-cosゲ}1/2' 

there exists W2 > 0 such that for all 0 E (0, 0,.) and W > W2, we have 

1l(0, W) >¢(0)―ど2>¢(0') —如= 11,(0', 0) =几>11,(0。,0). 

In either case, we see that the value of the Hamiltonian on the segment [0, 0,,] x {Wふ
where W, = max{W1, W: 吐 isstrictly greater than 11, (0。,0) and hence the solution curve 
cannot cross this segment. Since the Hamiltonian is symmetric with respect to W = 0, 
we finally see that 

(0(t), W(t)) E ([0 + 7/, 0,, -77] x [-W., W,l) ¥ Br(013, 0) =: K,, 
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for all t ER, and in particular, the solution is bounded. 
Next we set 

L。:= {(0, W) E D13 I 1i(0, W) =叫o,O)} n K •. 
As a closed subset of the compact set K., L。isa compact subset of n13. From the 
conservation of the Hamiltonian and the way we chose 77, r, and w., we see that L。is
also an invariant set and hence we have 

Lw(0。,0) CL。,

where Lw(0。,0) is the w-limit set of (0。,0). Since (0(t), W(t)) is bounded fort > 0, it 
converges along some series { tn}::'=1 with tn→ oo as n→ oo, and in particular, Lw(0。,0) 
is not empty. Since Lw(0。,0) is a non-empty compact set and contains no equilibriums 
(recall that the equilibriums (0., 0) and (0 •• , 0) are outside the set L0), it is a closed orbit 
by the Poincare-Bendixson Theorem. Moreover, the point (0fJ, 0) is in the interior of this 
closed orbit, because if it is not, then the closed orbit would enclose an open subset of 
幻 inwhich an equilibrium must exist, which leads to a contradiction. This proves that 
Lw(0。,0) is a closed orbit revolving around (0fJ, 0). Since Lw(0。,0) CL。,there exists 
01 E (0 + TJ, 0fJ) and 02 E (0fJ, 0 •• ―TJ) such that (01, 0), (02, 0) E Lw(0。,0). The values 
01 and 02 satisfying this property are unique in~heir respective intervals because the 
Hamiltonian is monotone along the line segments [0 + TJ, 0fJ] x {O} and [0fJ, 0 •• ―TJ] x {0}. 
This uniqueness implies that 01 = 0。,which proves that Lw(0。,0) coincides with the orbit 
starting from (0。,0). 
In summary, we have proven that the orbit starting from (0。,0) is a closed orbit 
revolving around (0fJ, 0) corresponding to a leapfrogging solution. We further have the 
characterization 

Lw(0。,0) = L。,

which we prove by contradiction. Suppose there exists (0,_W) E L。suchthat (0, W) (j_ 
Lw(0。,0). We first see that W cJ 0, since (0, 0) E L。implies0 =仇or厖 whichcontradicts 
(0, 0) f/_ Lw(0。,0). Henceforth, we assume W > 0 since the proof for the other case is the 
same. Now, if 0 E [iJ + T/, 0廿， wehave 

1-l(0, W) > 1-l(0, o)~1-l(01, o) = 1-l(B。,0) 

from the monotonicity of 1-l along the line _i0l_x R and the mon~tonicity along the line 
segment [0, 0叶x{ 0}, and this contradicts (0, W) E L。.The case 0 E [02, 0,. ―TJ] leads to 
a contradiction by the same argument. If 0 E (01, 02) and (0, W) is in the interior of the 
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closed orbit L虚 0,0), there exists W > W such that (0, W) E Lw(0。,0). Then we have 

H(7J, W) < H(7J, W) = H(0。,0), 

which contradicts (0, W) E L。.Similarly, if (0, W) is outside of the closed orbit, there 
exists W < W such that (0, W) E L虚 0,0). Again, this implies the estimate 

1-l(B, W) > 1-l(B, W) = 1-l(0。,0), 

which contradicts (0, W) EL。.Hence we have Lw (0。,0) = L。.We can express L。as

L。={(0, W) E D13 11-£(0, W) = 1-£(0。,O)} n M, 
with M = [0., 0 •• ] x R, because the value of the Hamiltonian on M ¥ K. is different from 
1i(0。,0), and thus, replacing凡 withM does not add any points. This expression will 
be utilized to derive the necessary and sufficient condition for leapfrogging to occur for 
solutions with general initial data. 

Finally, we make some remarks on the case 1i(0., 0) f 1i(0 •• , 0). When 1i(0., 0) = 
1;l(0 •• , 0), the same proof h~lds with 0 = 0 •. ~hen 1i(0., 0) < 1i(0 •• , 0), ~here is a unique 
0 E (0f!, 0 ..) such that 1i(0, 0) = H •. This 0 plays the same role as 0, and the same 
arguments for the case 1i(0., 0) < 1i(0 •• , 0) holds. 
Next we prove that (i) implies (ii). Suppose that a solution starting from (0。,0) is a 
leapfrogging solution. Since 1i(0., 0) and 1i(0 •• , 0) are the maximum value of 1i(0, 0) in 
their respective intervals (0, 0f!) and (0か1r/ 2), in order for a solution curve to cross over 
the segments (0, 0f!) x {O} and (0f!, 1r /2) x {O}, the value of the Hamiltonian on this solution 
curve must be less than or equal to the smaller of the two. In other words, 社(0。， 0)~H.

holds. If 1i (0。,0) = H. holds, the only possible points at which the solution curve can 
cross the segments (0,0f!) x {O} and (0f!,1r/2) x {O} are at the equilibrium points. This 
would result in the solution converging to one of the equilibrium points, and is not a 
leapfrogging solution. Hence, for a leapfrogging solution, 1i(0。,0) <凡 holds.
Furthermore, (0。,0) is not on the lines {0.} x R or {0 •• } x R since the value of 
the Hamiltonian is greater than or equal to H. along these lines. Consequently, if 0。E
(0,0.) U (0 •• , 汀/2),the solution curve cannot cross over from one side of these lines to 
the other, which means that the solution is not a leapfrogging solution. This implies that 
0。E(0., 0 ..), and condition (ii) holds. 
We summarize the conclusions of this subsection in the following lemma. 

Lemma 3.4 For initial data of the form (0。,0) E rlf!, we have the following. 

(i) If 0。E(0., 0 ..) and 1i(0。,0) < H., then the solution starting from (0。,0) is a 
leapfrogging solution. Moreover, the closed orbit Lw(0。,0) can be expressed as 

Lw(0。,0) = {(0, W) E Dfi I 1l(0, W) = 1l(0。,O)} n M, 
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where M = [似似lX R. 

(ii) Otherwise, the solution is not a leapfrogging solution. 

3.3 Remarks on Solutions with General Initial Data 

Let (0。,W。)E幻 satisfy0。E(0., 0 ..) and 1i(0。,W0) < H •. Since 1i(0, 0) takes all values 
between -oo and几 onthe set (0,, 013)U(013, 0,.), there exists 0LF E (0., 013)U(013, 0,.) such 
that 1i(0LF, 0) = 1i(0。,W0). Moreover, from Lemma 3.4, the orbit containing (0LF, 0) is 
a closed orbit corresponding to a leapfrogging solution. Since 

(0。,W。)E {(0, W) E n(3 I 1-l(0, W) = 1-l(0LF, O)} n M, 

Lemma 3.4 implies that (0。,W。)is on the closed orbit containing (0u,, 0) and hence, the 
solution starting from (0。,W。)is a leapfrogging solution. 
On the other hand, suppose either 1-l(0。,W。)2'.'. H. or 0。't-(0., ル） holds. We prove 
that solution curves starting from these initial data are not leapfrogging solutions. If 

1-l(0。,W。)2'.'. H,, then the solution starting from (0。,W。)is not a leapfrogging solution 
since the value of the Hamiltonian of a leapfrogging solution is strictly less than H. from 

Lemma 3.4. If 0。,f_(0., 0 ..) holds, we only need to consider the case when 1-l(0。,Wo) < 
H, also holds. Since 1-l(0。,W。)< H,, 0。E(0, 仇） U (0,., 7r /2) because the value of 
the Hamiltonian on the lines {0.} x Rand {似}x R are greater than or equal to Hが
Furthermore, since the Hamiltonian is conserved, the solution curve starting from (0。,W。)
cannot cross over from one side of these lines to the other and hence, the solution is not 

a leapfrogging solution. This finishes the proof of Theorem 3.2. ロ

4 Head-on Collision 

So far we have focused on leapfrogging motion, but the model (2.1) has the potential to 

mathematically describe other patterns of motion that are observed in the real world. One 
such motion pattern is head-on collision. When two coaxial vortex rings move towards 

each other, there is a chance that the two rings collide, which is called head-on collision. 

Here we give a sufficient condition for head-on collision to occur. We consider the system 
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of ordinary differential equations considered earlier. 

凡＝一
“も(z1一砂）

((R1 -R2戸+(z1 -z州）3/2' 

f3 a凡(R1-R2) 
釘＝一
R1 
＋ 
((R1 -R2戸+(z1 -z州）3/2' 

R2 = af3R1(z1ー砂）
((R1 —虹+ (z1 -Z2戸）3/2' 

1 a(3R1(R1 -Rり
令＝一—
R2 ((R1-R州+(z1 —紐）3/2' 

(R1(0), z1(0), 凡(0),硲(0))= (R1,o, z1,o, R2,o, z2,o), 

and set f3 = -1. From direct calculation, we see that Ri -R~is conserved. We further 
assume R1,0 = R2,0, which implies R1 = R2 throughout the motion. Further setting 

0 := log(Rリ and W = z1 -z公

we have 

. aw 
0= -
IWl3' 

W= -2e―e, 

(0, W)(O) = (0。,Wo), 

which has a Hamiltonian 1i(0, W) of the form 

卵，W)= -2e―0+ 

We prove the following. 

a 

1w1・ 

Theorem 4.1 For any a> 0 and (0。,W。)E R x (R ¥ { 0}), the following holds. 

(4.1) 

(i) When Wi。>0 and 1i(0。,W。)> 0, there exists a T. > 0 such that there exists 
a unique finite-time solution to (4.1) satisfying (0, W) E C門[O,T.)) x C1([0, 1し）），
which corresponds to rings colliding at t = T •. 

(ii) When Wi。<0, there exists a unique time-global solution to (4.1) satisfying (0, W) E 
び([0,oo))xび([O,oo)). 
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Proof of Theorem 4.1. Most of the claims in the theorem follow from standard theory of 
ordinary differential equations. We focus on the case (i) and prove that the solution exists 
only for a finite time and is in fact a solution corresponding to the two rings colliding. 
First we set H,。:= 1i(0。,W。)and observe that 

1 
0 = -;;(R。+2e―0)2::::: 一~e―20.

Hence, if we set心asthe solution of 

｛二）＝~,:。加
we have 0(t) :::; ゆ(t).Direct calculation shows that 

1 8 
心(t)= -log (e00 --t). 
2 a 

This implies that 0(t) is a finite-time solution defined on [O, Tリforsome T, satisfying 

T.:::; 篇0o
8 

and that 0(t) diverges to -oo as t→ T,-. Hence the solution (0, W) is a finite-time 
solution. 
From the equation for W, we have W(t) :::; 0 for all t E [O, T,). Also from the 
conservation of the Hamiltonian, if H,。>0 and vVi。>0, we have W(t) > 0 for all 
t E [O, T,). This implies that there exists some W, 2'. 0 such that W(t)→ W, as t→ T,-. 
Finally, if凱>0, W(t) is bounded from below by some positive constant near t = Tが
This would lead to an a priori estimate for 0, which contradicts the fact that 0 only exists 
for finite time. Hence, W, = 0, which means that the two vortex rings collide at t = T和

□. 
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