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1. Introduction 

In this study, we develop numerical methods for the£2-gradient flow of a planar curve of 

the form 

Ut=-gradE(u), t>O, (1) 

where u is a time-dependent closed planar curve, E is a given energy functional, and 
grad E is the Frechet derivative with respect to the L2-structure with line integral ds. 

The gradient flow (1) is energy dissipative since 

d 

dt 
-E[u] = -j I gradE(u)l2ds::::; 0. 

Typical examples are the curve shortening flow (the curvature flow) 

llt = K 

and the elastic flow (the Willmore flow) 

llt = -2E:2 (叫+~い） +K 

with energy functionals 

E[u] = j ds, and E[u] = E:2 j IKl2ds + j ds, 

(2) 

(3) 

respectively, where K = -U88 is the curvature vector and Vs is the normal component 
of the arc-length derivative 88. Note that the elastic flow is a fourth-order nonlinear 

evolution equation. 

The purpose of this study is to construct a dissipative numerical scheme for (1), i.e., a 

scheme which has the discrete energy dissipation property E[uh+l]さE[uり]at each time 

step. In general, a numerical method that retains a certain property for a target equation 
is called structure-preserving. It is known that the numerical solutions obtained by these 

methods are not only physically realistic but also have the advantage of numerical stability 

(cf. [3, 4]). In particular, structure-preserving methods are suitable for computations over 
long time intervals. 

In [5], we proposed a novel framework to construct structure-preserving numerical 

schemes for (1). We introduce our results in the present article. Our method is based 

on the discrete partial derivative method (DPDM) [7], which is a framework to construct 

structure-preserving schemes for dissipative and conservative problems. We extend the 
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strategy of DPDM and derive a temporally discrete scheme for (1). The principal idea is 

to discretize the chain rule rather than the equation (1) itself. 

Our temporally discrete scheme can be formulated as a weak form. Therefore, for the 

elastic flow (3), the scheme requires both trial and test functions to be twice differentiable. 

In order to ensure the differentiability in the Galerkin method, we discretize curves by 

B-splines [11], which are piecewise polynomials and continuously differentiable. When we 
use piecewise polynomials of degree p, corresponding B-splines are QP-1-functions. Thus 

we can derive a fully discretized scheme for the elastic flow (3) with B-splines of degree 
p~3. 

Further, we will present a new result that was obtained after the conference. We 

consider the area preserving curve shortening flow 

Ut = K - (K〉, (4) 

where 

〈K〉=L[u]―1j K• vdsv, L[u] = j ds, 

and v is the outward normal vector of the curve u. This equation has both the energy 

(length) dissipation and the area preservation: 

d d 

dt 
L[u] ::::;o, -

dt 
A[u] =0, 

where A[u] is the area of the domain enclosed by the curve u. We will give a numerical 

scheme that inherits these two properties according to the idea of [8]. 
The rest of this article is organized as follows. In Section 2, we will introduce DPDM 

for gradient flows of graphs of functions in order to explain the strategy to construct 

structure-preserving numerical schemes. Section 3 is devoted to present our temporal 

approximation scheme for gradient flows (1) that preserves the energy dissipation, and 

we give fully discrete scheme in Section 4 with a short introduction to B-spline curves. In 

Section 5, we present examples of the discrete gradient for the curve shortening flow (2) 
and the elastic flow (3), which play an important roles in our scheme. In Section 6, the 

area preserving curve shortening flow is considered and we construct a numerical scheme 

that preserves the length dissipation and the area preservation. We present numerical 

examples in Section 7, and finally concluding remarks are given in Section 8. 

2. Discrete partial derivative method 

In order to present the strategy to construct numerical schemes that preserves the energy 
dissipation, we introduce the discTete pa仕ialde'rivative method (DPDM) for L2-gradient 

flows of graphs of functions. The topic of this section is based on [7]. 
In this section, we consider an L2-gradient flow of the form 

i5E 
Ut=--

i5u 
, t > 0, (5) 

8E・ where - 1s the first variation of a given energy functional E. Owing to the chain rule, 
ふL

one can easily see that the flow (5) has dissipation property as follows: 

羞E[u]= J, 乞゚心＝ーJ。lu氾dxS: 0, (6) 
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where O is the domain in which equation (5) is considered. 
We observe the above procedure in more detail. Although we can consider general 

energy functional, we assume that E is represented as 

E[u] = / G(u, 四）dx 

゜for functions u defined over an interval I= (0, 1), where G = G(u,p) is a given density 
function. Then, we have 

d 
-E[u]= j-8 

dt 1 at 
G(u心）dx 

= j[Gu(u, 妬）附＋ら(u,叫）叫dx

= l[cu(u,u砂一羞Gp(u叫）]ut dx 

=! 竺UtdX
I OU 

under an appropriate boundary condition such as the periodic boundary condition. There-
fore, we can obtain the energy dissipation (6) from the chain rule for the density function 

゜at G(u心）＝仇(u,四）山＋ら(u,む）Uxt 

and the integration by parts. 

(7) 

Now, we introduce DPDM, which is a time-discretization method for gradient flows of 
the form (5). The key strategy of this method is to discretize the chain rule (7). We first 
discretize the differentiation in time by difference quotients. Let tn be a discrete time 
level and un be the corresponding discrete solution. We replace the left-hand-side of (7) 
and Ut by 

G(un+1,u戸）ー G(u叫嘘）
and 

un+l _炉

Tn Tn 

respectively, where Tn := tn+l -tn = Tn-Then, we may get the following equation: 

G(un+l,u~+1) -G(u叫叫） un+l -Un u~+l -u~ 
=A  + B  

Tn Tn 

for appropriate functions A and B. If we can find such functions, we define the discrete 
first variation by 

bEct 8 
: =A--B 

J(un+l, 加） ax 

and the discrete gradient flow by 

un+l -un JEd 
＝一

Tn J(un+l, 砂）．
(8) 

Then, we have, under an appropriate boundary condition, 

E[un+l~: E国]= l(Aun+~:un +Bu~+~:u~)dx 
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= l(A-嘉B)un+~: Un dx 

籾 d un+l -炉

= 1 b(un+l, 如） Tn dx 

=-! 
un+l -Un 2 

I Tn dx 

<O 

which shows that the discrete equation (8) preserves the energy dissipation. 
Since A and B correspond to the partial derivatives Gu and GP respectively, these 

functions are called discrete partial derivatives and denoted by 

A=  
{)Gd 

8(un+l, 研）＇
B=  

8Gd 

8(u~+1, 吟）．

Although they are not unique in general, we use these symbols to describe one of them. We 

can construct discrete partial derivatives for a lot of energy density functions appearing 

in applications. Let us consider the Allen-Cahn equation as an example. In this case, the 

energy density function is described by 

1 1 
G(u,p) = -IPl2 + -(砧— 1)2

2 4召

for a positive parameter c. Then, we have 

出＋叩（研＋炉— 2)(u + v) 
G(u, ら)-G(v, v砂＝（叫—叫+ A-? (u-v), 

2 

which means 

8Ga 国 +v2-2)(u+v) 8Ga 妬 +vx
＝＝  

fJ(un+l, 如） 4召 'fJ(u~+i,吟） 2

Therefore, the scheme of the DPDM for the Allen-Cahn equation is 

un+l _Un=駈 +Vxx _ (炉+v2 -2)(u + v) 

Tn 2 4召

If we impose the homogeneous Neumann boundary condition, we can obtain the discrete 
energy dissipation. Generally, if the density function G is given by 

M 

G(u,p) = L fm位）珈(p)
m=l 

for some functions f m and gm, then we can construct the discrete partial derivatives by 

8Gct M fm(u) -f土）伽（い＋珈（い
o(u,v) =L 

m=l u-v 2 

8Gct M fm(u) + fm(v)伽 (ux)-9m(応）
=L 

o(ux, 四） m=l 2 Ux -Vx 
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where we recognize that Um(u)-f m(v))/(u-v) = J:r,(u) and (gm(ux)-gm(vx))/(ux―Vx) = 

g伝(ux)when u = v. 
We mention the space discretization of (8). Recalling that (8) is equivalent to 

un+l -Un 8Gd 8 8Gd 
=—+-Tn 8(un+l, 加） ox 8(u~+l, u~)' 

we can derive the weak formulation 

（研+~:un,vt =ー(a(塁加）,vt-(a(u誓碍）,vx t, 'vv, 

under appropriate boundary condition, where (u,v)1 = f1uvdx. Therefore, we can dis-
cretize the above equation by the Galerkin method, and we obtain the fully discrete 
scheme of (5). Moreover, the energy dissipation property is preserved even in this case. 
Indeed, substituting v = (un+l -炉）／冗 asa test function, then we obtain 

E[un+l]-E国] un+l -炉
2 

Tn = -l Tn dxさ0,

which is valid even for the Galerkin method. 

3. Structure-preserving temporal discretization for gradient flows 

of planar curves 

Now, we consider gradient flows of the form (1) for planar curves. In this case, we 
discretize the chain rule 

d 

dt 
-E[u] = j gradE(u)• Utds(u), 

for the energy functional E, rather than the density function, where we write ds(u) to 

emphasize the dependence of the line element. 
As in the previous section, we first replace the time derivatives羞E[u]and llt by the 

differences E[u] -E[v] and u -v, respectively, for curves u and v. In contrast to 

the graph case, however, we should also replace the line element ds(u) by appropriate 
measure. Although there may be several choices, e.g., ds(u), ds(v), and ds((u + v)/2), 
we here choose ds((u+v)/2). This choice will be validated in a sense when considering the 
area preserving curve shortening flow (Section 6). Then, we define the discrete gradient 
gradd E as follows. 

Definition 3.1 (Discrete gradient). The discrete gradient gradd Eis defined as the func-
tion that satisfies the relation 

E[u] -E[v] = j gradd E(u, v)• (u -v) ds(u; v) (9) 

for any curves u and v. 
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If we can find such grada E, the temporally discretized scheme is constructed by 

un+l _ Un 
= -grada E(un+i, u門，

Tn 

where Tn is the time increment and un denotes the approximated solution at the n-th 
step. Then, by the definition (9), the discrete energy dissipation E[un+l] :S E[u門is
clearly established. 
We present how to construct such discrete gradients. In order to describe that, we set 

l=(O,l)and 

H;'={vEH呵I)2I vCil(o) = V叫1),i = 0, 1, ... ,m -1}, 

which is the space of closed curves of class Hm for m ;:::: 1. We denote the variable of the 

parameter of curves by z. Now, assume that the energy Eis given in the form 

E[u] = j F(u心）ds, u EH;. 

Then, with the line element lu斗wecan write 

E[u] = / F(uz, Uzz)luzldz. 

゜Thus, letting G(uz, Uzz) := F(uz, u□ luzl, we can consider discrete partial derivatives of 
the new density function G, and we have 

E[u] -E[v] = l [ o(~~:z)·(uz -Vz) + o(u~ 尺乍） (Uzz―Vzz)] dz (10) 

Here, ___i厚 ・
8(uz,Vz) 

1s a vector-valued discrete partial derivative of the form 

[JG d = ([JG d [JG d)  T 
8(uz, V z) 8(U1,z, V1,z)'8(U2,z, V2,z)' 

where u = (uぃ匹） and v = (vぃ叫.The function布岳乞了 isdefined in the same fashion. 
Therefore, integrating by parts, we have 

1 a aad a2 aad 
E[u] -E[v] = j [ 。―西8(u心）十 8z28(Uzz, Vzz)]・(u -v)dz 

=Juz+Vz-I[―竺 aad a2 aら u+v
2 麟 (uz,Vz)+ 8z28(Uzz,Vzz)]. (u-v)ds(2) 

for u, v E H;, which allows us to define 

Uz + Vz -l O [}Gd 02 [}Gd 
gradd E(u, v) = [—— 2 [}z a(u心）十 OZ2O(Uzz, VzJ. 

We notice that the discrete gradient gradd E is not unique as in the case for discrete 
partial derivatives. 
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From the above construction, the discrete gradient flow is described as 

un+l -Un U戸+u; -l 8 8Gd 82 8Gd 

Tn = - 2 [―戸(u~+i, u~) 十戸 8(u~;t"1 匹）］． (11) 

Moreover, we can derive the weak formulation of the scheme. Multiplying (11) by arbitrary 
v EH; and integrating over the curve (un+l + un)/2, we have 
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Vv EH;. (12) 

We can also derive the energy dissipation from the weak formulation (12). Indeed, letting 
V = (un+l -un)/冗， wehave 

JI un+l -Un 2 U戸+u~E[un+l] -E[u門
dz= -

゜
2 

from the discrete chain rule (10). As in the graph case, this procedure is valid even in the 
Galerkin method. 

4. Galerkin approximation by B-spline curves 

In order to approximate the weak formulation (12) by the Galerkin method, we need finite 

dimensional subspace of H;. In this study, we use the space of B-spline curves, which 
is the space of continuously differentiable piecewise polynomials. Here, we introduce 
periodic B-splines and then present the fully-discretized scheme for (1). 

We first introduce B-splines. We say that a set of points三={6,6, ... ,~n} C股 isa 

knot vector if~i ::; ~i+l for all i. 

Definition 4.1 (B-spline basis functions and B-spline curves). Let p E N = {O, 1, 2, ... }, 
n E N+ = N ¥ {O}, and三={6,6,... , 品}be a knot vector. 

(i) The i-th B-spline basis function of degree p with respect to三isa piecewise polyno-

mial function N, 戸ithat is generated by the following formula: 

N品(~)=Xi€.,知1) ほ）， ~E 恥

for i = 1, 2, ... , n -l, and 

N訳）＝
t-t 
t 

i N;-1,Jt) + ti+p+I -t炉
叶 P―ti ti+p+l -ti+l () 

p-1,i+l t , t E恥

for i = 1, 2, ... , n -p -1 and p~1, where XJ is th h e c aractenst1c funct10n of 

Jc賊. Here, if ti+P = t; (resp. ti+p+l = t;+1), then the term (t -t;)/(t; 十P―も）
(resp. (ti+p+l -t)/(ti+P+l -tH1)) is regarded as null. 
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(ii) A curve u: [a, b]→ 配 isa B-spline curve of degree p if u is represented by 

n-p-1 

u(z) = L N;,i(z)Pi, z E [a, bl, 
i=l 

for some knot vector三andn E N+. The coefficient P; is called a control point. 

In fact, if the knot vector is disjoint (i.e., iヂj ⇒ らヂら）， thenit is known that 

N戸， isa CP-1-function. For more details on the properties of B-spline functions, we refer 

the reader to [2, 9, 11]. 

In the present article, we only consider the periodic B-spline functions and curves. Let 

I= [O, 1], p EN, NE  N+, and h = l/N. We define a knot vector三by

三={f;}{:i2P+l = {-ph, -(p-l)h, ... , 1 + (p-l)h, 1 + ph}, (13) 

and let Np,i = N;,; be the corresponding B-spline basis function. In this case, if N > p, 

we can see that 

（瓜）mふ (0)= (羞）m Np,i+N(l), 

for i = 1, 2, ... ,P and m = 0, 1, ... ,P -1. Therefore, the function 

B叫z)~B,,,.(z)~{ご〗z), : : i~:::~':i'.], 
0, otherwise 

(14) 

for each i = 1, 2, ... ,Pis a periodic CP-1-function on I. The restriction Np,ilr for i >pis 

also CP-1-periodic on I. Thus, we can define a closed B-spline curve as follows. 

Definition 4.2 (Periodic B-spline). Let I = [O, 1], p E N, N E凡 withN > p, and 

h = l/N. We define a periodic B-spline basis function of degree p Bp,i = Bh,p,i by 

B { equation (14), if i = 1, 2, ... ,P, 
p,, ・= 

N;,;lr, ifi=p+l,p+2, ... ,N, 

where三isa knot vector defined by (13). We also define a closed B-spline curve as a curve 

u: I→ 配 expressedby 
N 

u(z) = L Bp,;(z)P;, z E J, 
i=l 

for some {P;}似 c配.Finally, we define the space of closed B-spline curves by 

Bj, := { u(z) = t因 (z)Pi Pi E叫
We illustrate the figure of Bp,i for p = 3 in Figure 1. One can observe that each Bp,i has 

a compact support. Indeed, one can show that supp~ 尻i= [~;, ~i+p+1] in general. Thus 

matrices appearing in the Galerkin method are sparse as in the usual FEM. 

Since B岱CH; for p 2: 2, we can formulate the Galerkin approximation for (12). 
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Figure 1: Periodic B-spline basis functions Bp,i for p = 3 on I. 
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'vvh EB岱 (15)

As mentioned in the previous section, we can show that the scheme preserves the energy 
dissipation. 

Lemma 4.3. Let { uり}nCB}{ be the solution of (15). Then, for any冗>0 and n E凡，
we have E[ui:+1]::; E[u,!]. 

Proof. Substituting vh = (u;:+1 -u砂）／冗 EB岱into(15), we have 

E[ui:+1] -E[uり]= -J1 u;:+1 -u,! 2心 +uh,z dz< 0 
0 Tn 2 ―, 

which is the desired estimate. 仁l

5. Examples of discrete gradient 

In this section, we present the discrete gradients for the curve shortening flow (2) and the 
elastic flow (3) as examples. We first consider the curve shortening flow. Let L[v] = J ds 
be the length functional for v EH;. Then, for u, v EH;, we have 

L[u] -L[v] = h(luzl -lvzl) dz 

Uz + Vz 
= hluzl+lvzl・(u-v)zdz 

0 Uz + Vz =-1面Cuzl+ lvzl)• (u-v)dz 

= _ J Uz +vz ― 1竺 (Uz+Vz)•(u-v)ds(u+v2 OZ luzl + lvzl 2) 
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Thus, in this case, we can define the discrete gradient by 

gradd L(u, v) := -Uz + Vz -1立(Uz+ Vz) 
2 oz luzl + lvzl・ 

(16) 

We next consider the elastic flow. Let E[u] = J(きIKl2+ l)ds be the elastic energy for 

u EH;. Furthermore, let B[u] = J IKl2ds be the bending energy so that E =召B+L.

We now derive gradd B. We recall that the bending energy B can be written as 

B[u]= j 1 det(uか叫）2
dz, u E H2 

0 luzl5 ,rl 

where det(u, v) = u心— U匹1. Therefore, it suffices to derive the discrete partial deriva-

tives of the density functional 

G(uゎ叫）＝
det(uゎ叫）2 

luzl5・ 

Let u, v EH;. Then, we have 

1 1 det(uz,Uzz戸+det(vz, Vzz)2 
G(uz, u』-G(vz, v叫＝（—

叫 5 lvzl5) 2 

＋ 
luzl-5 + lvzl-5 [ 

ヘ det(uz, Uzz戸ーdet(vz,Vzz)2]. (17) 

The first term can be addressed by the following calculation: 

1 1 lu平― Iv平麟olu川Vz14-J
- =- =-

luzl5 lvzl5 luzl5lv平
I.. lfi I •• l.'i / I.. I , I •. I、(uz+ v2)・(u2 -v2). (18) 

From the bilinearity of the determinant, we have 

det(uz, Uzz) -det(v2, v22) = det伍— Vz, Uzz;Vzz) +det(Uz;Vz,u22-Vzz)・(19) 

Summarizing (17), (18), and (19), we have 

8Ga 

8(附 ，z,Vぃ）

立=0luzljlvzl4-j det(uz, Uzz戸+det(vz, Vzz)2 

叫門Vオ(luzl+ lvzl) 2 
(u1,z + Vぃ）

luzl-5 + lvzl-5 

2 
+ [det(uz, u司+det(vz, Vzz)] , 

U2,zz + V2,zz 

2 

8Ga~J=o luzljlvzl4-j det(uz, Uzz戸+det(vz, Vzz)2 
＝一 (U2,z + V2,z) 

a(u2,z, V2,z) luzl5lvzド(luzl+ lvzl) 2 

8Gd 

8(U1,zz, V1,zz) 

luzl-5 + lvzl-5 
- [det(uz, u』 +det(vz, Vzz)] , 

U1,zz + V1,zz 

2 2 

luzl-5 + lvzl-5 
[det(uz, u叫+det(vz, Vzz)]'  

U2,z + V2,z 

2 2 
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8Gd lu□ + lvzl-5 叫+V1,z 

8(u2,zz, V2,zz) 2 
= [det(uz, Uzz) + det(vz, Vzz)] . 

2 

Hence we can compute gradd B(u, v) by 

8 8Gd 82 8Gd 
gradd B(u, v) = -- + 

釦 O(Uz,Vz) Oz2 O(Uzz, Vzz)' 

and eventually we obtain the discrete gradient for the elastic energy by 

gradd E(u, v) =召graddB(u, v) + gradd L(u, v). 

6. Area preserving curve shortening flow 

In this section, we construct a novel structure-preserving scheme for area-preserving curve 
shortening flow (4). The purpose of this section is to derive the temporally discretized 
scheme for (4) in the weak formulation that satisfies the discrete energy dissipation 
L[un+1] :S L[un] and the area preservation A[un+l] = A[u冗 whereA[u] is the area 

of the domain enclosed by the curve u and written as 

1 
A[u] = 2 ju• vds 

for u E H;. The result of this section was obtained after the conference. 
We first review the derivation of the equation (4). Let入E尺 bethe Lagrange multiplier 

and consider an auxiliary functional E[u] = L[u]十入A[u].Then, since gradL(u) = -K  

and grad A (u) = v, the gradient flow for E is written as 

llt = K —入v.

Multiplying this by v and integrating over the curve u, we have 

d 
五A[u]= j K• vds —入L[u],

since the chain rule for A is described as 

d 
dtA[u] = j v・utds, 

(20) 

for an evolving curve u. Hence, if we set入 =L[uJ-1 J K• vds, we obtain羞A[u]= 0 and 
the gradient flow is given by (4). Furthermore, multiplying (20) by Ut and integrating 
over the curve u, we have 

jiu平ds= _!!__L[u] —入!!__A[u], 
dt dt 

which implies羞L[u]:::: 0 since the area is preserved. 
Now, we discretize the above procedure. To do that, we set 

(~) _j_ := (!a)' 
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which is the rotated vector. Then, the outward unit normal vector of u is described by 

v = v(u) = u;, where U8 is the arc-length derivative. Let u, v EH~. Then, we have 

1 1 
A[u] -A[v] = -j (u• u; -v• v;)dz 

2 0 

=~l [(u -v). u;-; 吋十 u; v• (u; -v;)] dz 

=~l [ (u -v) . u;-; 吋-Uz;Vz・(u_j_-v_j_)]dz 

= j¥u-v)・叫+v;-dz. 
0 2 

Here, we used the fact that u・v_j_ = -u_j_・v. Therefore, it is natural to define the discrete 
gradient of A by 

gradd A(u, v) = Uz; Vz -1 (Uz; V丁=v(u;v).

With this notation, we obtain the following discrete chain rule for A: 

A[u]-A[v] =い(u;v). (u -v)ds(u; v). (21) 

In the definition of the discrete gradient in Section 3, we mentioned that there may several 
choices of the line element. However, in view of the above calculation, it is natural to 

choose ds((u + v)/2). 
Since the discrete gradient of the length functional L is given by (16), the discrete 

gradient flow for E = L十入Ais described as 

un+l -Un U戸+u; -l 8 u戸 +u; un+l +un 

Tn = 2 西 Cu~+ll + lu~I) -入v(2),

and the weak formulation is 

(u~+l/ u~un+~: un, V) I 

=-c:;〗 :i~l'Vzt —入（切+1/ u~v(町+12+unい）r' Vv EH~. (22) 

In the continuous case, we multiplied the gradient flow by the normal vector v to 

determine the Lagrange multiplier. Therefore, we want to substitute v = v in the weak 
formulation; nevertheless, v(u) (/_ H; if u E H;. To overcome this issue, we introduce 
the projection of the normal velocity. In view of the Galerkin approximation, we consider 
the projection onto a subspace of H;. 

Definition 6.1. Let V CH; be a subspace and u EH;. Then, we define the projection 

operator Pv,u: び(1)2→Vby 

/ (Pv,uw)・vluzldz = / w・vluzldz, ¥/v EV, 
0 0 

for w EL刊I)乞
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Now, let un+I/2 := (un+l + un)/2 and V := PHtun+1;2v(un+1/2). We set V =Vin (22). 

Then, the left-hand-side becomes 

(切+12+u~un+~: un'V) I= J -v(un+l/2). un+~: un ds(un+l/2) 

A[un+l]-A[u門

Tn 

by the definition of v and the discrete chain rule (21). Further, the right-hand-side of 

(22) becomes 

-/  u戸 +u;z I . 疇—入J沢ds(un+l/2)
o lu~ → I+ lun 

by the definition of v. Hence, if we set 

入＝―[!阿 ds(un+l/2)]―1fl U戸 +u;
o lu~+11 + lu叫

・Vzdz, (23) 

then, we can derive A[un+l] = A[u咋whichis the discrete area preservation. Moreover, 
letting v = (u正 1_記）厄 in(22), we have 

J un+l -un 2 L[un+l] -L[u門 A[un+l]-A[u門
ds(un+l/2) =——入

Tn 

from the discrete chain rules. Therefore, the discrete area preservation property yields the 
discrete energy dissipation L[un+l]~L[un]. Hence, the scheme (22) with the Lagrange 
multiplier入givenby (23) preserves both the area preservation and the energy dissipation. 
We here remark that the last term of (22) can be written as 

(切+12+u;v(un+12+unい）I= (lun+l/2い）I

by the definition of v. 
The above argument is valid in the case of the Galerkin method. Thus we can derive 

the following fully discretized scheme for the area preserving curve shortening flow (4). 

Scheme 2. For given uh E Bぶfindu,:+1 E B1fv that satisfies 

(lu~!1;2I uh+~: uい）I

心 +uh,z
= -Cuh~ り+lu,:,zl, Vh,z) —入 (lu~!1;2凡， Vht,

I 

'vvh EBぶ (24)

where u~+1/2 = (uh+l + u,:)/2, 沈 EB~is defined by 

［況 ·vhlu~~112ldz = l v(un+l/2)·vhlu~~112ldz, Vvh EBぶ

and入E艮 isgiven by 

入＝― [J心ds(u~+l/り］ー 1 fl 心 +uR,z
a lu悶ii+luに1

• 沈，zdz.
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By the same argument as in the semi-discrete case, we can show that the scheme 

preserves both the area preservation and the energy dissipation. 

Lemma 6.2. Let { u,;:}n C B~be the solution of (24). Then, for any冗>0 andn EN十9

we have A[u~+l] = A[u,;:] and L[u~+1] さ L[u,;:].

7. Numerical examples 

In this section, we present several numerical examples. We will test our schemes (15) 

and (24) and observe that energy dissipation and the area preservation are preserved. 

Examples of the first scheme are the same as those given in [5]. 

7 .1. Elastic flow 

We present some numerical examples of the elastic flow (3) with a small parameter c: 

computed by our scheme (15). The corresponding functional and its discrete gradient are 

presented in Section 5. It is known that equation (3) has a unique time-global solution 

(see, e.g., [1, Theorem 3.2]). Therefore, the turning number I J Kdsl/(21r) EN  is invariant. 

In the following examples, we developed several techniques for stable computation. 

For example, we choose appropriate time increment Tn according to the speed of energy 

dissipation. We refer the reader to [5] for precise techniques of numerical experiments. 

Videos illustrating the following examples are available on YouTube1. 

Before presenting numerical examples, we recall the steady-state solutions for the elastic 

flow. It is known that steady closed curves of the elastic energy are the circle of radius c:, 
the figure-eight-shaped curve with scale c:, and their multiple versions (see Figure 2 and 
[6, 12]) Th . . e1r energies are 

E[circle] = 41rc:, E[eight-shaped] :::::: c: • 21.2075, 

respectively. The exact value of the latter energy is expressed by the elliptic integrals 

(cf. [10]). 

2c: 
、 ｀

,,JO 
Figure 2: Steady states of the elastic energy. 

Example 7.1. We first show the simplest example with a circular initial curve. In this 

case, the exact solution is a circle at every time, and the steady state is the circle of radius 

1 URL: https: / /匹w.youtube.com/playlist?list=PLMF3dSqWEii69loXvCtgDCI4PYijq_413
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s as mentioned above. Figure 3(a) shows the evolution of the curve at t ;:::j 0, 0.1, ... , 0.6, 
with parameters 

p = 3, c = 0.1, N = 6, Tn = 0.01, 

where the initial curve is the L2-projection of the unit circle. We can observe that six 
control points are sufficient to express a circle by a B-spline curve. The energy at t ;:::j 0.6 

is E ;:::j 1.2583, which approximates the exact value of the energy at the steady state 4咋 ~

1.2566. Figure 3(b) shows the evolution of the energy. The discrete energy dissipation 
property is clearly visible. In Figure 3(a), one can observe that the curve shrinks like the 
curvature flow (2) until t ;:::j 0.5, and it stops shrinking when the radius approaches to s. 

" 0 

-1 

X 

(a) Evolution of the circle. The outermost 
curve and the innermost one are at 
times t = 0, and t~0.6, respectively. 

4
 

切
iaua

0o 02 04 0.6 

Time 

(b) Evolution of the energy. 

Figure 3: Example 7.1. 

Example 7.2. The second example is shown in Figure 4. The initial curve is figure-eight-
shaped. The parameters are 

p = 3, c = 0.2, N = 12, Tn~0.01. 

Figure 4(a) shows the evolution of the curve at t :=:::: 0, 0.2, ... , 1.2 and Figure 4(b) shows 
the evolution of the energy. The energy at t :=:::: 1.2 is E :=:::: 4.2433, which approximates the 
exact value of the energy at the steady state :=:::: 4.2415. 
In Figure 4(a), initially the small loop (the right loop) shrinks faster than the larger 

one. When the scale of the right loop becomes s, the loop stops shrinking, and the left 

one begins to shrink. Finally, the left one also stops shrinking, and the curve approaches 
the steady state. 

Example 7.3. The third example is shown in Figure 5. The initial shape of the curve is 

a cardioid-like curve as shown in Figure 5(a). The parameters of the curve are 

p = 3, c = 0.1, N = 12, T ::::; 0.005. 

Figure 5 shows the evolution of the curve at t ;:::::: 0, 0.2, 0.4, 0.6 and Figure 6 shows the 
evolution of the energy. In this case, the steady state is a double-looped circle with radius 
c = 0.1. Therefore, the energy of the solution at t ;:::::: 0.6 (E ;:::::: 2.5228) is approximately 
twice the value of that of Example 7.1. 
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10 

"' 

-1 

X 

(a) Evolution of the figure-eight-shaped 
curve. The outermost curve is the ini-
tial shape of the curve, and the inner-
most one is the curve at t :=,; 1.2. 

益
Jgua

。。
0.5 

Time 

(b) Evolution of the energy. 

Figure 4: Example 7.2. 

The behavior of the curve is similar to Example 7.2. That is, initially the smaller loop 

shrinks until the scale is approximately E. Then, the larger one shrinks and the curve 

approaches the steady state. 

·'.~ 
(a) t = 0. 

ロ。`

・{ij 
(b) t >:::1 0.2. 

口
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(c) t~0.4. (d) t:::::: 0.6. 

Figure 5: Evolution of the curves of Example 7.3. 

Figure 6: Evolution of the energy 

of Example 7.3. 

Example 7.4. This example shows a topology-changing solution. The initial curve is 

shown in Figure 7(a), and Figure 7 shows its evolution. Figures 8 illustrates the evolution 

of the energy. The parameters are 

p= 3, c = 0.2, N:::; 20, Tn ::; 0.005. 

One can observe that the topology of the curve changes at around t = 1.05 (Figures 7(d) 
and (e)). At the same time, the energy decreases drastically (Figure 8). 
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(a) t = 0. (b) t;,:; 0.2. 
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(c) t f:::J 0.5. (d) t~1.0. 
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(e) t~1.1. (f) t ,:,; 1.4. 

Figure 7: Evolution of the curves of Example 7.4. 

Figure 8: Evolution of the energy 

of Example 7.4. 

Example 7.5. The following two examples investigate problems with more complicated 
solutions. The initial shape of the curve is shown in Figure 9(a), and Figure 9 shows its 

evolution. Figures 10 illustrates the evolution of the energy. The parameters are 

p = 3, € = 0.2, N ,S: 49, Tn ,S: 0.005. 

In this example, the topology of the curve changes frequently. For example, the loop 

in the upper left of the curve disappears at around t = 1.35. Since the turning number of 
the initial curve is zero, we can easily determine before computation that the steady state 

is a figure-eight-shaped curve. However, the evolution of the curve is quite complicated so 

that we cannot predict the behavior. When the topology changes, the energy decreases 

rapidly as in Example 7.4. 

Example 7.6. The initial curve for this example is shown in Figure ll(a), and Figure 11 

shows its evolution. Figure 12 illustrates the evolution of the energy. The parameters are 

p = 3, € = 0.2, N ,S: 54, Tn ,S: 0.005. 

The solution displays complicated behavior as in Example 7.5, and the topology changes 
frequently. Since the turning number of the initial curve is one, the steady state is a circle 

with radius€. However, as in the previous example, the evolution is too complicated to 
predict. One can observe that the energy decreases drastically when the topology changes 

as in the previous examples. 
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(a) t = 0. (b)t~0.4. 
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(c) t f::J 1.3. (d) t R:! 1.45. 
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(e) t ::::J 1.65. (f) t~2.0. 

Figure 9: Evolution of the curves of Example 7.5. 

Figure 10: Evolution of the energy 
of Example 7.5. 

7.2. Area preserving curve shortening flow 

In this section, we present a numerical example of the area preserving curve shortening 

flow, which is computed by our scheme (24). 

Example 7.7. The initial curve for this example is shown in Figure 13(a), and Figure 13 

shows its evolution. Figures 14(a) and (b) illustrate the evolution of the length and the 

area, respectively. The parameters are 

p = 3, N = 21, Tn = 0.01. 

One can observe that the curve becomes convex and then goes to a circle. We can also 

observe that the length decreases monotonically. Moreover, we can conclude that the area 
is preserved since the scale of the vertical axis of Figure 14(b) is 10-9. 
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(e) t~1.9. (f) t~2.3. 

Figure 11: Evolution of the curves of Example 7.6. 

Figure 12: Evolution of the energy 

of Example 7.6. 

8. Concluding remarks 

In this study, we developed numerical schemes for gradient flows of planar curves that 
preserves the energy dissipation. The key-point is to discretize the chain rule for the energy 

functional, and this idea gives temporal discretization of the gradient flows. Moreover, 
with the aid of the smoothness of B-spline curves, we can construct fully discrete scheme 

without approximating curvatures. 

We can also consider area preserving curve shortening flow, which is our ongoing work. 

We constructed numerical scheme that preserves both length dissipation and area preser-

vation. Our idea is to discretize the chain rule and the Lagrange multiplier. Thus, it 

is expected that we can also construct a numerical scheme for Helfrich flow, which is 

the gradient flow for the bending energy JI K - K,0vl2ds for a given constant K,。andhas 

constraints that length and area are preserved. 

Our scheme, however, only consider the normal direction of curves in a sense. Due 
to this, there are several examples that two control points becomes so close that the 

computation may break. In the theory of polygonal approximation of evolving curves, 
it is known that appropriate tangential velocity makes numerical computation stable. 

Thus, it may be interesting to investigate whether we can consider tangential velocity 
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(a) t = 0.0. (b) t = 0.1. (c) t = 0.2. (d) t = 0.3. 

<~ □ ~· ニ〗 <t@
X X X X 

(e) t = 0.4. (f) t = 0.5. (g) t = 1.0. (h) t = 2.0. 

Figure 13: Evolution of the curves of Example 7.7. 
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(b) Evolution of A[un] -A[u0]. 

Figure 14: Evolution of the length and area of Example 7.7. 

that preserves the structure of flows. These problems remain an area for future work. 
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