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A SYMMETRIC CRITICALITY PRINCIPLE FOR O'HARA'S ENERGIES 

ALEXANDRA GILSBACH 
INSTITUT FUR MATHEMATIK, RWTH AACHEN UNIVERSITY, GERMANY 

ABSTRACT. In geometric knot theory, one tries to examine knots, i.e. embedded curves in訊
by using energy functionals. These so-called knot energies shall determine whether and to what 
extent a curve is knotted. We focus on the O'Hara energies, which are a family of smooth 
knot energies, and try to evaluate their energy landscape. Using a modified version of Palais' 
symmetric criticality principle, we show the existence of at least two distinct critical knots for 
O'Hara's energies. These critical knots are smooth. 

Note: The results presented in the following have already been published in joint work with 
Reiko von der Mosel in [GvdM18]. 

1. INTRODUCTION 

To examine knotted objects, we define a knot as a set r c応 whichis the image of a 
closed, injective curve. Precisely, there exists a closed, injective, rectifiable curve ,, such that 

,(JR/Z) = r. We will restrict to curves which are at least Lipschitz-continuous. 
When dealing with knots, one of the major questions is, whether two given knots are the 

same. And by "the same", we mean that one knot may be deformed into the other knot without 
cutting or glueing arcs of the knot. This is modelled by using the notion of ambient isotopy, 
and two knots r1 and r2 will be equivalent, if for suitable parametrisations ,1 and ,2 there 
exists an ambient isotopy mapping ,1 to ,2. Knots which are related in that way are said to be 
of the same knot type and they lie in the same knot class. For an embedded (knotted) curve 
,EC゚，1(恥/Z配）， wedefine its knot class as 

[,] = { T/ E C゚，1(股/Z配） T/ embedded and ambient isotopic to 1} . 
To either find such an ambient isotopy or to show that no such isotopy exists can be a tedious 

task. Therefore, in knot theory, one considers different methods to gain information about a 
given knot. 
The tool of geometric knot theory is to assign certain energy values to such a knot, depending 
on its entangledness. The idea is to punish situations, where two curve points are close to 
each other in space but distant along the curve, by a high energy value. Like this, unneccessary 
entanglements are avoided by demanding a low energy. Additionally, we require these functionals 
to be charge or self-repulsive, that is, they shall provide infinitely high energy barriers between 
knot classes. A functional which is bounded from below and charge will be called knot energy. 
Various knot energies have been constructed, among them being the O'Hara energies, introduced 
by Jun O'Hara in [O'H92], 

(I) Ea(,):= k;z l:;2 (竹(s+ t)1ー ,(s)I"―ム(s+t,s)")げ(s+t)ll,'(s)ldtds, aE[2,3). 

Here, 

d (s,s+t) : =mm{グ (,l[s,s+t]),ダ(,)ー2 (,l[s,s+t])} for ltl~1/2 
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denotes the intrinsic distance between the points "Y(s) and "Y(t) on the curve "Y・ダ denotesthe 
length functional. 
To be able to use a knot energy to gain information about the knot class of an arbitrary given 
knot, one would like to proceed in the following way: Firstly, we apply a gradient flow to the 
parametrisation of the given knot, arriving at the minimiser of the (unknown) knot class. Then, 
we use the energy value and shape of the limit knot to narrow down the possible knot classes 
the knot might belong to. The self-repulsiveness is used to ensure that the minimiser of a knot 
energy in a given knot class is a nice representative of that knot class. 
However, this method requires a lot of prerequisites. We need a high regularity of the energy 
functional as well as the existence of a gradient flow. In addition, in each knot class, we have to 
ensure that the gradient flow stays within that knot class. Finally, the existence of a minimiser 
is required. 

But even in the case where all these conditions hold, the gradient flow might get stuck in 
local minima. In fact, numerical experiments suggest for several knot energies that local min-
ima or saddle points might be present: Constructing a topological invariant, Moffatt proposed 

in [Mof90], that there might be several local minima present in the case of torus knot classes, 
showing this in the case of the knot class of the trefoil. In [Kau12], Kauffman conducted experi-
ments with the knot energies in Scharein's KnotPlot [Schl 7], with the result that distinct local 
minima might be present. 

In view of such experiments, our aim is to examine these situations analytically. We will prove 
that, in certain knot classes, there exist at least two different critical points: 

Theorem 1.1. Let a, b E Z ¥ {O, 士1}be relatively prime and let a E (2, 3). Then there exist 
at least two different arclength parametrised, embedded curves "'/1, "'/2 E C00償/Z,配） that are 
critical for the energy 

(2) 勾('Y):=ダc:,-2(1)品('Y)

in the torus knot class T(a, b). 

Remark 1.2. 

(i) Different means here that there is no isometry of配 orreparametrisation transforming "/1 
into "/2・This is a natural nomenclature since knot energies are invariant with respect to 
isometries of the配 andreparametrisations. 

(ii) Note that, due to technical reasons, we use the scaling invariant version of O'Hara's 
energies,£ a・ 

(iii) Even though we defined O'Hara's energies for a= 2 as well, we do not deal with this case 
here. We will discuss the difficulties of this case in Remark 2.8. 

By showing the existence of several critical points, Theorem 1.1 supports the hypothesis that 
the gradient flow for the scaling invariant£~could get stuck in one of these critical points. 
However, it is important to emphasise that we are not able to deduce the nature of the gained 
critical points, it remains to be shown whether more than one critical point might be a local 

mm1mum. 

To show Theorem 1.1, we will, similarly to Cantarella et al. in [CFMER14] for the Ropelength 
functional, use the principle of symmetric criticality introduced by Palais [Pal79]. This principle 
uses symmetry properties of a given system. Under suitable restrictions on a symmetry group 

G, a manifold .4 and a function f : .4→ 恥 theprinciple states that any critical point of f in 
the set of fixed points with respect to G is already a critical point of f in .4. 
In contrast to the method of Cantarella et al., we are able to apply the classic version of Palais' 

principle, since the functional勾 issufficiently smooth. Furthermore, the critical points we obtain 
are smooth as well. 
The same method we use here may also be applied to other sufficiently smooth knot energies 
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such as the integral Menger curvature or the tangent-point energies, see [Gil18]. Those energies 
were thoroughly investigated in [SSvdMlO, SvdM12, SSvdM13]. 

We proceed as follows. In the preliminaries we present the principle of symmetric criticality 
of Palais and its transformation into the knot theoretic setting. We will therefore present some 
properties of the O'Hara energies and of curves of finite O'Hara energy. Then we will go into 
detail about the symmetry of the system we consider: Since knot energies are invariant with 
respect to isometries in配， wedetect possible symmetry groups for knots, which are subgroups 

of Isom(配） • We will focus on rotational symmetries for knots and their rotational axes, see 
Theorem 2.15. 
In Section 3, we use the principle of symmetric criticality to show Theorem 1.1. Therefore, we 
firstly need to prove the existence of critical points in the set of fixed points with respect to 
the group considered. This will be done by showing the existence of a minimiser in that set of 
G-fixed points, see Theorem 3.9. For the knot classes of the torus knots, we are able to show the 
existence of two disjoint sets of fixed points for two different groups G1 and G2, using Theorem 
2.15. Applying the principle of symmetric criticality then yields the central result Theorem 1.1. 

2. PRELIMINARIES 

In this section, we will explain how to adapt Palais'principle [Pal79] to the knot setting. 
Therefore, we will briefly recall needed properties of O'Hara's energies. Furthermore, we will 
deduce valid symmetry groups for knots. 

2.1. The principle of symmetric criticality. In his paper [Pal79], Palais formulated the 
principle of symmetric criticality as follows. 

Theorem ([Pal79, Thm. 5.4]). Let G be a compact Lie group and .A be a G-Banach manifold. 

Let f: .A→ 股 bea smooth, G-invariant function. Then the set E of G-invariant points in .A 
is a smooth submanifold of .A and every critical point off in E is a critical point off in .A. 

Indeed, it suffices if the function f is only of C1-regularity, as may be seen in the proofs 
in [Pal79]. Furthermore, the theorem still holds for G being a finite group, since it may be 
interpreted as zero-dimensional compact Lie group, see [Coh57, p. 48, Exp. 5]. Thus, we will 
deal with a slightly modified version of the principle of symmetric criticality: 

Theorem 2.1. Let G be a finite group and .A be a G-Banach manifold. Let f E C1(.4, 尺） be 
a G-invariant function. Then the set E of G-invariant points in .A is a smooth submanifold of 
(ヽandevery critical point off in E is a critical point off in、(.
To understand how to make use of that principle in our knot theoretic setting, we briefly 

recall the definition of a G-Banach manifold. Note that a Banach manifold is a topological space 
that is locally diffeomorphic to a Banach space. 

Definition 2.2 (G-Banach manifold). Let .A be a Banach manifold and let G be a topological 
group acting on、(viathe representation T: G x .A→ .4, i.e . .A is a G-space . .A is said to 
be a G-Banach manifold, if the representation r(g, •) is a diffeomorphism on .A for every g E G. 
If G is a Lie group, we additionally assume T E C1 with respect to the product topology of 

G x.4. 

To adapt the principle of symmetric criticality, our aim is to choose a knot class as a G-Banach 
manifold. Therefore, we will need to specify how a group G shall act on elements of a knot class. 
To do this, we will need to find a suitable group G. Since勾 willbe the G-invariant function 
considered, that will be a restriction to the choice of G, as we will see later on. 
But before, we need to verify whether£~satisfies the requirements of Palais'principle. In lieu 
of that, we recall some properties of O'Hara's energies. 
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2.2. Properties of O'Hara's energies. We merely present the results needed; the proofs may 
be found in the respective sources or as well in our self-contained paper [GvdM18]. 

We begin with some basic properties. 

Lemma 2.3 (Properties of品）．

{i) For a = 2, £2 is invariant with respect to Mobius transformations. Therefore, it is also 
called Mobius energy. For a E (2, 3), £°'is invariant with respect to isometries of the配
and reparametrisations.[FHW94, Thm. 2.1} 

{ii)£2 is minimisable in any tame prime knot class, see {FHW94, Thm. 4.3}. 
{iii) For a E (2, 3), Ea is minimisable in tame knot classes, see [O'H94, Thm. 3.2}. 
{iv) For a E [2, 3), over all knot classes, the circle uniquely minimises Ea, see [AC炉 03}.

Recall that a tame knot class is a knot class which contains a polygonal representative. Any 
knot class containing C1-representatives is tame, see [CF77, App.I], and any tame knot class 
contains smooth representatives. We will only deal with tame knot classes here. 

We now present regularity properties of curves of finite energy Ea, We begin with a bi-Lipschitz 
estimate for such curves, which was shown by O'Hara in [O'H92, Theorem 2.3]. 

Lemma 2.4. Let a E [2, 3) and let -y E c0嘔 /Z,配） with b'(t)I > 0 for a.e. t E ffi./Z. Then 
for all b 2: 0 there exists a constant C = C(b) 2: 0 such that Ea("!) :::; b implies the bi-Lipschitz 
estimate 

(3) b(s)一 ,y(t)I2: Cd7(s, t) for alls, t E~/Z. 

Hence, any IE C0,1(1E./Z記） with l,'I > 0 a.e. and誓） < oo is injective. 

Due to the results of Blatt in [Bla12], we may even give a precise characterisation of curves 
of finite energy Ea-We present a slightly refined version of his theorem, the proof may be found 
in [GvdM18]. 

Theorem 2.5 (Characterisation of curves of finite energy). We have 

(4) 

{i) Let a E [2, 3) and let, E c0,1(JE./Z, 股3)with length O < L :=ダ(,)such that 1,'(t)I > 0 
for a.e. t E股/Z.If品(,)< oo, then ,l[o,l) is injective and for its arclength pammet-
risationうE C゚，1(股/LZ,配） we haveうEw(a+l)/2,2(股/LZ,配） • Furthermore, we then 
have 

［ぅ'Jfa-1)/2,2::::; 44. 22-2"'£a(,). 

(ii) Let a E (2, 3). Now, assume that I E w(a+l)/2,2偉/Z,配）， b'I> 0 a.e., and further 

囁，l)is injective. Then we have品b)< oo. 

In [Bla12], Blatt proved part (ii) only for arclength parametrised curves, but for the full two-
parameter family of O'Hara's energies which also includes the case a = 2. In [GvdM18], we 
generalised (ii) to the setting above. 
The characterisation theorem is crucial in Section 3, amongst others to identify the correct 
Banach manifold (Corollary 3.2), on which Palais'principle of symmetric criticality is applicable. 

For a better understanding of the characterisation theorem above, we briefly recall the defin-
ition of the Sobolev-Slobodetckij spaces ws,p_ We restrict to those spaces which consist of 
functions with domain恥/LZ, with arbitrary L > 0, and whose images lie in記

Definition 2.6 (Sobolev-Slobodeckji-Space). Let L > 0, 1 :c::; p < oo, k EN ands E (0, 1). For 
a function f : 賊/LZ→配 wedefine the following seminorm, 

[JCk)] IJ(kl(x) _ j(k)(y)IP 

W疇 /LZ,配）=i股/Lzh股/LZ Ix -Yll+sp・ 
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The set 

Wk+s,p (罠/LZ,酎）：= {f E Wk,p (IR/LZ配） llfllwk+s,p(IR/Lか） < oo}' 

with 

I Ill lwk+s,P(IR/LZ, 即)： = llfllw知（恥/LZ,配） + [! 叫W8,P(IR/ LZ, 配）

is called Sobolev-Slobodeckji-Space or fractional Sobolev space, with fractional differentiability 
k + s and integrability p. 

Remark 2.7. It is well-known that Sobolev-Slobodetckij are Banach spaces. Furthermore, one 
has the following embedding into Holder spaces, see [DNPV12, Thm. 8.2]. 

(5) Wk+s,P(ffi./ LZ, 股”）→ ck,s-1/P(ffi./ LZ, 股n)for p E (1, oo), s E (1/p, 1) 

For a E (2, 3), s = a-I/2 E (1/2, 1) and p = 2 we obtain 

(6) w0+1/2,2(JR/ LZ, 町） c...+Cい/2-l(股/LZ,町），

which is a continuous embedding. This implies the existence of a constant C = C(L, n) such 
that 

(7) llf llc,,012-, さCllfllwa+1;2,2 for all f E w"+'/2,2(旧/LZ,阻！り・

We will use this estimate to show that we will stay in a fixed knot class when proceeding to the 
limit of a minimal sequence, see Theorem 3.9. 

Remark 2.8. For a = 2, we see that the Characterisation Theorem 2.5 in combination with the 
embedding (5) only yields curves of Lipschitz-regularity, implying that for curves with uniform 
energy bound, we merely obtain convergence in the C0-topology. This might lead to phenomena 
like the pull-tight-phenomenon, see [O'H03], resulting in limit curves not necessarily lying in the 
same knot class. This is why we restrict to the case a E (2, 3). 

Lower semicontinuity of E2 was shown by Freedman, He, and Wang in [FHW94, Lemma 4.2]. 
Their argument works for any a E [2, 3), for the proof see [GvdM18, Lem. 3.5]. 

Lemma 2.9 (Lower semicontinuity). Let a E [2, 3) and consider curves 1, ri E C゚，1(良/Z→配），
i EN, with l,'I > 0, l,fl > 0 a.e. on股/Zfor all i E N. Assume that ri→ 1 pointwise everywhere 
on恥/Zas i→ oo. Then we have 

Ea(,):::; liminf品(,i)-
t→~ 

To apply Theorem 2.1, we will need the functional to be sufficiently smooth. This is why 
the following regularity results for品 andits critical points, by Blatt and Reiter in [BR13], are 
crucial for us. 

Theorem 2.10 (Regularity of品 andits critical points [BR13]). 

{i) The functional Ea is C1-differentiable on the space of all embedded and regular curves 

"(EWデ，2償/Z,配）．
止 2{ii) If an arclength parametrised, embedded curve'Y E W 2'(艮/Z記） is a critical point 

of the linear combination品＋立， thenit is C00 -smooth. Here, 入€ 恥 isan arbitrary 
pammeter. 

Remark 2.11. When minimising Ea under a fixed length constraint, the parameter入inThe-
orem 2.10 appears as Lagrange parameter. 
Alternatively, that parameter appears if one considers the scaling invariant version勾 asin 
(2) in the introduction. If we compute the differential of c: at an injective regular curve 
'Y E w(a+l)/2,2(股/Z,配）， wearrive at 

d(c:), =ダ（ぅ）a-2d(Ea), + ((a -2)ダ（ぅ）a-lEa(う））dダ;.
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Therefore, Theorem 2.10 applies as well to any arclength parametrised critical point I of勾，
implying that I is smooth. 

Since the functionals Ea are invariant with respect to isometries, we will assume that the 
group G which is considered for the principle of symmetric criticality is a subgroup of Isom(配）．
In fact, we are able to narrow it down further. 

2.3. Symmetry groups of knots. To put the principle of symmetric criticality to use, we 
want the set of symmetric points E in Theorem 2.1 to be non-empty. Thus, we will consider the 
parametrisation I E C゚，1(股/Z)of an arbitrary knot r and ask for which subroups G C Isom(配）
the set of fixed points is non-empty. Since r is a compact set, we require G to be compact as 
well, i.e. we search for compact subgroups G C 0(3). 
If the group was compact but not finite, a copy of the S0(2) would be contained in G. But then, 
the only possible knot in E would be the circle. Since we want to consider arbitrary knot classes, 
that would imply for any knot class but the class of the unknot, that E was empty. Hence, we 
assume G to be finite. In fact, in [GS85], the possible symmetry groups of knots are narrowed 
down even further, ruling out the point groups of the 0(3) as well. 

For the sake of simplicity, in this paper, we only consider finite cyclic groups, i.e. G = Cn 
with n E N being the order of the cyclic group. Recall that Cn ~ Z/nZ. This group will act 
via rotations about a fixed axis v on配.Since cyclic groups are generated by one element, the 
group action is sufficiently described when explaining the representative of the generator. The 
generator of Z/nZ may be represented by the rotation with an angle~about the axis v. If a 
knot is invariant with respect to that group action (i.e. rotation), we also say that it is of n-fold 
symmetry about the axis v. 

However, we do not consider a knot as a set of points in配， buta parametrisation of that 
knot. Therefore, we need to add an interior group action on the parameter space to adjust the 
rotations. Thus, we define 

Definition 2.12. Let K be an arbitrary knot class and let G := Z/nZ, n EN, be a cyclic group 
of order n. Then G acts on K via 

(8) Tk: G x K→ K, (g,,)→ rot (加~(g), e3) 1 (t + ki~g)) for all t E良/Z,

with k EN being a fixed parameter depending on K, and i(g) E 0, ... , n -1 is the representative 
of g E G. 

Here, rot(a, v) denotes the rotation with an angle a about the axis v. The well-definedness of 
the group action is discussed in [GvdM18, Rem. 4.5]. 

Remark 2.13. 

(i) Since k will be fixed depending on the knot class, we will omit this parameter in the 
notation, unless we want to emphasise on how to calculate it (see e.g. Lemma 3.6). 

(ii) Fixing the rotational axis to be v = e3 is not too strong of a restriction, since Ea and£~ 
are invariant with respect to isometries. Hence, a knot which is invariant to an action as 
described above, but with a rotation about another axis, may be isometrically mapped 
such that the rotation is about the e3-axis. 

The group action we defined above is orientation preserving. This implies that for any knotted 
curve being invariant with respect to the group action of G, the e3-axis must not intersect the 
knot. This leads to a certain kind of rotational symmetry for knots, the periodicity. 

We define an adjusted notion of periodicity for knots based on the definition of Burde and 
Zieschang, see [BZ85, p. 256] and also [Liv95, Defintition 8.3]. This property does not depend 

on the parametrisation I but only on its image r = 1(股/Z).

Definition 2.14 (Periodicity). We consider a knot rand an axis v. If we have 
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then r has period q, or is q-periodic. 

To show the central result, Theorem 1.1, we will exploit the following result on possible rota-
tional symmetries of non-trivial knots. Most of these facts can also be extracted from Griinbaum 
and Shephard's classification of possible symmetry groups of knots [GS85] in combination with 
their characterisation of finite subgroups of 0(3) in [GS81]. In [GvdM18], we added information 
about possible periods of knots. Furthermore, we presented a purely geometrical approach to 
show the results. We will reproduce that proof here. Note that this theorem solely deals with a 
knot r as an object in記 i.e.we do not consider its parametrisation. 

Theorem 2.15 (Rotational symmetries of knots, [GvdM18, Lem. 4.12]). If a non-trivially knot-
ted curve r is rotationally symmetric about an axis v with angle r.p E (一1r,1r]andI'nv =/= 0, then 

'-P = Jr. 
If r has two axes v1 and v2 of rotational symmetry with respect to rotation angles r.p1 =息
四=;: , where a1, a2 2'. 2, then v1 n v2 =/= 0. 
Furthermore, if v1 n v2 = {p} for some p E配， thefollowing holds. 

1) For r.p1 =/= r.p2 we have 

{i) V1 J_ V2; 

{ii) W.l.o.g. a1 2'. 3 and a2 = 2; 

僅） V1 n r = 0 and V2 n r =/=〇．

2) If'-Pl= r.p2, then we have'-Pl= r.p2 = 1r. 

To show this theorem, we will need the subsequent short lemma, which is a slight generalisation 
of Griinbaum and Shephard [GS85, Lemma 1]. The proof may be found in [GvdM18]. 

Lemma 2.16 ([GvdM18, Lem. 4.13]). A knot may not have more than one axis of n-fold 
symmetry with n 2'. 3. Let a EN such that a 2'. 3. Then a knot cannot have more than one axis 
of rotational symmetry with rotational angle 21r/a. 

Proof of Thm. 2.15. For the first claim, assume that we had vnr =/= 0, where vis the axis about 
which r is rotationally symmetric about angle r.p =/= 1r. But then we have 21r/回>2 arcs entering 
x Ev n r, implying that r is not embedded. Hence, if r.p =/= Jr, we need to have v n r = 0. 

Now we assume that r has two different rotational symmetry axes v1心 withrotational angles 

切=21r/a1 and四 =2心 forsome integers a1, a2 2'. 2. We want to show that v1 n v2 =/= 0 and 
assume the contrary to arrive at a contradiction. Therefore, we split up the cases depending on 

a1 and a2. 
We assume v1 n v2 = 0. If a1 = a2 = 2, we argue as follows. Consider the two parallel affine 
planes H1, H2 C 配 suchthat v1 C H1 and v2 C H2, and d := dist(H1, H2) > 0. Both planes 

separate配 intohalf-spaces, which we denote by Hi-and Ht, i = I, 2, in such a way that the 
set 

S := H1 n均 ={x E股3I dist(x, Hi) < d, i = I, 2} 

is not empty. This implies H「nH2 = 0. Due to the rotational symmetry about both axes v1 
and v2, we have r n S =/= 0. We consider xo E r n S as well as its rotational symmetric copies 
with respect to the axes v1 and v2 

叫=rot (1r, v;) xo, i = 1, 2. 

For those we have xl E Ht and xy E H2, hence, xl =/= xy. However, if we consider the lengths 
of the arcs connecting xo with吋andxy, respectively, we have 

(9) ダ (a(xo,吋）） = .Z(r)/2 =ダ (a(xo,Xi)) , 
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where a(x, y) denotes the arc of r linking x to y along the parametrisation. But this implies 
that吋=Xi, which is a contradiction. 
Now we consider w.l.o.g. a1 2: 3 and a2 2: 2. We may consider the rotation about v2 with respect 
to the rotational angle 2五 asan isometry I in配 andtherefore have J(r) = r. Then, Lemma 
A.1 in the appendix allows us to find new symmetry axes for r by rotating v1 about v2. That 
is, all axes 

vf = rot (詈叫 v1, i = 0, …, a2 -1 

are axes of rotational symmetry for r with rotational angle四=21r/a1. Since a2 2 2 and 
v1nv2 = 0, there are now at least two different axes of rotational symmetry with angle cp1 = 21r/aぃ
contradicting Lemma 2.16. Thus we have shown that v1 n v2 =/ 0. 

To show the third assertion, we assume v1 n v2 = {p} for some p E配.W.l.o.g. we may set 
p = 0. The corresponding rotational angles for the axes v;, i = 1, 2 are cp; = 21r/a, for some 
integers a; 2 2, i = 1, 2. 
To prove Part 1) we take a1 =/=四 andassume firstly that a1, a2 2 3 to arrive at a contradiction, 
proving Part l)(ii). 
We have切 E(0, 1r), i = 1, 2. The first assertion of the theorem implies that r is disjoint from 
both axes v1 and v2. As for the proof of the second assertion of the theorem, we may construct 
copies of町 byrotating it around v2. Then r is rotationally symmetric with respect to the axes 

vi= rot (轡，四）町， i= o, …，a2 -1, 

where v~= v1. Hence, there are at least two axes with rotational angleや1= 21r/a1 E (0,1r). Since 
cp E (0, 1r), those axes do not coincide. But this contradicts Lemma 2.16. Thus, we have either 

a1 = 2 and a2 2 3, or a2 = 2 and a1 2 3, which proves Part l)(ii). Furthermore, the presented 
argument implies Part 2). 

To continue, we assume w.l.o.g. that a1 2 3, a2 = 2. 
In view of proving Part l)(i), we take into account the angle <1(v1, v2) =: a E (0, 1r/2] and assume 
that O <a< 1r/2. Then we may construct a second rotational symmetry axis for r with rotational 

angle cp1 =叫，

吋=rot (元四）V1 

and we have Vf =/= v1. This implies the existence of two distinct axes of rotational symmetry for 
r with rotational angle cp = 21r/a1 E (0, 1r), contradicting Lemma 2.16 again. Therefore, we have 
v1 1-v2, which is Part l)(i). 

The first assertion of the theorem already implies that r n v1 = 0 because cp1 E (0, 1r). Thus, 
it suffices to show v2 n r =/ 0 to finally establish Part l)(iii). 
We assume v2 n r = 0. This implies that both v1 and v2 are disjoint from r, hence both are 
periodicity axes, see Definition 2.14. 

We define the plane H := vr. Due to Part l)(i), it contains v2, and we deduce Hnr =/= 0 because 
of the periodicity about v2. Now we fix a point xo E H n r and consider its orbit under the 
action of the cyclic group Gau induced by the rotation rot (cp1, 町）， with釘=21r/a丘

Ov1 := {xo, …，Xa1-d C Hnr 

The x; are labelled according to the arclength parameters, i.e. their index is increasing along 
th e parametnsat1on on r. That is叩＝ r(s;) for i = 0, …，a1 -1 such that 0さso<s1く…く
Bai-I < L = .:c'(r). Furthermore, there exists k EN with gcd(k, a1) = 1 and unique modulo a1, 
such that 

(10) 叩=rot (呼，v1)xo, i=O, …，a1 -1. 
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To justify this equation, observe firstly that the periodicity of r implies that the subarcs on r 

connecting consecutive Xi have equal length, i.e. 

L 
(11) ダ (a(xi,X叫） = Si+l -Si = for all i = 0, …, a1 -1. 

a1 

For the points in Ov1, we know as well that they lie on a circle C = oBr(O), r = dist(xo, 0), which 
is contained in H. We reorder the points in Ov1 according to their position on C, proceeding 
counterclockwise. We set Yo = xo and arrive at a set Y = {yo, ... , Ya1 -1} with indices labelled 
such that 

約=rot (息，V1)い forall j E {O, ... ,a1 -1}. 

Since the sets Y and Ov1 coincide, there is an integer m E {1, ... , a1 -1} such that y1 = 
r(sm) = Xm-Thus, using (11), the oriented subarc of r starting at xo = Yo and ending at 
Yl = Xm has length Sm -so=mL/a1. The same holds true for every oriented subarc a(yか約+1),
J = 1, ... , a1 -1, so that we arrive at 

(12) Xjm = r(sjm) =的=rot (翌v1)Yo= rot (告，V1)XO, j = 1, ... , a1 -1. 

Note that for the indices, we use the notation modulo aぃi.e.if jm (j_ {O, ... a1 -1 }, we replace 
it by [jm mod a』.Such an m E Z/a1Z does exist and it holds gcd(m, a1) = 1. If these numbers 
were not relatively prime, then their least common multiple lcm(m, a1) could be written as 

lcm(m, a1) = gccff記0=: l• m, where 1 < l < 釘ー 1is a positive integer. This would imply 

l• m = 0 mod a1, and therefore xz,m = r(so) = yz in (12). But then the remaining points 

如 1,... , Yai-1 would not be contained in the orbit Ov1, which is a contradiction to Y = 0町

Hence, we have gcd(m, a1) = 1, implying the existence of an inverse k of m in Za直， i.e.
km三a1= 1. Using (12), we obtain 

X[i,m] = rot (竺;n・¥v1)xo for all j = 1, ... ,a1 -1. 

Given any i E {1, ... , a1 -1} we choose j := i• k to finally obtain (10). 

Next, we use the 2-periodicity of r around四 toconstruct further points lying on the circle 
C. There exist西=r(函） E r n H such that 

We have 

瓦=rot (7r, v2) Xi, i = 0, …，a1 -1. 

L 
!£(a(xi, 可））＝一 forall i = 0, ... , a1 -1. 

2 
By a short calculation, we arrive at 

(13) 西=rot (加.k(-i)'V1)豆o, for all i = 0, …，a1 -1. 
a1 

We have Xi亙iE C for all i = 0, …，a1 -1. We are going to determine the order of these points 
on C, and consider first only the Xi-Due to the a1-periodicity, there is a unique successor x往 of
xo (counterclockwise) on C which has a distance of 2訂 /a,to xo on C and is defined by (10): 

圧=rot (口） (~ a, , v1 xo = rot , v1) xo a, 
which is equivalent to kik三a,1. Thus ik is the unique inverse of kin Z/a1Z which exists, since 
gcd(k, a1) = 1. Repeating this argument for the other successors, we arrive at the order 

XQ -Xik―X2ik―... -X(a1 -l)ik 

on C counterclockwise. In an analogous way, by using (13), we arrive at the following counter-

clockwise order for the両， i= 0, …, a1 -1 on circle C: 

両一歪(a,-1)松―歪(a,-2)殊―・・・一歪％•
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We further have 

(14) 
21rrl 

ダ (ac(xぃ叫+liり） = =2(ac(瓦，歪i-l叫），
a1 

where aa(x, y) is the circular subarc of C connecting x and y counterclockwise. Now we are 
going to determine the order of both sets of points combined on C. To this extent, we consider 

a pair (xか功） such that x・mm1m1ses dist (xk, V2 n S) for k = 0, …, a1 -1. W.l.o.g. let this be 
j = 0 and assume further w.l.o.g. that aa (xo亙o)S:: aa (歪o,xo). Now we use 

(15) 
2訂

{3 :=ダ (as(xo亙o))< 
a1' 

which may be deduced by (assuming the contrary and) calculating the length between xo and 
x;k and the fact that gcd(k, a1) = 1. 
Combining (15) with (14) leads to the counterclockwise ordered combined chain 

(16) XOー豆0- Xik―豆(a1-l)ik― X2ik―歪(a1-2)ik―'''-X(a1 -l)ik―豆知

since there are no x; ぷ inthe circular arc aa (xo亙o)CC  because of the minimality of xo, and 
the possible successors of xo and豆o,respectively, are x;k and歪(a,-l)ik. Equation (14) delivers 
that x吐 hasto appear before万(ai-l)ik・Fromthere one can continue to form the whole chain 

(16). 
The a1-periodicity now gives us information on the shorter subarcs a(p, q) C r connecting 

consecutive points p and q on the combined chain (16): 

a(髯誓l)ik)= rot (誓，v1)a(xo, 両） for all ZEN. 

In particular, the lengths of these arcs coincide. But this leads to 

L 
ダ (a(x; ぃ豆）） = lskk -s;k I = 2 = Isa -sol =ダ (a(xo, 元0))= _!L'(a (Xik立(a1-l)ik)) > 

and therefore 1 = a1 -1, which is not the case as a1 2". 3. This final contradiction leads us to 
v2 nrヂ0.This establishes Part l)(iii) and concludes the whole proof. ロ

3. SYMMETRIC CRITICAL POINTS 

The aim of this section is to show Theorem 1. 1. 
We first establish an open subset of the Banach space W"+'/2,2(賊/Z記） as the Banach ma-

nifold on which Palais'principle of symmetric criticality is applicable. 

Lemma 3.1 ([GvdM18, Lem. 4.1]). For any knot class K and for any a E (2, 3) the set 

緑：= {, E wa+l/2,2償/Z,配）： l,'I > 0, bl = K} 

is an open subset of W"+1/2,2(JR/Z記）．

Here, b] denotes the knot class represented by 1. In particular, b] = K implies automatically 
that ,l[o,l) is injective. The proofofthe lemma may be found in [GvdM18, Lem. 4.1]. Since open 
subsets of Banach spaces are Banach manifolds, we immediately arrive at 

Corollary 3.2 ([GvdM18, Cor. 4.2]). The set緑 definedin Lemma 3.1 is a smooth manifold 
modeled over the Banach space妥：= wa+l/2,2償/Z記）．

Since the set~K is a subset of an arbitrary knot class K, the group action defined in Lemma 
2.12 is well-defined for elements of緑 aswell. This representation meets the requirements of 
Definition 2.2, which gives us 
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Corollary 3.3 ([GvdM18, Lem. 4.4]). Let咋 bedefined as in Lemma 3.1. Let further G = 
Z/nZ, n EN, be a finite cyclic group of order n, which acts on咋 viathe representation T 

仔： GxK→ K, (g,,)→ rot (21r~(g), e3) 1 (t + ki~g)) for all t E麟，

with the parameters as defined in Lemma 2.12. Then咋 isa smooth G-Banach manifold. 

The set of fixed points in a knot class K with respect to a finite group G = Z/nZ, n EN, will 
be referred to as symmetric knot class Kc and we write 

(17) 霰={, E緑仔(g,1)= 1 for all g E Z/nz}. 

We therefore arrive at a knot theoretic version of the principle of symmetric criticality, see 
also [Gil18]. 

Theorem 3.4. Let G = Z/nZ be a finite cyclic group of order n EN and let緑 bedefined as 
in Lemma 3.1. Then the set句月 isa smooth submanifold of咋 andevery critical point of t:; 
in究 isa critical point of勾 in咋．

In general, of course, not for every combination of knot class K and order of a cyclic group 
n, we do have a non-empty symmetric knot class Ka, G = Z/nZ. However, for the knot classes 
of the torus knots, we will show the existence of non-empty symmetric knot classes. 

Definition 3.5. Let a, b E Z ¥ {O, 土1}be relatively prime and consider a fixed p E (0, 1). We 
define the smooth curve 

1 + pcos(21rbt) cos(21rat)(l + pcos(21rbt) 

(18) tp(t) := rot (21rat, e3) (p  sin~21rbt)) = (sin(2切畠晶悶s(2両））， tE股/Z

The image of tp is called an (a, b)-torus knot. Its knot class T(a, b) = [tp] is called (a, b)-torus 
knot class. 

By [BZ85, Theorem 3.29], we know that T(a, b) = T(b, a) = T(-a, -b) = T(-b, -a). Using 
the curve defined in (18), we will show that those symmetric knot classes, induced by cyclic 
groups of an order which divides either a or b, are non-empty. 

Lemma 3.6 ([GvdM18, Lem. 4.8]). Leta E (2,3), a,b E Z¥{O, 士1}relatively prime, let m E N, 
m > 1, divide a orb, and let G = Z/mZ. Then the following is true: For any k E Z ¥ {O} with 

(l9) { ak + l三m O ifmlb 

bk+ l写 nO if mla 

one has a nonempty G-symmetric subset究毘 asin (17). 

This lemma is shown by simply calculating for the smooth curve in (18), that 

仔 (g,tp)(t) = tp 

for all t E恥/Z,see [GvdM18, Lem. 4.8]. Note that a k E Z/mZ as in (19) does always exist 
since for mlb, a and mare relatively prime. For mla, we have band m relatively prime. Then we 
immediately deduce the existence of such a k. This is the same parameter k as in the definition 
of the group action (8), see also Remark 2.13. 

Having shown that, for torus knot classes, we have at least two non-empty symmetric knot 
classes, we will proceed by showing the existence of critical points ofなineach of these sets. This 
will be done by showing the existence of a minimiser in a non-empty symmetric knot class, using 
the direct method of variational calculus. This existence proof is valid for arbitrary non-empty 
symmetric knot classes. 

For technical reasons, we will have to reparametrise to arclength in the existence proof. There-
fore, we need to understand what kind of symmetry the arclength parametrisation inherits from 
a symmetric curve. 
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Lemma 3. 7 ([GvdM18, Lem. 4.6]). Let m, k E Z, G = Z/mZ, and 1 : 股/Z→配 bean 
absolutely continuous curve with b'I > 0 a. e. and with lengthダ b)=LE (0, oo), such that for 
g E G we have 

忙： GxK→ K, (g, 1) >-+ rot (でい）1 (t + k~)) for all t E良/Z,

with i(g) E {O, ... , m -1} depending on g E G and k E Z/mZ depending on the knot class K 
as in (8). Then the corresponding arclength parametrisationうEco,1(股/LZ記） satisfies 

(20) rot (21ri(g), e3)ぅ(s+で）＝う(s)for all s E [O,L). 
m 

Since arclength reparametrisations of curves in W"+1/2,2 inherit the same regularity, we im-

mediately infer 

Corollary 3.8 ([GvdM18, Cor. 4.7]). Let m, k E Z and G = Z/mZ and let K be any knot class. 
Let further咋 bethe Banach manifold defined in Lemma 3.1 with G-symmetric subset冗尼 with
respect to the group action given by T as defined in (8). Then, if"(E冗侶 haslengthダ ('Y)= 1, 
its arclength parametrisationう：艮/Z→配 iscontained in霰']['aswell. 

Now we are ready to prove the existence of symmetric minimizers for the scaled O'Hara 
energy defined in (2) in the introduction. Notice that since Ea is continuously differentiable on 
the space of regular curves, so is t:;, since the length functional.:£is continuously differentiable, 
even in the class of regular curves of class W叫股/Z記）， andhence in particular on the Banach 
manifold緑 forany knot class K. Furthermore, due to that regularity of .:£, all properties 
introduced in Section 2.2 for Ea hold for t:; as well. 

Theorem 3.9 ([GvdM18, Thm. 4.9]). Let a E (2, 3), and consider a knot class K. Let G = 
Z/mZ, m EN, be a finite cyclic group acting on緑 viathe action defined in (8) .1 Assume that 
the symmetric knot class句毘 isnon-empty. Then there exists an arclength parametrised curve 

'YE句毘 suchthat 

(21) 勾b)= inf窃・
'CJF 

We can convince ourselves, considering Theorem 3.4, that these symmetric minimizing torus 
knots are all critical for the scaled energy functional勾 onall of緑・

Corollary 3.10. Any of the minimizing knots IE句悶 foundin Theorem 3. 9 are critical points 
of the scaled energy勾 =.;£<>-2広 andtherefore of class 000償/Z,配）．

In order to show that there are at least two£;-critical knots in every non-trivial torus knot 
class T(a, b), we consider this classical result from Burde and Zieschang concerning the periods 
of torus knots. We already know by Lemma 3.6, that the divisors of a and b are possible periods 
of torus knots. The following proposition shows that these are the only possible periods. 

Proposition 3.11 ([BZ85, Prop. 14.27]). If q E応 2is a period of a curve I E c0(JR/.Z配）
with [,] = T(a, b) for relatively prime integers a, b E .Z ¥ {O, 士1},then qla or qlb. Conversely, if 
q E N::,2 divides a orb, then there is a representative I E C0(股/.Z,配） such that q is a period of 

勺・

This result will allow us to show the existence of at least two£;-critical knots in every torus 
knot class T(a, b), which is our central result, Theorem 1.1 mentioned in the introduction. 

Theorem. Let a, b E .Z ¥ {O, 士1}be relatively prime and let a E (2, 3). Then there exist at least 
two different arclength parametrised, embedded curves 11富 E000(股/.Z,配） that are critical for 
the energy 

勾('Y):=ダ°'-2("/)Ea('Y)

in the torus knot class T(a, b). 

1Note that the parameter k of the group action Tk is uniquely defined by the knot class. 
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Proof of Theorem 1.1. We consider a torus knot class K = T(a, b), with a, b E Z ¥ {O, 士1}
relatively prime, and m E Nc".2 dividing a or b. By Lemma 3.6, each symmetric knot class句悶
is non-empty. By Theorems 3.9 and 3.4 in connection with Corollary 3.10, we arrive at at least 
one arclength parametrised curve 

翌 E句悶nC00(恥/Z,配）

that is 勾—critical in筍K.This curve of course satisfies 

rot (21r!g), e3) "(m (t + km:g)) = "(叫t) for all t E JR/Z. 

Note that we wrote km for the parameter of the group action as defined in (8), because it depends 
on the group and therefore in this case on the order of the cyclic group, which is m. 

We will show that there are at least two different of such critical points by showing that 

霰 n咋=0 for all ela, f lb. 

To do so, assume there was an element T/ E 霰 n~k- Now we consider the groups inducing 
the symmetric knot classes, i.e. the cyclic groups Ce and CJ, Since we fixed the rotational axis 
for group actions to be e3, formally, we have assume that there is T/ E霰 andthere exists and 

isometry I such that J(T/) E咋 Butthis is equivalent to T/ having an e-fold rotational symmetry 
about the e3-axis and and !-rotational symmetry about the 1-1(e3)-axis. So now, we consider 
these two axes. 
If the actions of Ce and Ct were induced around different rotational axes, this would imply by 
Theorem 2.15, that one rotation would have to be about an angle 7r and the corresponding axis 
would intersect the knot. This would imply that the orientation is reversed, which is a contra-
diction to the definition of the group operation of a cyclic group, which preserves orientation, 
see Lemma 2.12. Hence, both rotations have to be induced around the same axis v = e3 and 
the isometry I may only change the direction of rotation. If J does not change the direction of 
rotation, then for any g E Ce, h E Ct and for all t E麟 wehave 

(22) T/(t) =九(Tg(T/(t)))= rot c1r:(g), v) rot C1r;h), v) T/ (t + k砂:g) + ktjh))' 

where i(g) E {O, ... ,e -1} and i(h) E {O, ... ,f-1}. This implies, particularly in the case 
i(g) = i(h) = 1, that 

f +e k』+k1e) 
(23) rot (27f , V T/ ef)  (t + ef )  = T/(t) for all t E賊/Z.

If the rotations are induced in opposite directions of rotation, then we assume w.l.o.g. 

21r ke 
T/(t) = rotい）T/ (t +了） for all t E戦/Z.

Also, the isometry I: 配→ 配 hasto be such that the functionり：= I o T/ fulfills 

27r 
罰=rotい）り(t) for all t E IR/Z. 

The isometry¢itself therefore has to be 

q;(x) =rot(1r,w)x+~, 

with w orthogonal to v and~Ev such that the rotational axis of Ct is mapped onto the one of 
Ce, Thus, we have 

り(t)= rot(1r, w)T/(t) +~for all t E恥/Z,

and f/ has a rotational symmetry in the same direction of rotation as T/・We arrive at 

T/(t) = rot(1r,w)り(t)+~= rot(1r, w)rot (竺,v)り(t)+~ 
f 
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::::g:>:;,, w)ry(t) + <~rnt (';, v) (rnt(,, w)り(t)+ <) 

because we have~Ev and due to Lemma A.1. 
Hence, also in this case, we arrive at (22) and thus (23), yielding 

21r(f +e) k』+k1e) 
rot ( ,  v) T/ (t + )  = TJ(t) for all t E尺/Z.

ef ef 

21r(f+e) 
This implies that rot (ef , v) M = M, where M = TJ(股/Z).Since (f +e) and ef are relatively 

prime, there is some s EN such that (e + f)s三 1mod ef. Therefore, we obtain 

M = rot (加(~7e),v r M = rot (2;rs~/ e) ,v) M = rot (翌，v)M

That equation yields M being ef-periodic. However, by Lemma 3.11, we know that the only 
periods of an (a, b)-torus knot are the divisors of a and b. This implies (ef) la or (ef)lb, which is 

a contradiction to gcd(a, b) = 1. Hence, 究 and"&'k are disjoint and the theorem is proven. ロ

APPENDIX A. 

In the proof of Theorem 2.15 we used the following simple result concerning images of rota-
tionally symmetric sets under isometries of記 Aproof may be found in [GvdM18]. 

Lemma A.I. Let w E§2, a E股， andI: 配→ 配 bean orientation preserving isomet可 o/JR.3
with I(w)ヂ0.Then for any set Mc配 with

(24) rnt(a,JR.w) M = M 

one has 

(25) rot(a,I(股w))I(M) = I(M), 

where similarly as before rot (a, 面） stands for the rotation about the affine line w =股ew+dC配
for some ew E§2 and d E配 withrotational angle a E恥
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