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1 Introduction and Main Results 

In this paper, based on a recent work [5], we present our study on the existence and 

the linear stability of stationary solutions for the following Schnakenberg model: 

山＝召Uxx+dE-u+g(x)u2v, xE(-1,1), t>O, 

国 =D旱+½ ー拉(x)u2v, x E (-1, 1), t > 0, 

妬（土1)=四（士1)= 0, 

(1) 

(2) 

(3) 

where d and c are positive constants, ぎandD are positive diffusion coefficients. u(x, t) 

and v(x, t) represent the density of two chemical substances. Here, g(x) is a positive 

function, which represents the reaction speed of the chemical reaction at x E (-1, 1) 

and may vary on the location x, for example by the effect of temperature. 

Our system (1)-(3) is obtained from the original Schnakenberg model: 

Ut = D1匹 +a-U+g(x)いV, xE(-1,1),t>O, 

½= D2 Vxx + b -g (X)びV, xE(-1,1),t>O, 

に（士1)= v; ェ（士1)= 0 

by using the spacial scaling: c =富d=a旦=2ab, and 

1 
U=-
2bE 
u, V = 2bEv, D1 =乳

D 
D2=-. 

ど
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Especially, we treat sufficiently small E and a fixed D, i.e. the ratio of diffusion coeffi-

cients~is large (cf. Turing's diffusion-driven instability). Moreover, (2) means that v 
reacts very rapidly than u in our model. 

Inspired by the work of Iron, Wei and Winter [3] which studied in the cased= 0 and 

g(x) = 1, the purpose of our study is to investigate the effect of symmetric heterogeneity 

g(x), namely g(x) = g(-x), on the linear stability of stationary solutions for (1)-(3) 

rigorously. To state our main results, we prepare some notations. Let w。bethe unique 
solution of 

叫!-wo+w各=0, XE  ffi., 

wo > 0, wo(O) = max艮w0,lim訓→oo wo(Y) = 0. 

It is known that w。isunique and can be written explicitly初o(Y)=~(cosh~)-2. 

Let w be the unique solution of the following problem: 

w" -w + g(O)記=0, XE恥
w > 0, w(O) = max戸 lim訓→oo w(y) = 0. 

Then it is easy to see w(y) = g(0}-1w0(y). Let x be a cut-off function: 

XE C, 合（民）， 0さx:S 1 , x(x) = {~: ::: : i: 
Define symmetric function spaces: for each a E (0, oo), 

且(-a,a) :={ u E L2(-a, a) I u(x) = u(-x) }, 

H;(-a, a) :={ u E H2(-a, a) I u(x) = u(-x), u'(士a)=O}.

Let I:= (-1, 1) and l0 :=(-¼,¼)for E > 0. We also use the following notation for 
the rescaling: for a function u : I→ 恥 define可(y):= u(cy) (y E I0). 
The steady-state problem for (1)~(3) is the following: 

0 =きu"+ de -u + g(x)u2v, x E (-1, 1), 

0 = Dv" +½ —~g(x)u2v, x E (-1, 1), 

u'(土1)= v'(土1)= 0. 

First, we state the existence of a one-peak solution. 

(4) 

(5) 

(6) 

Theorem 1 Fix D < +oo arbitrarily. Assume that g(x) is positive, Lipschitz contin-
uous and satisfies g(x) = g(-x). Then, there exists a sufficiently small釘>0 such 

that, for O < E < Eい (4)~(6) admits a symmetric one-peak solution (u0(x),v0(x)) E 
H;(I0) x H;(I0), where u0(x) concentrates at x = 0. Moreover, u0(x) takes the following 

asymptotic form: 

妬(x)=叫(x)+¢0(x), (7) 
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where 

叫 x):=~w に）x(x), fo := cg(O) j記(y)dy
fo E: 股

and可EH沢I0)such that 

II属IIH2(Je;):s::C嘉 (8) 

holds for some constant C > 0 independent of E. Also, 牝(x)satisfies 

叫0)=知+O(嘉） as E→ 0. (9) 

Moreover, there exists v0 Eが (I)such that ve -'v0 weakly in H1 (I), where v。satisfies

-Dv闘(X)=½- 60 (X), X E (-1, 1), 
va(O) = fo, vb(土1)= 0 

and 8。(x)is the Dirac's delta function. 
Next, we study the linear stability of the solutions (uむ牝） constructed in Theorem 1. 

We linearize the system (1)~ (3) at (u6心） and obtain the following eigenvalue problem: 

e鸞—ら+2gu6v凸 +g硲翡＝疇6, xE(-1,1), 
2c C 

D綽— -gu匹心f; - -gu; 翡＝紐喜 xE(-1,1),
E E 

外（土1)=叫（土1)= 0, 

(10) 

(11) 

where, 入0is an eigenvalue, and (五仇） #-(0, 0) is an eigenfunction. We say that the 
solution (u0, v0) is stable if Re入0< 0 holds for all eigenvalues and unstable if there 

exists an eigenvalue satisfying Re入0> 0. We have the following result on the stability. 

Theorem 2 Fix D < +oo. Let E > 0 be sufficiently small. Let (u凸） be the solution 
given in Theorem 1 . Then, we have the following for large eigenvalues, namely 

入c→入。#-0: 

{1} (佐心） is stable for any D < +oo, namely Re(い<0 holds. 

Furthermore, let g E C3 (-1, 1). Then, we have the following for small eigenvalues, 

namely入e→0: 

{2} If g"(O):::; 0, then (u心） is stable for any D < +oo. 

{3} If g"(O) > 0, (佐心） is stable for D < Dい（四心） is unstable for D > D1, where, 
D1 > 0 is 

D1 := 
1 炉(0) 1 炉(0)
＝．  

2c Ji恥w5 g"(O) 12c g"(O)・ 
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In fact, we have the following asymptotic behavior of入sas E: → 0: 
入s= E:2 JIR w3 (_ g(O) g"(O) 5 

JIR(w')2 6Dfo + 3)+o(戸）． (12) 

Remark 1 Note JIR w5 = 6 and 

~o = cg(O) l尺記(y)dy= cg(O)―1 1. w5(y)dy = 6cg(O)―1. 
Hence, for the case g"(O) > 0 the condition D < D1 is equivalent to 

(_ g(O) g" (0) 
6Dfo + 3)< O. 

Remark 2 Since we are concerned with the existence of unstable eigenvalues, we can 

assume that Re入s~-¼for example. We can show that eigenvalues入sare uniformly 

bounded under the assumption Re入E~- 』. The ref ore, we can assume that there exists 

a入。 suchthat入e→入。 asE: → 0, taking a subsequence if necessary. 

Remark 3 In the case g(x) = 1 and d = 0, by the result of Iron, Wei, and Winter/3}, 

the one-peak symmetric solution is stable for any D > 0. Compared with the case 
g(x) = 1, Theorem 2 reveals the strong influence of the heterogeneity g(x) on the stability 

of the one-peak symmetric solution. We should mention that a similar destabilization 

effect of the heterogeneity has been studied for the Gierer-Meinhardt system(see /8)). 

We note that our results also cover the cased= 0. We emphasize that, even in the case 

g(x) = 1, the remainder estimate O(sう） for small eigenvalues is more precise than the 

result of Iron, Wei and Winter. We also emphasize that for the case d > 0 we need to 
take care of the remainder terms more carefully, compared with the case d = 0. 

Even for non-symmetric heterogeneity g(x), we can expect similar results. However, 

we need more computations and left to future works. For the related works with some 

heterogeneity in other Turing systems, see for example [2], [6], [7] , [8] and the references 
therein. Recently, for a given N E 2, N E N and a given symmetric 良—periodic function 

g(x) in the interval I= (-1, 1), one of the authors studied the existence of multi-peak 

symmetric solutions and its stability in details (see [4]). We also mention that Ao and 

Liu[l] studied recently another heterogeneity effect on the existence and its stability for 

the Schnakenberg model with precursors. 

2 Outline of the Proof of Theorem 1 

2.1 Heuristic explanation of the choice of~。

Before giving the outline of the proof of Theorem 1, we explain briefly why we choose 

(。 asfollows in Theorem 1: 

fo := cg(O) J研(y)dy.
JR 



107

Suppose町 and巧 areuniformly bounded. Then by the equation for v: 

2 c 
D丙"= 2一

2 
Ecgu0鯰， (13) 

we have ID巧"(y)IさCc.Since丙 issymmetric, we have匂'(O)= 0. Therefore, for fixed 
R > 0 we have I町'(y)I:::; CRc (IYI :::; R). This implies匂(y)""C。(IYI:::; R) for some 
positive constant C。.On the other hand町 satisfies

1 1 
―町"=de―町＋瓦宝， yE IE= (一ー，ー）．

c c 

Now we expect両(y)""A。w(y):= u00(y). Then we have 
―心(y)+ uoo(Y) = g(O)uoo(Y)2C'.。,yE股．

So if we take w(y) to be a solution to -w" + w = g(O)w叫wemust have A。C。=1. Now 
integrating (13), we have 

0 = 1-c J gu02丙dy.
le 

So taking the limit, we would have 

1 = c J g(O)A5w(y)迄 dy.
民

Therefore, since A。C。=1 we should have 
1 

A。=
cg(O) JIR研 dy・

Thus if we define~o := cg(O) Ji艮研(y)dy,then we have 
l X 

妬 (x)~ -w(-) and 叫0)~ fo. 
ふ e

2.2 Outline of the construction by using the contraction map-

ping principle. 

Let'U =処+¢with¢(y)E B(C0), where 

叩 (x):=」wに）x(x), fo := cg(O) J記(y)dy
<。 c IR 

and 

B(C。)： ={¢E虎(Jc:) 11?>1 I 印(Ie)~c。 '/c' 臥＇（士~)=o}, (14) 

where the constant C,。isindependent of c:, which will be chosen suitably later. Then, 
we can find a unique solution v := T[u] = T[w0 +の]of the second equation (5): 

1 
-Dv" + 9-g(x)贔＝ー XE (-1, 1), v'(土1)= 0. 

2' 
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We seek a unique¢(x) E尼(I)such that (u(x), v(x)) = (w0 +¢, T[叫+¢])satisfies 
the first equation (4). Substituting u = w0 +¢, v = T[w0 +叫 intothe first equation 

(4): 

＿召u"= de -u + g(x)炉T[u],x E (-1, 1), u'(土1)= 0, 

we have 

s2¢" -1> + 2gw0¢T[w0 +少]+g叶T[w0+叫＋召w:-w0 + ds + g¢2T[w0 +少l= o. (15) 

Using the Frechet derivative R0[ゆ]=〈T'[叫，の〉， wehave 

S0[¢] + gw汀[we]+召w:-w0+ds+N心l=O, 

where 

Sc[¢] := c2¢"ーの+2gT[w0]w0¢+ R心]gw; (16) 

andN心]is the higher order term. Here, in they-variable, using 阿”—阿＝一如og(O)戸＋

O(e―4£) we rewrite as follows: 

図［祠＋釘がT[w0]-g(O)鑓o戸 +dc+O(e―句 +N心l=O, (17) 

where 

図［祠：=S'. 心]=¢''-涵+2gT[w0]阿¢+R心l!i'iが．

Now we have the following invertibility of the operator団： H只IE)→区(IE)•

Lemma 1 ([5, Lemma 3.2]) 

the following inequality holds: 

There exist E。>0 and入>0 such that, for EE (0, Ea), 

II団極l戸(le):::::入 II嘉 II印 (le)' 贔 E 虎(IE)•

Furthermore, Ran(図） = L;(Ie) holds. 

Thus we have 

履＝—図―1 [I[w0l] —図―l[N心l]=: Ms昴］

where 

I[叫：＝戸芦T[叫ーg(O)鑓o戸 +de+O(e―句．

If we choose C,。>0 large enough such that 

--1 

IISc [I加llll印 (le):s:; 
C。
2 
嘉

(18) 

(19) 

(20) 

we can show that M0 is a contraction mapping on B (C,。)for small c: > 0. Actually, we 
can choose C,。sothat C,。>聖門， where01 is the constant will appear in Corollary 1 

later. (Note that the constants入>0 and 01 depend only on w(x), g(x) and the fixed 

parameters c > 0, D > 0.) Thus, there exists a unique¢E B(C,。)which satisfies the 
desired equation. 
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2.3 Basic estimates, including the estimates for T[wE +の].

We note the following estimates, which play key roles throughout this work. 

Lemma 2 ([5, Lemma 2.8, 2.9]) Fix C,。>0. For each⑯ E B(C,。)， letry(x) E 
印（一1,1) satisfy 

cg(w0 +¢)2 h 
-D'f)11 + rJ = -, x E (-1, 1), 

c c 
TJ'(土1)= 0, (21) 

where h(x) is a given function on L2(-l, 1). Then, the following estimates hold: 

{J} I lrtl IL00(Ie):::'.: Cl lhl Iい(Ie)'

(2J 11可'IIだ(Ie):::'.:C..fil lhl IL1(Ie)' 

(3) lrt(y)?J(y) -rt(O)?J(O)I ::; c..fi厠II町|い(Ie)'yE 10・

Here, the constant C is independent of c:. Furthermore, if we have a uniform bound 

11h11い(Ie):::'.: M, then we have 

TJ(O) =~。 j 万dy+O(嘉） as E→ 0. 
le 

(22) 

By using Lemma 2, we can obtain the following estimate which allows the estimate 

(20). 

Corollary 1 There exists a constant C1 such that the following estimates hold 

IIT[we]II区(I.)~C1, IT[we](O) 一 fol~C1y'c, 

ll?J戸 T[we]-g(O)釦0e2II いer.)~C1嘉．

(Proof.) By (1) , (3) of Lemma 2 and (22) as¢= 0 and h(x) =½, there exists a 

constant Cぃindependentof E and C,。,such that the following estimates hold: 

IIT[w』1£00(!,,)'.SCi, IT[叫(0)―fol'.SC喜

IT[wc](y)?J(y) -T[w」(O)?J(O)I'.S C1ヽI可， yE IC. 
Thus we have 

匂 (y)IT[叫 (y)?J(y)ー緬(O)I

こ戸(y)(IT[wc](y)?J(y) -T[叫 (O)?J(O)I + ?J(O) IT[叫 (o)-fol) 

C1 2 
'.S g(O)C1戸 (y)(嘉＋嘉） '.Sg(O)万 w (y)(~+ 嘉）， y E IC・

(。

This implies the desired estimate. 



110

01ntw1se estimates for solutions 3 Global p . 

Since'u;(y) =阿(y)+ ?>o(y) with II因IIH2(Ie)さC咋， weeasily have 

国(y)I~C嘉 +Ce―長 YE le: 

by using the Sobolev's embedding theorem. However, this estimate is not enough to 

treat several error terms in the stability analysis. We need the following pointwise 

estimates for the solution (u0, v0) in our stability analysis. 

Lemma 3 ([5, Proposition 4.2]) There exists a constant C, which is independent of 

E, such that the following estimates hold: 

{i) 

II可IILOO(J.l:::; Cc:, 

(ii) 
1 IYI 

I町(Y)IさC(dc+ e—~+e—72), y E J0, 

(iii) 

国(y)I::; C(d空 +e―乎十e―附）， yE I0. 

These estimates can be obtained by using comparison arguments. In particular, 町(y)

and両'(y)are exponentially small near the boundary of 10 if d = 0. We also have the 
following uniform bounds: 

ll'UsllL00(fe) ::::: C, II巧IIL00(Ie):::::C, II両IIL2(Je)::::: C, II両'IIL2(Ie)::::: C. 

4 Outline of the Proof of Theorem 2 

We may assume that 11巧II印 (le)= 1. By the extension theorem we have II詞II印 (R)さ
C. So, there exists a subsequence and 戸€ が (R)such that cp; converges to戸weakly

inが (R)and strongly in C, に(R).

Lemma 4 (Boundedness of unstable eigenvalues, [5, Proposition 4.2]) Assume 

Re(入c)~ ー¼. Then, we have the following: 

(1)戸ヂ 0.

(2) There exists a constant C, independent of c, such that I入叶 :::;c.

By this Lemma, we may assume入e→入。 forsome constant入。.We consider two cases: 

a large eigenvalue: i.e. 入e→ 入。ヂ 0.

(b) small eigenvalue: i.e. 入c→0. 
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4.1 Stability analysis for large eigenvalues 

Lemma 5 Assume入e→入。ナ 0.Then, we have 

J wo戸dz
戸"(y)一戸(y)+ 2wo(Y)戸（＇リ）ー 2 wo(リ)2=入。戸(y).f w5dz 

Then, by the well-known lemma of Wei and Winter (see Lemma 2.2 in [3], or [8]) for 

nonlocal eigenvalue problem above, we can conclude Re入。<0. So for sufficiently small 

s > 0 we have Re入c:< 0, namely入c:is a stable eigenvalue. 
(Sketch of the proof of Lemma 5.) From the equation (11) forゆc:,we can show 

II悲IIか (I)さCand apply Lemma 2 to obtain 

五(0)=仇(0)=~o J (-2cgu0v凸—翌入ぷ）dy + O(..js) 
I, 

Jw戸dy→ 心(0)= -2cg(O)l。j戸 dy= -2l5 JR as s→ 0. 
罠 JJR研 dy

(23) 

Here we used fo = cg(O) JIR. 研 dy.On the other hand, from the equation (10), we have 

瓦”—瓦+2gu0v凸+guE信＝入工onI0. 

Then , for any (E C, 合（股）， wehave 

/(詞II_互+2gu0v凸+guE2五）く(y)dy = J入亨(y)dy 
I, IR. 

Taking c→ 0 and using Lemma 2, we obtain 

J政（阿'(y) 一cp(y) — +2g(O)w(y)戸(y)+g;~)記(y)心 (0))((y) dy =入。J股戸(y)((y)dy. (24) 
Since w(y) = g(0)-1w0(y), (23) and (24) yield Lemma 5. 

4.2 Stability analysis for small eigenvalues 

We have the following key precise asymptotic for small eigenvalues入Ewhich yields 

the proof of Theorem 2. 

Proposition 1 Assume . 入e→0. Then, as E→ 0, the asymptotic form of入0is given 
as follows: 

入c:= E2 Jill:. w3 (g(O) g"(O) 5 f記）2 ― 6D~。十 3)+o(戸）． (25) 
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(Sketch of the proof of Proposition 1.) We denote u,,1(x) =匹(x)x(x).To show 

Proposition 1, let us decompose 

叫x)= rn叫，i(x)+四(x),

where a0 is some complex number and cp;-satisfies 

五l_K0 inび(I,:), K0 := span{匹，1'}cH刊If;)-

In y-variable, we have 

Similarly, we decompose 

瓦(y)= a叫 1'(y)+~(y). 

翡(x)= rn心 (x)+討(x).

Here, 仇，1is a unique solution of 

C 2c 
D叫— -g(x)硲叫1 --g(x)v0叫＝訊ふ，l,x E (-1, 1), 
c c 

外，1(士1)= 0, 

and叶 isdefined by町：＝仇―Eaふ，1.We have the following formula for入ぶ

Lemma 6 ([5, Lemma 6.1]) 

ふ＋み十J3+ J4 + O(la叶星）＝いぷ2/ (w')2dy + 0(占 la』)．
股

where Ji (i = 1, 2, 3, 4) are defined as follows: 

み：= a6 j (c翡，1-西＇）妬， 12知，1'dy-af;j謬 Ug,12妬，1'dy
le le 

み：＝ー／信＋鱈＇）鬼 1噂 dy,
le 

み：＝［戸彎四，1'dy, J4 := J冗叶dy.
Jg 

(26) 

(27) 

(28) 

(29) 

Here, 冗isa function satisfying冗(y)=Oonlylさ占 and冗(y)= 0(召） on点さ IYIさ｝

This is obtained by multiplying ue,1'and integration by parts. Among them, J1 is the 

leading term to determine the precise asymptotic for入E・Thefollowing Proposition 2 

is important and decide the asymptotic behavior of J1・

Proposition 2 ([5, Proposition 6.2]) 

(1J 11 (土，1-可）狂;2I Iい(Isl::;Cc2. 

(2J le言 (y)ー v;'(y)I:::; Cc2IYI• 

The fallowing estimates hold: 



113

{3)鴫 1(y)ー犀(y)=召y.cg~ 讐01J記dt+ O(c~IYI). 
恥

Here, the constant C is independent of E > 0. 

These are obtained by the representation of犀(y)and翡，1(y) by using Dirichlet and 

Neumann Green functions, respectively. By Proposition 2, we have the following. 

Proposition 3 It holds that 

J1 = asE2 (-
g(O) Im:. w3 g" (0) Im:.¥研
6De 
＋ 

゜
露）+O(laい），

where the constant C is independent of E > 0. 

(Sketch of the proof of Proposition 3.) By (3) of Proposition 2, we have 

af; J (叫(y)ー犀(y))匹，1国，1'dy
IE 

= acr:;2cg冒(1研 dx)J叫 1国，1'dy+ O(lac日）
恥

= -acr:;2 cg(0):1~; 研 dx1股記dx+ O(la0id) = -a6c2二1記 dx+ O(lac日）．
Here, we used 

cg(O) J w(y)渾=fo, 
JR 

J yw(y)2w'(y) dy = _! J w(y)3 dy. 
良 3 IR 

Since by using g'(y) =召yg"(O)+ 0(星IYl2)we also have 

J g'v叫 12□dy = -E2g"(O)炉
le 

3 J記 dx+O(山，
JR 

we can conclude that 

J1 = as J,, (叫1-五')戸戸'dy-a6lg'□戸戸'dy

= aec -
2(g(O)fi民w3+ g"(O) Ji恥w3
6D器 3~5 )+0(1叫戸）．

(30) 

To estimate the remainder terms J2, J3, and J4, we need the following several estimates. 

Lemma 7 ([5, Lemma 6.6]) For砂 itholds that: 

(1J 11□ 11£00(/e)::; Cl 1-:;;f Iい(le)'
(2J 11亘'IIい(Ie)::;C咋11石IIだ (le)'
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Basically, these estimates can be obtained by applying Lemma 2 for叶 Lemma7 
implies the following estimates. 

Lemma 8 ([5, Lemma 6.8]) For Ji (i = 2, 3, 4), it holds that: 

(1J IJ叶 ~Cell戸11 戸(Ie)"

(2J IJ叶さ CJEII万II正(le)"

(3) IJ4I~Cc 訓 II叶II凶Ie)"

Here, the constant C is independent of E > 0. 

By using Proposition 2 again and the inveritibility of some operatorにwhichis close 
to the operator S0, we can show the following estimates. 

Lemma 9 ([5, Lemma 6.9]) The following hold: 

(1) laslヂ0.

(2J 11五11£2~Clas Id• 

Combing these estimates, we arrive at the remainder estimates for J2, J3 and J小

Lemma 10 J2 = O(la叶戸）， J3= O(laclc2) , J4 = O(lac日）．

Estimates for J2 and J4 follow directly from Lemma 8 and 9. However, for J3, Lemma 8 

and 9 yield just J3 = (la叶召）， whichis not enough. Actually, we need the following 
refined estimate to get the correct estimate for J3. 

#(y) —可(0) = O(lacld IYI). (31) 

This is obtained by the representation ofゅf-(y)by using the Neumann Green function. 
Now, by using Proposition 3, Lemma 10 and Lemma 6, we can complete the proof of 

Proposition 1. 

5 Further Remarks 

We give two remarks. 

Remark 4 Assume g(x) is Lipschitz continuous and g E 03((-1, O]) and g E 03([0, 1)), 

respectively. Let g'(+o) := limx>O,x→ og'(x) and g'(-0) := limx<O,x→ og'(叫＝一g'(+O)
by the symmetry. When g'(+0) #-g'(-0), the stability of the solution is determined by 
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the sign of g'(+O). First, note that using g'(y) = c:g'(+O) + c:2yg"(+O) + 0(星IYl2)for 
y > 0 and加戸27ii;'isan even function, we can compute 

le g'vE叫雷dy= 2 fo¾ 丘 u国 dy

+oo 3 g'(+O)w(0)3 
= Eg'(+O)lo2 J w(y)冒 (y)dy + O(c: う）＝ーE +0(山．。 3器

Thus, in the computation of the small eigenvalue入E,the leading term of J1 become as 

follows: 
c 

ふ=a6~g'(+O)w(0)3 + O(la叶戸）．
3~。

Compare with (30) and Proposition 3 for the case g E 03 (-1, 1). This implies 

入s=E
g'(+o) 

3 Ii□'(x)耀x(w(0))3 + 0(戸）．

Therefore, the solution is unstable if g'(+0) > 0 and stable if g'(+0) < 0. 

Remark 5 (Boundary peal solution and its stability) For a given Lipschitz con-

tinuous positive function g(x), we can construct a boundary peak solution (u0,v0) on 

the interval I := (-1, 1). Because, consider an extension of g(x) on the interval 

J := (-1,3), which is symmetric with respect to x = 1. We denote it by g(x). For 
this function g, we can construct solution (迄，v0)to the co'r'responding Schnakenberg 
system on the interval i, which is symmetric with respect to x = 1. Restricting this 
solution on the original interval I, we obtain a boundary peak solution (u8, v8). For the 

stability of this bound叩/peak solution, let us consider the linearized eigenvalue problem 

on I. We denote by入8and (五翡） the eigenvalue and the associated eigenfunctions, 

respectively. Now, extending the eigenfunction (五翡） on the interval i = (-1, 3) to be 
symmetric with respect to x = 1. Then by the Neumann boundary condition at x = 1, 

this extended function (<pぃ加） is an eigenfunction associated with the eigenvalue入8on 
the interval J. Then, we can apply our theorem to study the stability of the bound-
a内/peak solution (us, Vs)-Namely, assuming g(x) is C3 function, g"(l) determine the 

stability of the boundary peak solution constructed in this way. 
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